FULL BANACH MEAN VALUES
ON COUNTABLE GROUPS

HARRY KESTEN

1. Introduction. A functional L on the space of all bounded real functions on a group G is called a full Banach mean value if it satisfies the following conditions (f and g bounded real functions on G):

\begin{align}
(1.1) \quad \inf_{x \in G} f(x) & \leq Lf \leq \sup_{x \in G} f(x) , \\
(1.2) \quad L\{f(yxz)\} & = L\{f(x)\} \quad \text{for all } y,z \in G , \\
(1.3) \quad L\{\lambda f\} & = \lambda Lf \quad \lambda \text{ real} , \\
(1.4) \quad L\{f+g\} & = Lf + Lg
\end{align}

Recently E. Følner (Main theorem in [4]) has given necessary and sufficient conditions of a combinatorial character for the existence of such a mean value. Dixmier [2, p. 221] had already given slightly stronger sufficient conditions. It is the purpose of this note to derive from Følner’s theorem another set of necessary and sufficient conditions for the existence of a mean value on countable groups. These conditions will be in terms of the spectral radii of matrices connected with random walks on the group and introduced by the author in his thesis [6]. It was shown that these spectral radii are determined by the probability of going from the unit element of G to the unit element in n steps ($n = 0, 1, \ldots$) of such random walks (cf. [3] for the terminology on random walks and Markov chains). They are therefore connected with the number of ways in which the unit element can be written as the product of n generators of G.

Lemma 4, giving a bound for eigenvalues of symmetric matrices, may have some independent interest.

2. Some former results. When G is a countable (not necessarily infinite) group and $p(x)$ a symmetric probability distribution on G, that is

Received January 5, 1959.

we associate a matrix\(^1\) \(M(G, p)\) with this group \(G\) and the probability
distribution \(p(x)\). The entries of \(M\) correspond to pairs of elements,
\[(2.4)\]
\[M(G, p) = ||m_{x_i, x_j}||\]
with
\[(2.5)\]
\[m_{x_i, x_j} = p(x_i^{-1}x_j) \quad (x_i, x_j \in G) .\]

By (2.1)–(2.3) \(M\) is a symmetric stochastic matrix and its dimension is
equal to the order of the group. \(M\) was introduced in [6] as the matrix of
transition probabilities corresponding to a random walk on \(G\), in which
every step consists of right multiplication by some element of \(G\), \(x \in G\),
being chosen with probability \(p(x)\). Thus when \(y \in G\) was reached after
\(n\) steps, one will reach \(yx\) with probability \(p(x)\) after the \((n + 1)^{st}\) step.
One can consider \(M\) as a bounded linear operator on the Hilbert space
\(l^2(G)\) of functions \(h = h(x)\) (\(x \in G\); \(h(x)\) complex) such that
\[
\sum_{x \in G} |h(x)|^2 < \infty
\]
by putting
\[(2.6)\]
\[Mh(x) = \sum_{x \in G} m_{x,y}h(y) .\]

The spectrum of \(M\) is then defined as the set of all complex numbers \(\lambda\)
such that \(M - \lambda I\) does not have an inverse which is a bounded operator
on \(l^2(G)\). (\(I\) is the unit matrix of the same dimension as \(M\).) The spectral
radius of \(M\) is
\[\sup_{\lambda \in \text{spectrum of } M} |\lambda| .\]
The following results which were proved in [6] will be needed here.

Lemma 1 (lemma 2.2 in [6]). The spectrum of \(M\) is real and contained in
\([-1, +1]\). Furthermore
\[\lambda(G, p) \overset{\text{def}}{=} \max_{\lambda \in \text{spectrum of } M} \lambda = \text{spectral radius of } M = \sup \limsup_{x \in G, n \to \infty} \{m_{x,x}^{(n)}\}^{1/n},\]

\(^1\) The notation here differs slightly from the notation [6]. \(M(G, p)\) would denoted by
\(M(G, G, P)\) where \(P\{x|p\} = \frac{1}{p(x)}\) (cf. p. 1 and (3.1) in [6]).
where \(m^{(n)}_{x,x} \) is a diagonal entry of the \(n \)-th power of \(M \). The entry \(m^{(n)}_{x,x} \) equals the probability of going from \(x \) to \(x \) in \(n \) steps in the random walk defined on \(G \) by \(p(x) \).

Lemma 2. (Cor. 1 in [6]) If the set \(H \) of elements \(x \) for which \(p(x) \) is positive, that is
\[
H = \{ x \in G \mid p(x) > 0 \}
\]
generates \(G \) and
\[
\lambda(G, p) = 1,
\]
then
\[
\lambda(G', q) = 1
\]
for any subgroup \(G' \subseteq G \) and any symmetric probability distribution \(q(x) \) on \(G' \).

In addition we need the following lemma:

Lemma 3. If there exists for every finitely generated subgroup \(G' \subseteq G \) a symmetric probability distribution \(q(x) \) on \(G' \) such that the set
\[
H' = \{ x \in G' \mid q(x) > 0 \}
\]
generates \(G' \) and
\[
\lambda(G', q) = 1,
\]
then
\[
\lambda(G, p) = 1
\]
for any probability distribution \(p(x) \) on \(G \).

Proof. Let \(p(x) \) be a symmetric probability distribution on \(G \). Choose an \(\varepsilon \) \((0 < \varepsilon < 1)\) and a finite subset \(S \) of \(G \) such that
\[
\sum_{x \in S \cup S^{-1}} p(x) \geq 1 - \varepsilon
\]
where \(S^{-1} = \{ x \mid x^{-1} \in S \} \) (obviously such a set \(S \) exists for every \(\varepsilon > 0 \)). Take for \(G' \) the subgroup generated by \(S \cup S^{-1} \) and put
\[
(2.7) \quad r(x) = p^{-1} p(x) \quad (x \in G') ,
\]
where
\[
p = \sum_{x \in G'} p(x) .
\]
By our assumptions and by lemma 2,
\[
(2.8) \quad \lambda(G', r) = 1 .
\]
But by lemma 1, \(\lambda(G', r) \) will be equal to the upper bound of the spectrum of the matrix
\[
\tilde{M} = \| \tilde{m}_{x_i,x_j} \| \quad (x_i, x_j \in G)
\]
with
\[\tilde{m}_{x_i x_j} = \begin{cases} r(x_i^{-1} x_j) & \text{if } x_i^{-1} x_j \in G', \\ 0 & \text{otherwise}. \end{cases} \]

If we denote the entries of \(\mathcal{M}(G, p) \) by \(m_{x_i x_j} \), then
\[
\sum_{x_j \in G} |m_{x_i x_j} - \tilde{m}_{x_i x_j}| = \sum_{x_j \in G'} p(x)(p^{-1} - 1) + \sum_{x_j \in G - G'} p(x)
= (1 - p) + (1 - p) \leq 2\varepsilon .
\]

Therefore (cf. [7])
\[
|\lambda(G, p) - \lambda(G', r)| \leq 2\varepsilon
\]

or
\[
\lambda(G', r) - 2\varepsilon = 1 - 2\varepsilon \leq \lambda(G, p) \leq 1 .
\]

Since \(\varepsilon \) can be chosen arbitrarily small, the lemma follows from (2.11).

For completeness we quote Følner’s theorem [4]:

“A necessary condition that a group \(G \) have a full Banach mean value is that for every \(k \) in the interval \(0 < k < 1 \), and arbitrary, finitely many, elements \(a_1, \ldots, a_n \) from \(G \), there exists a finite subset \(E \) of \(G \) such that
\[
N(E \cap E a_i) \geq k N(E) \quad \text{for} \quad i = 1, \ldots, n ,
\]

where \(N(\cdot) \) denotes the number of elements in the set between the brackets.

A sufficient condition that a group \(G \) have a full Banach mean value is that there exists a \(k_0 \) in the interval \(0 < k_0 < 1 \) such that for arbitrary, finitely many, not necessarily different, elements \(a_1, \ldots, a_n \) from \(G \) there exists a finite subset \(E \) of \(G \) such that
\[
n^{-1} \sum_{i=1}^{n} N(E \cap E a_i) \geq k_0 N(E) .
\]

It follows that either of the two conditions are necessary and sufficient.”

3. Statement and proof of the theorem for countable groups. We assume everywhere in this section that \(G \) is a countable group and \(p(x) \) an arbitrary but fixed symmetric probability distribution on \(G \) such that
\[
H = \{ x \in G \mid p(x) > 0 \}
\]
generates \(G \).

For any symmetric matrix \(\mathcal{M} \) (not necessarily of the type \(\mathcal{M}(G, p) \)) we define its spectrum as in section 2, and we shall write
\[
\lambda(\mathcal{M}) = \sup_{\lambda \in \text{spectrum of } \mathcal{M}} \lambda .
\]
When M is finite, $\lambda(M)$ is its largest eigenvalue; when $M = M(G, p)$, then $\lambda(M) = \lambda(G, p)$.

Theorem. When H generates G, a necessary and sufficient condition for the existence of a full Banach mean value on G is that

$$\lambda(G, p) = 1.$$

Proof of necessity. Let a_1, \ldots, a_n be any finite set of elements of G and let G' be the subgroup of G generated by

$$A = \{a_1, a_2, \ldots, a_n, a_1^{-1}, a_2^{-1}, \ldots, a_n^{-1}\}.$$

Define

$$q(x) = (2n)^{-1} \cdot \{\text{number of times } x \text{ occurs in } A\} \quad (x \in G').$$

Note that it is possible to have $q(x) > (2n)^{-1}$ if not all the $2n$ elements of A are different.

By lemma 3 it suffices to have $\lambda(G', q) = 1$ for any such set a_1, \ldots, a_n. However if G has a full Banach mean value, so has its subgroup G' ([4, theorem 2] or [1, 4 D]), and by Følner's theorem there exists for any $k (0 < k < 1)$ a finite set $E \subseteq G'$ such that

$$\sum_{i=1}^{n} \{N(E \cap Ea_i) + N(E \cap Ea_i^{-1})\} \geq kN(E).$$

Let k be fixed ($0 < k < 1$) and E a finite set $\subseteq G'$ such that (3.3) is satisfied. Put

$$h_E(x) = \begin{cases} N(E)^{-1} & \text{if } x \in E, \\ 0 & \text{otherwise}, \end{cases}$$

and

$$M(G', q) = \|m'_{x_i, x_j}\| \quad (x_i, x_j \in G').$$

Then

$$\lambda(G', q) = \sup_{h \in L(G')} \left\{ \sum_{x \in G'} |h(x)|^2 \right\}^{-1}_{x, y \in G'} \sum_{x \in G'} h(x) m'_{x, y} h(y) \geq \sum_{x, y \in G'} h_E(x) m'_{x, y} h_E(y).$$

However, for $x \in E$

$$N(E)^{1/2} n \sum_{y \in G'} m'_{x, y} h_E(y)$$

is exactly the number of sets among $E \cap Ea_1, E \cap Ea_2, \ldots, E \cap Ea_n, E \cap Ea_1^{-1}, E \cap Ea_2^{-1}, E \cap Ea_n^{-1}$ which contain x.

Therefore

$$\lambda(G', q) \geq N(E)^{-1} (2n)^{-1} \sum_{i=1}^{n} \{N(E \cap Ea_i) + N(E \cap Ea_i^{-1})\} \geq k.$$
Since \(k \) is arbitrary between 0 and 1, \(\lambda(G', q) = 1 \) for every finitely generated subgroup \(G' \). An application of lemma 3 completes the proof of the first part of our theorem.

In order to prove the sufficiency part we first prove\(^2\)

Lemma 4. If \(B = \|b_{ij}\| \) is a symmetric substochastic \(N \times N \) matrix, that is

\[
(3.9) \quad b_{ij} = b_{ji} \geq 0 ,
\]

\[
(3.10) \quad \sum_{j=1}^{N} b_{ij} \leq 1 ,
\]

such that for any set \(S \subseteq \{1, 2, \ldots, N\} \) of \(s \) indices \((1 \leq s \leq N) \)

\[
(3.11) \quad s^{-1} \sum_{i,j \in S} b_{ij} \leq k < 1 \quad (k > 0) ,
\]

then

\[
(3.12) \quad \lambda(B) \leq 4k(1 + 2k^{-1})^{\frac{s}{2}} = O(k^{\frac{1}{2}}) \quad (k \to 0) .
\]

Remark. Actually it follows from the proof that

\[\lambda(B) = O(k^{1-\varepsilon}) \quad \text{for every} \quad \varepsilon > 0 . \]

Proof. Since \(B \) is symmetric and real

\[
\lambda(B) = \sup_{z} \left\{ \sum_{i=1}^{N} z_{i}^{2} \right\}^{-1} \sum_{i,j=1}^{N} z_{i} b_{ij} z_{j} \quad (z_{i} \text{ real}) .
\]

Let \(y = (y_{1}, \ldots, y_{N}) \) be an eigenvector for the eigenvalue \(\lambda(B) \), satisfying therefore,

\[
(3.13) \quad \lambda(B) = \left\{ \sum_{i=1}^{N} y_{i}^{2} \right\}^{-1} \sum_{i,j} y_{i} b_{ij} y_{j} .
\]

Because of (3.9) we can choose \(y_{i} \geq 0 \) ([5]). In addition we may assume

\[
\sum_{i=1}^{N} y_{i}^{2} = 1
\]

and

\[
(3.14) \quad y_{1} \geq y_{2} \geq \ldots \geq y_{N} .
\]

Let \(m(\geq 2) \) be that integer which satisfies

\[
(3.15) \quad (m - 1) \frac{1}{2} k < 1 , \quad m \frac{1}{2} k \geq 1 .
\]

\(^2\) The author is indebted to Dr. H. Furstenberg for an inspiring discussion regarding the proof of this lemma. Although it seems likely that similar estimates are known, the author was unable to derive the lemma from other bounds for eigenvalues, given in the literature.
For convenience we define $b_{ij} = 0$ when $i > N$ or $j > N$, and $y_i = 0$ when $i > N$. The relations (3.9)–(3.11) remain valid and one has, using (3.14)

\[
\lambda(B) = \sum_{i,j=1}^{\infty} y_i b_{ij} y_j \\
= 2 \sum_{i<j} y_i b_{ij} y_j + \sum_{j=1}^{\infty} y_j b_{jj} y_j \\
= 2 \sum_{p=0}^{\infty} \sum_{j=pm+1}^{(p+1)m} \sum_{i<j} y_i b_{ij} y_j + \sum_{j=1}^{\infty} \sum_{p=0}^{(p+1)m} y_j b_{jj} y_j \\
\leq 2 \sum_{p=0}^{\infty} \sum_{j=pm+1}^{(p+1)m} \left\{ \sum_{i=1}^{p} y_i b_{ij} y_j + \sum_{i=p+1}^{j-1} y_{p+1} b_{ij} y_j \right\} + \sum_{p=0}^{\infty} \sum_{j=pm+1}^{(p+1)m} y_{p+1} b_{jj} y_j.
\]

Also

\[
\sum_{p=0}^{\infty} \sum_{j=pm+1}^{(p+1)m} \sum_{i=1}^{p} y_i b_{ij} y_j \leq \sum_{i=1}^{\infty} \sum_{j=im+1}^{i m} y_i b_{ij} y_j \leq \sum_{i=1}^{\infty} \sum_{j=(i-1)m+1}^{i m} y_{\frac{i}{2} k} y_j
\]

because y_j is non-increasing in j and

\[
\sum_{j=im+1}^{i m} b_{ij} \leq 1 \leq m \frac{1}{2} k \leq \sum_{j=(i-1)m+1}^{i m} \frac{1}{2} k.
\]

Similarly one obtains

\[
\sum_{p=0}^{\infty} \sum_{j=pm+1}^{(p+1)m} \left\{ \sum_{i=p+1}^{j-1} y_{p+1} 2b_{ij} y_j + y_{p+1} b_{jj} y_j \right\} \leq \sum_{p=0}^{\infty} \sum_{j=pm+1}^{(p+1)m} y_{p+1} k y_j
\]

because

\[y_{p+1} y_{j_1} \geq y_{p+1} y_{j_2}\]

when

\[j_1 \leq j_2\]

and

\[y_{p+1} y_{j_1} \geq y_{p+1} y_{j_2}\]

when

\[p_1 < p_2, \quad p_1 m + 1 \leq j_1 \leq (p_1 + 1)m < p_2 m + 1 \leq j_2 \leq (p_2 + 1)m,\]

and in addition for $1 \leq r' \leq m, \quad -1 \leq r < \infty$

\[
\sum_{p=0}^{r} \sum_{j=pm+1}^{(p+1)m} \left\{ \sum_{i=p+1}^{j-1} 2b_{ij} + b_{jj} \right\} + \sum_{p=0}^{r} \sum_{j=(r+1)m+1}^{j-r} \left\{ \sum_{i=r+2}^{j-1} 2b_{ij} + b_{jj} \right\} \]

\[
\leq \sum_{j=1}^{(r+1)m + r'} \left\{ \sum_{i<j} 2b_{ij} + b_{jj} \right\} + \sum_{i,j=1}^{(r+1)m + r'} b_{ij} \]

\[
\leq (r+1) m + r'\]

\[
= \sum_{p=0}^{r} \sum_{j=pm+1}^{(p+1)m} k + \sum_{j=(r+1)m+1}^{j-r} k.
\]
Combining (3.16)–(3.18) gives

\[(3.19) \quad \lambda(B) \leq \sum_{i=1}^{\infty} \sum_{j=(i-1)m+1}^{im} y_i ky_j + \sum_{p=0}^{\infty} \sum_{j=pm+1}^{(p+1)m} y_{p+1} ky_j \]
\[= 2 \sum_{i=1}^{\infty} \sum_{j=(i-1)m+1}^{im} y_i ky_j \]
\[\leq \lambda(C) \]

where \(C = \|c_{ij}\|\) is the symmetric infinite matrix with entries

\[c_{11} = 2k ,\]

\[(3.20) \quad c_{i,(i-1)m+r'}, c_{(i-1)m+r', i} = k \]
\[= k \quad \text{(1 \leq r' \leq m but not i = r' = 1)} ,\]
\[c_{ij} = 0 \quad \text{otherwise} .\]

It therefore suffices to find an upper bound for \(\lambda(C)\).

Denote by \(C^{(1)} = \|c_{ij}^{(1)}\|\) the matrix which has the same first row and column as \(C\) and zero entries everywhere else, i.e.

\[c_{11}^{(1)} = 2k ,\]
\[c_{1r}^{(1)} = c_{r1}^{(1)} = k \quad (r' = 2, \ldots, m) ,\]
\[c_{ij}^{(1)} = 0 \quad \text{otherwise} .\]

A trivial computation shows that

\[(3.21) \quad \lambda(C^{(1)}) = k(1 + m^i) \leq k\{1 + (1 + 2k^{-1})^i\} \leq O(k^i) \quad (k \to 0) .\]

Thus

\[(3.22) \quad \lambda(B) \leq \lambda(C) \leq k\{1 + (1 + 2k^{-1})^i\} + \lambda(C - C^{(1)}) \leq k\{1 + (1 + 2k^{-1})^i\} + \lambda(C^{(3)}) ,\]

where \(C^{(3)}\) is the matrix formed by deleting the first row and column of \(C\). We notice that the matrix

\[C^{(3)} = (m + 1)^{-1} k^{-1} C^{(2)}\]

is a symmetric substochastic matrix. Adding \((m+1)^{-1}\) to the entries \(C_{i, im}^{(3)}\) for \(i = 1, \ldots, m - 1\) one obtains a stochastic matrix \(D\) with entries
\(d_{i,m} = 2(m+1)^{-1} \) \(i = 1, \ldots, m-1 \),
\(d_{i,m+r'} = (m+1)^{-1} \) \(r' = 1, \ldots, m-1 \),
\(d_{i,m/r'} = (m+1)^{-1} \) \(i \leq m \),
\(d_{i,m+r'} = (m+1)^{-1} \) \(r' = 0, \ldots, m-1 \),
\(d_{ij} = 0 \) otherwise

(3.23)

\([x] = \) the largest integer \(\leq x \). \(D \) can be considered as the matrix of transition probabilities of a Markov-chain with the positive integers as possible states. From the state \(i \) one can go to each one of the states \(im + r' \ (r' = 0, \ldots, m-1) \) with a probability of at least \((m+1)^{-1} \). We shall call such a transition a step to the right. A step to the right multiplies the state number at least by a factor \(m \ ((im + r')i^{-1} \geq m) \). When \(i \geq m \) one can also go from \(i \) to the state \([i/m] \) with a probability \((m+1)^{-1} \). Such a transition will be called a step to the left. A step to the left multiplies the state number at least by a factor \((2m-1)^{-1} \), since \([i/m]i^{-1} \geq (2m-1)^{-1} \) when \(i \geq m \). Starting in any state \(i_0 \), after \(n \) steps, \(r \) to the right and \((n-r) \) to the left, one ends up in a state with a number at least equal to \(m^{r}(2m-1)^{r-n}i_0 \). Thus

\(d_{i_0,i_0}^{(n)} = \) probability of going from \(i_0 \) to \(i_0 \) in \(n \) steps

\(\leq P\{m^{r}(2m-1)^{r-n} \leq 1\} \)

\(= P\{r \leq n \log(2m-1)(\log m(2m-1))^{-1}\} \)

\(\leq \sum_{u=1}^{\alpha n} \binom{n}{u} (m+1)^{u-n} (m(m+1)^{-1})^{u} \),

where

\(\alpha n = [n \log(2m-1)(\log m(2m-1))^{-1}] \leq 2 \cdot \frac{1}{3} n \).

It follows that

\(d_{i_0,i_0}^{(n)} \leq \{2(m+1)^{x-1} (m(m+1)^{-1})x\} \sum_{u=1}^{\alpha n} \binom{n}{u} 2^{-n} \)

\(\leq \{2(m+1)^{-1} m^{x}\}^{n} \).

Since \(0 \leq c_{ij}^{(3)} \leq d_{ij} \),

(3.26)

\(\lambda(C^{(3)}) \leq \sup_{i_0} \lim_{n \to \infty} sup \{c_{i_0,i_0}^{(3)}(n)^{1/n} \} \)

\(\leq \sup_{i_0} \lim_{n \to \infty} sup \{d_{i_0,i_0}^{(n)}(n)^{1/n} \} \)

\(\leq 2(m+1)^{-1} m^{\frac{1}{3}} \).

From the definition of \(C^{(3)} \) it follows then, that

(3.27)

\(\lambda(C^{(2)}) \leq 2km^{\frac{1}{3}} \leq 2k(1+2k^{-1})^{\frac{1}{3}} \).

The lemma follows now from (3.22) and (3.27).
Proof of sufficiency. By Fölner’s theorem it suffices to show that there exists a $k_0 > 0$ such that for every finite set of elements a_1, \ldots, a_n there exists a finite set E with

$$n^{-1} \sum_{i=1}^{n} N(E \cap Ea_i) \geq k_0 N(E).$$

(3.28)

Let a_1, \ldots, a_n be any fixed set of elements from G. Let k_0 be any positive number such that

$$4k_0 (1 + 2k_0^{-1})^\frac{3}{2} < 1.$$

(3.29)

We shall prove that there exists a set E, satisfying (3.28) for this k_0. As before denote the group generated by

$$A = \{a_1, a_2, \ldots, a_n, a_1^{-1}, a_2^{-1}, \ldots, a_n^{-1}\}$$

by G' and define for any $x \in G'$

$$q(x) = (2n)^{-1} \cdot \{\text{number of times } x \text{ occurs in } A\}.$$

(3.30)

Since $\lambda(G', q) = 1$ there exists (cf. [9, p. 218]) a finite diagonal submatrix B of $M(G', q)$ such that

$$\lambda(B) > 4k_0 (1 + 2k_0^{-1})^\frac{3}{2}$$

(3.31)

because of (3.29). By lemma 4 this implies that B has a diagonal submatrix, say

$$B^{(i)} = \|b_{ij}^{(1)}\| \quad (1 \leq i, j \leq N)$$

such that

$$\sum_{i,j}^{N} b_{ij}^{(1)} \geq k_0 N.$$

Clearly $B^{(i)}$ is also a diagonal submatrix of

$$M(G', q) = \|m_{x_i, x_j}\| \quad (x_i, x_j \in G').$$

Therefore it is possible to find elements y_1, \ldots, y_N in G' such that $b_{ij}^{(1)} = m_{y_i, y_j}$. The set $E = \{y_1, \ldots, y_N\} \subseteq G'$ satisfies (3.28). In fact, as in (3.7),

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \{N(E \cap Ea_i) + N(E \cap Ea_i^{-1})\} = \sum_{i,j=1}^{N} b_{ij}^{(1)} \geq k_0 N(E).$$

(3.32)

Since

$$N(E \cap Ea_i^{-1}) = N((E \cap Ea_i^{-1})a_i) = N(Ea_i \cap E)$$

this completes the proof of the theorem.

a By a diagonal submatrix we mean a submatrix whose rows and columns correspond to the same set of elements $x \in G'$.
The theorem explains the strong agreement between several of the theorems in [6] (about \(\lambda(G, P) = 1 \) or \(\lambda(G, P) < 1 \)) and known theorems about the existence of a full Banach mean value. One might want a more direct construction of the mean value when \(\lambda(G, P) = 1 \) (not using Følner’s theorem) but the author has been unable to find one.

Since [6] only deals with countable groups it seems desirable to find extensions of the results in [6] for more general groups. The question of the existence of mean values on semigroups has also been treated in literature (e.g. [1] [2]) whereas random walks on semigroups have been discussed by Schützenberger [8]. It seems harder to extend the results of [6] to random walks on semigroups because the corresponding matrices of transition probabilities cannot, in general, be chosen symmetric in such a case.

REFERENCES

PRINCETON UNIVERSITY, N. J., U. S. A.