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FULL BANACH MEAN VALUES
ON COUNTABLE GROUPS

HARRY KESTEN

1. Introduction. A functional L on the space of all bounded real func-
tions on a group @ is called a full Banach mean value if it satisfies the
following conditions (f and g bounded real functions on G):

(L1) intf(z) < If < supf(a),
ze@ ze@
(1.2) L{f(yxz)} = L{f(x)} forall yze@,
(1.3) L{Af} = ALf  Areal,
(1.4) L{f+g9} = Lf+Lyg

Recently E. Folner (Main theorem in [4]) has given necessary and suffi-
cient conditions of a combinatorial character for the existence of such a
mean value. Dixmier [2, p. 221] had already given slightly stronger
sufficient conditions. It is the purpose of this note to derive from Fglner’s
theorem another set of necessary and sufficient conditions for the exis-
tence of a mean value on countable groups. These conditions will be in
terms of the spectral radii of matrices connected with random walks on
the group and introduced by the author in his thesis [6]. It was shown
that these spectral radii are determined by the probability of going from
the unit element of G to the unit element in n steps (n=0, 1, ...) of such
random walks (cf. [3] for the terminology on random walks and Markov
chains). They are therefore connected with the number of ways in
which the unit element can be written as the product of n generators of G.

Lemma 4, giving a bound for eigenvalues of symmetric matrices, may
have some independent interest.

2. Some former results. When G is a countable (not necessarily in-
finite) group and p(x) a symmetric probability distribution on @, that is
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(2.1) p(x) = 0 (xe@),
(2.2) p(x) = px1),
(2.3) Z(;P(x) =1,

we associate a matrix! M(@G, p) with this group G and the probability
distribution p(x). The entries of M correspond to pairs of elements,

(2.4) M(G, p) = |m
with
(2.5)

-

My 2y = P@;72;) (2, 2;€G) .

By (2.1)-(2.3) M is a symmetric stochastic matrix and its dimension is
equal to the order of the group. M was introduced in [6] as the matrix of
transition probabilities corresponding to a random walk on @, in which
every step consists of right multiplication by some element of @, ze@,
being chosen with probability p(x). Thus when ye@ was reached after
n steps, one will reach yx with probability p(x) after the (n+ 1)st step.
One can consider M as a bounded linear operator on the Hilbert space
1?(G) of functions k= h(x) (xe@G; h(z) complex) such that

2 (@)[? < oo

xe@
by putting
(2.6) Mh(x) = > m, ,h(y) .
ze@

The spectrum of M is then defined as the set of all complex numbers 4
such that M — AI does not have an inverse which is a bounded operator
on [2(G). (I is the unit matrix of the same dimension as M.) The spectral
radius of M is

sup 1A .

2 € spectrum of M

The following results which were proved in [6] will be needed here.

LemMA 1 (lemma 2.2 in [6]). The spectrum of M is real and contained in
[—=1, +1]. Furthermore
def
MG, p) = max A

4 € spectrum of M

= spectral radius of M = sup limsup {m{)}"/",
re@ n—>o0

1 The notation here differs slightly from the notation [6]. M(G, p) would denoted by
M(G, @, P) where P{z|p} = 4p() (cf. p. 1 and (3.1) in [6]).

10*
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where m(Y, is a diagonal entry of the nth power of M. The entry m", equals
the probability of going from x to x in n steps in the randomwalk defined
on G by p(x).

Lemma 2. (Cor. 1 in [6]) If the set H of elements x for which p(x) is
positive, that is H={zed | pa) > 0}
MG, p)=1,

MG, q) =1

generates G and
then
Jor any subgroup G'< G and any symmetric probability distribution q(x)
on @

In addition we need the following lemma:

LemMa 3. If there exists for every finitely generated subgroup G’ =@ a
symmetric probability distribution q(x) on G’ such that the set

H ={ze@ | qx) > 0}
}'(Gly Q) =1 b
MG, p)=1

generates G and

then

Jor any probability distribution p(x) on G.

Proor. Let p(r) be a symmetric probability distribution on @.
Choose an ¢ (0<e< 1) and a finite subset S of G such that

S p@) z1-¢
zreSUS-1

where S—1={x| x~1e 8} (obviously such a set § exists for every &> 0).
Take for G’ the subgroup generated by SuS-! and put

(2.7) ri@) = p7lpl®) (xe@),
where » =2(;p(x) .

By our assumptions and by lemma 2,
(2.8) AMGE,r)=1.

But by lemma 1, (G, r) will be equal to the upper bound of the spec-
trum of the matrix

M = |piy.) (@2 e @)

with
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- rlx,s ) i oz lee @,

Maway = | o otherwise .
If we denote the entries of M(G, p) by m,, ., then
(2.9) S Mgy =g o ] = 3 p@)(pt=1) + 3 p(x)
3e@ ze @’ xe G—-G’

I

(1-p)+(1—p) £ 2¢.
Therefore (cf. [7])

(2.10) MG, p)— MG, 1) € 2
or
(2.11) MG, r)—2 = 1-2¢ < A(G,p) < 1.

Since ¢ can be chosen arbitrarily small, the lemma follows from (2.11).

For completeness we quote Fglner’s theorem [4]:

‘A necessary condition that a group ¢ have a full Banach mean value
is that for every k in the interval 0 <k <1, and arbitrary, finitely many,
elements a,, ..., a, from G, there exists a finite subset £ of @ such that

(2.12) NENEa)z kNE) for 1=1,...,n,

where N(-) denotes the number of elements in the set between the
brackets.

A sufficient condition that a group G have a full Banach mean value
is that there exists a k&, in the interval 0 <k, < 1 such that for arbitrary,
finitely many, not necessarily different, elements a,, ..., @, from G there
exists a finite subset K of G such that

n
(2.13) n ! D' N(EnEa;) 2 k,N(E).
i=1

It follows that either of the two conditions are necessary and suffi-
cient.”

3. Statement and proof of the theorem for countable groups. We as-
sume everywhere in this section that @ is a countable group and p(x) an
arbitrary but fixed symmetric probability distribution on G such that

H={zeq | p) > 0}
generates G.
For any symmetric matrix M (not necessarily of the type M(G, D)
we define its spectrum as in section 2, and we shall write
(3.1) MM) = sup A.

2 € spectrum of M
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When M is finite, A(M) is its largest eigenvalue; when M = M(G, p), then
M) =G, p).

THEOREM. When H generates G, a necessary and sufficient condition for
the existence of a full Banach mean value on G is that

MG, p)=1.
Proor or nNEcESsiTY. Let a,, ..., a, be any finite set of elements of
G and let G’ be the subgroup of G generated by
A4 ={ay,a, ...,0,, 07 a1 0,7
Define
(3.2) g(x) = (2n)~1- {number of times x occurs in A4} (xeG).

Note that it is possible to have g(x) > (2n)~! if not all the 2n elements of
A are different.

By lemma 3 it suffices to have A(G”, ¢)=1 for any such set a,, ..., a,.
However if G has a full Banach mean value, so has its subgroup G’
([4, theorem 2] or [1, 4D]), and by Fglner’s theorem there exists for any &
(0<k<1) a finite set £ <G’ such that

(3.3) (2n)t 3 {N(EnEa;)+ NEnEa;)} 2 kN(E) .

i=1
Let k be fixed (0 <k < 1) and E a finite set =@ such that (3.3) is satisfied.
Put

_|NE)? i xek,
(34) hul@) = { 0 otherwise,
and
(35) ‘M(G” q) = ”m’xi,pf” (xi’xj € G,) .
Then )
ao e = swp | S e
hel2(@’) \ze@ z,ye G
z Z’G hg(@) My, () -
z,ycG’
However, for x e £
(3.7) N(E)2n Zm hg(y)
is exactly the number of sets among E n Ea,, En Ea,, ..., En Ea,,
EnEa,',EnEa,', En Ea,! which contain x.

Therefore

(3.8) MG, q) = N(B)-Y2n)15 {N(En Bay) + N(E 0 Ba; ) 2 k.
1=1
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Since k is arbitrary between 0 and 1, A(G', ¢)=1 for every finitely
generated subgroup G’. An application of lemma 3 completes the proof
of the first part of our theorem.

In order to prove the sufficiency part we first prove?

Lemma 4. If B=|b;|| is a symmetric substochastic N x N matrix, that is

(3.9) bij = b 20,
N

(3.10) b, <1,

j=1
such that for any set S<{1,2, ..., N} of s indices (1<s=N)
(3.11) s 3 by k<1 (k> 0),

1,J€8

then
(3.12) MB) £ 4k(1+2k1)% = O(kY) (k—0).

REMARK. Actually it follows from the proof that
MB) = O(k}) forevery &> 0.
Proor. Since B is symmetric and real
N -1 N
MB) =sup) Y'z2 3 zbyz;  (2; real).
2 li=1 ij=1

Let y=(yy, - . ., yy) be an eigenvector for the eigenvalue A(B), satisfying
therefore,

N -1
(3.13) MB) = {2;%2 Zyibijyj'
1= ]
Because of (3.9) we can choose y,=0 ([5]). In addition we may assume
N
% y: =1
and
(3.14) Y ZYsZ .. Z Yy

Let m(= 2) be that integer which satisfies

(3.15) (m—-1) 3k < 1, mik =1.

2 The author is indebted to Dr. H. Furstenberg for an inspiring discussion regarding
the proof of this lemma. Although it seems likely that similar estimates are known, the
author was unable to derive the lemma from other bounds for eigenvalues, given in the
literature.
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For convenience we define b,;=0 when ¢>N or j>N, and y;=0 when
1> N. The relations (3.9)-(3.11) remain valid and one has, using (3.14)

(3.16) A(B) = S’y,bﬁy,
,j=1
=2 3 ybyy; + Z?/y iiYi
1<y
oo (p+l)m oov (p+)m
=23 X 2?/: ¥+ N3 yibyy;
p=0 j=pm+1 i<j p 0 j=pm+1
® (p+1)ym P o (p+1)m
= 22 2 2?/1 iYi T 2 yp+lbm?/a} + S" 2 yp+1bny1 N
p=0 j=pm+1 Li= t=p+1 pO] pm+1
Also
oo (p+l)m 00 0 mi
@y 3 X Zyzbiy?/; = _Y. ) E Yibiy; = 2, .}, yitky;
p=0 j=pm+1 t= =1 j=im+1 t=1J=0-1m+1

because y; is non-increasing in j and
im

S b;s1smiks Y k.
j=2tm+1 J=@-1m+1

Similarly one obtains

o (p+l)m J-1 oo (p+)m
(3.18) 2 2 Zyp*lzbnyz"'ypﬂ i Y5 2 2 ?/p+1k?/;
p=0 j=pm+1 li=p+1 p=0 j=pm+1
because
yp+1yj1 g yp+1yj2
when . .
J1 2
and -
Ypy11¥iy = Ypo1 Y,
when

Pr < P Pm+12j; S (p+1)m < pm+1 £ jp £ (pot+1)m,

and in addition for 1<7'<m, —15r<o

r (p+)m J-1 (r+1)m+r’ j—%
\ Y
23 Sl T3 S
p=0 j=pm+1 Li=p+1 J=@r+)m+1 Le=r+2
+D)m+r
s 21 2« 2bu + bﬂ
J=1 i<y
r+D)m+17
Y
=2 by
t,7=1
< ((r+1)m+r')k
r (P+hm @+ m+r

=23 X k+ 3 k.

p=0 j=pm+1 J=@E+Dm+1
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Combining (3.16)—(3.18) gives

0 ir: oo (pthym
(3.19) MB) =Y X gy + 3 3 y,aky
1=1J7=0-1m+1 p=0 g=pm+1
o0 wm
s
= 22 ) 2 Yiky;
1=1)=0-1)m+1

MC)
where C =||c;;|| is the symmetric infinite matrix with entries

¢y = 2k,

bl

(3-20) CiGi—Dm+r = Clhi—Dm+r,i =

(17 <mbutnoti =r" =1),

¢; = 0 otherwise .

It therefore suffices to find an upper bound for A(C).
Denote by C=|ic{?|| the matrix which has the same first row and
column as C and zero entries everywhere else, i.e.

¢ = 2k,

1 1 b
N=cP=k (=2...,m),
¢ = 0  otherwise .

A trivial computation shows that
(8.21) ACD®) = k(1+mt)

< k{14 (14 2k-1)}}
O(k?) (k—0).

Thus
(3.22 A(B) £ A(0)
k{1 + (142611} + A(C—CW)

= k{1 + (1+ 2k} + AC®),

IIA 1A

where C? is the matrix formed by deleting the first row and column of C.
We notice that the matrix

CO = (m+1)-1k-10®

is a symmetric substochastic matrix. Adding (m+1)-! to the entries
C®,, fori=1, ..., m—1 one obtains a stochastic matrix D with entries
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di,im = 2(m+1)—1 i= 1; '-'am_ly

A imer = (m+1)71 r=1...,m-1,
(3.23) ditym = (m+1)71 1= m,

di,im+r' = (m+l)—l r = 07 ) m—1 ’

d;; = 0 otherwise

(when [x]=the largest integer <«). D can be considered as the matrix
of transition probabilities of a Markov-chain with the positive integers
as possible states. From the state ¢ one can go to each one of the states
im+7r" (r'=0,...,m—1) with a probability of at least (m+1)-1. We
shall call such a transition a step to the right. A step to the right multi-
plies the state number at least by a factor m ((im+r')i-2=m). When
t=m one can also go from ¢ to the state [{/m] with a probability
(m+1)~1. Such a transition will be called a step to the left. A step to
the left multiplies the state number at least by a factor (2m —1)-1, since
[¢/m]i—1= (2m —1)~! when ¢=m. Starting in any state iy, after n steps,
r to the right and (n —r) to the left, one ends up in a state with a number
at least equal to m"(2m — 1)"—"4,. Thus

(3.24)  d?, = probability of going from i, to i, in n steps
< Plm"2m—1)r—" < 1}
= P{r < nlog(2m— 1) (logm(2m —1))-1}
S merumeny
u=1
where

an = [nlog(2m—1)(logm(2m—1))'] < 2-4n.

It follows that

(3.25) dP;, < {2(m+1)*1 (m(m+ 1)—1)a}"u Z“': (Z) 2-n
< {2m+ 1)t majn,

Since 0 < ¢ <d;,

(3.26) MO®) < sup limsup {c®, mym

10 n—>00

IIA

sup limsup {d{; }1/»

205 %0
() n—>o00

IIA

2(m+1)"1m?.
From the definition of C® it follows then, that
(3.27) MC®) £ 2kmt < 2k(1+2k-1)E.

The lemma follows now from (3.22) and (3.27).



FULL BANACH MEAN VALUES ON COUNTABLE GROUPS 155

Proor oF SUFFICIENCY. By Fglner’s theorem it suffices to show that
there exists a k,> 0 such that for every finite set of elements a,, ..., a,
there exists a finite set £ with

(3.28) n-lzn' N(EnEa;) 2 kyN(E) .

=1

Let aq, ..., a, be any fixed set of elements from G. Let k, be any positive
number such that

(3.29) 4y (14 2k, ) < 1,

We shall prove that there exists a set E, satisfying (3.28) for this k,.
As before denote the group generated by

A ={ayay ....0, 0,7 0,71 ..., a7
by @' and define for any ze@’
(3.30) g(x) = (2n)~!-{number of times x occurs in A} .

Since A(G', q) =1 there exists (cf. [9, p. 218]) a finite diagonal submatrix3
B of M(G', q) such that

(3.31) MB) > 4ko(1+ 2k, 1)}
because of (3.29). By lemma 4 this implies that B has a diagonal sub-

matrix, say BWD — “b(.l.)“ 1=9e,j= N)

2 b(l) >
Clearly B® is also a diagonal submatrix of

M(G,’ q) = “mxi,zj” (xi, x; € GI) .

such that

Therefore it is possible to find elements ¥, ..., yy in G’ such that
b =m,, . The set E={y,, ..., yy) =@ satisfies (3.28). In fact, as in
(3.7),

n N
(3.32) (2n)2 3 {N(E n Ea;)+ N(E 0 Ea;7)} = 3 b
@=1 3,5=1
N(E).
Since

N(E 0 Ea;') = N((E n Ba;Y)a;) = N(Ea; n E)
this completes the proof of the theorem.

3 By a diagonal submatrix we mean a submatrix whose rows and columns correspond
to the same set of elements z € G'.
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The theorem explains the strong agreement between several of the
theorems in [6] (about A(G, P)=1 or A(@, P)<1) and known theorems
about the existence of a full Banach mean value. One might want a
more direct construction of the mean value when A(G@, P)=1 (not using
Folner’s theorem) but the author has been unable to find one.

Since [6] only deals with countable groups it seems desirable to find
extensions of the results in [6] for more general groups. The question of
the existence of mean values on semigroups has also been treated in
literature (e.g. [1] [2]) whereas random walks on semigroups have been
discussed by Schiitzenberger [8]. It seems harder to extend the results
of [6] to random walks on semigroups because the corresponding matrices
of transition probabilities cannot, in general, be chosen symmetric in
such a case.
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