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ON THE EQUIVALENCE OF BOUNDEDNESS FOR
MULTIPLE HARDY-LITTLEWOOD AVERAGES

AND RELATED OPERATORS

DAH-CHIN LUOR∗

Abstract
Necessary and sufficient conditions for the weight function u are obtained, which provide the
boundedness for a class of averaging operators from L+

p to L+
q,u. These operators include the

multiple Hardy-Littlewood averages and related maximal operators, geometric mean operators,
and geometric maximal operators. We show that, under suitable conditions, the boundedness of
these operators are equivalent. Our theorems extend several one-dimensional results to multi-
dimensional cases and to operators with multiple kernels. We also show that in the case p < q,
some one-dimensional results do not carry over to the multi-dimensional cases, and the bounded-
ness of T from L+

p to L+
q,u holds only if u = 0 almost everywhere.

1. Introduction

The well-known Hardy averages are defined by H1f (x) = (1/x)
∫ x

0 f (t) dt ,
where x > 0 and f is a nonnegative measurable function defined on (0,∞).
The operatorH1 takes the average values of f over the interval (0, x) for each
x > 0, and it can be written in the form H1f (x) = ∫ 1

0 f (tx) dt . Weighted
estimates forH1 have been investigated by many authors. We refer the reader to
the books [17], [29], and the references given there. In [43], Xiao consider the
boundedness of weighted Hardy-Littlewood averaging operator Hφ on spaces
Lp(Rn) and BMO(Rn), where Hφf (x) = ∫ 1

0 φ(t)f (tx) dt , x ∈ Rn, and φ is
a nonnegative measurable function defined on (0, 1). The operator Hφ takes
the weighted average values of f over the line segment from the origin to each
point x in Rn. In this paper we consider operators that take weighted average
values of f over line segments, rectangles, rectangular cuboids, etc. We put
these operators in the same form and investigate weighted estimates for them.

Let m and n be positive integers and m ≤ n. We split n into the sum of m
positive integers ni , i = 1, 2, . . . , m. For each i = 1, 2, . . . , m, let Ei be a
subset of Rni defined at the end of this section. Define E = E1 × · · · × Em.
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Given a nonnegative measurable function f on E and x = (x1, . . . , xm) ∈ E,
where xi ∈ Ei , the multiple Hardy-Littlewood average Hφf is defined as

Hφf (x) :=
∫

I
φ(t)f (t ◦ x) dt.

Here I := (0, 1)m, t = (t1, . . . , tm), t◦x = (t1x1, . . . , tmxm), dt = dtm . . . dt1,
and φ is a nonnegative measurable function defined on I. In the following we
give an example for the case E ⊆ R3 and n = 3. If m = 1 then n1 = 3,
I = (0, 1), t = t1, x = x1 = (x11, x12, x13) ∈ E1 ⊆ R3, and t ◦ x =
(t1x11, t1x12, t1x13). In this case Hφf (x) takes the weighted average value of
f over the line segment from the origin to the point x. If m = 2, and n1 = 2,
n2 = 1, then I = (0, 1)× (0, 1), t = (t1, t2), and x1 = (x11, x12) ∈ E1 ⊆ R2,
x2 ∈ E2 ⊆ R, x = (x1, x2) = (x11, x12, x2), and t ◦ x = (t1x11, t1x12, t2x2).
In this case Hφf (x) takes the weighted average value of f over the rectangle
with vertices (0, 0, 0), (x11, x12, 0), (0, 0, x2), and (x11, x12, x2). Ifm = 3, then
n1 = n2 = n3 = 1, I = (0, 1)×(0, 1)×(0, 1), t = (t1, t2, t3), x = (x1, x2, x3),
where xi ∈ Ei ⊆ R for i = 1, 2, 3, and t ◦ x = (t1x1, t2x2, t3x3). In this case
Hφf (x) takes the weighted average value of f over the rectangular cuboid with
the origin and the point x as the endpoints of a space diagonal. This example
shows that the multiple averaging operator Hφ defined in this paper can take
weighted average values of f over different types of regions.

If � = ∫
I φ(t) dt = 1, the geometric mean operator Gφ is defined as

Gφf (x) := exp

(∫
I
φ(t) log f (t ◦ x) dt

)
.

We also consider the maximal operator M−
gh:

M−
ghf (x) := sup

z∈I
h(z)

∫
Iz

g(t)f (t ◦ x) dt,

where g and h are positive measurable functions defined on I and Iz = (1 −
z1, 1)×· · ·× (1− zm, 1) for z = (z1, . . . , zm) ∈ I. If G̃(z) = ∫

Iz
g(t) dt < ∞

for all z ∈ I, the geometric maximal operator G−
gh is defined as

G−
ghf (x) := sup

z∈I
h(z) exp

(
1

G̃(z)

∫
Iz

g(t) log f (t ◦ x) dt
)
.

Moreover, if G̃(z)−1
∫

Iz
g(t)f (t ◦ x)ε dt is finite for some ε > 0, then

lim
ε↘0

(
1

G̃(z)

∫
Iz

g(t)f (t ◦ x)ε dt
)1/ε

= exp

(
1

G̃(z)

∫
Iz

g(t) log f (t ◦ x) dt
)
.
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Hence closely related to G−
gh is the limiting operator G−∗

gh defined by

G−∗
gh f (x) := lim

ε↘0
sup
z∈I
h(z)

(
1

G̃(z)

∫
Iz

g(t)f (t ◦ x)ε dt
)1/ε

.

The purpose of this paper is to characterize the nonnegative function u so that
the weighted inequality of the form

(∫
E
Tf (x)qu(x) dx

)1/q

≤ C

(∫
E
f (x)p dx

)1/p

, f ≥ 0, (1.1)

where 0 < p, q < ∞, holds for T to be any one of the operators given above.
For 0 < p < ∞ and η: E 
→ [0,∞], we denote

L+
p,η =

{
f : E 
→ [0,∞] : ‖f ‖p,η :=

(∫
E
f (x)pη(x) dx

)1/p

< ∞
}
.

If η ≡ 1, we write L+
p instead of L+

p,η. If (1.1) holds with a finite constant C
independent of f , we simply write T :L+

p 
→ L+
q,u and we denote the least

constant C in (1.1) by ‖T ‖L+
p →L+

q,u
.

There are a number of important works on the theory of weighted inequal-
ities. We refer the reader to the books [8], [9], [10], [12], [13], [16], [17], [29],
and the references given there. For the purpose of this paper, see also [2], [21],
[24], [23], [27], [35], [36] for the Riemann-Liouville fractional integrals, [1],
[3] for the one-dimensional integral operators with a homogeneous kernel, [2],
[4], [22], [23] for the fractional one-sided maximal operators, [18], [27], [28],
[32], [34] for the geometric mean operators, [5], [6], [7], [31], [30], [44] for the
geometric maximal operators, [26], [33], [37], [42] for the multi-dimensional
Hardy operator, [14], [15] for the fractional maximal functions and potentials
with multiple kernels, and [11], [18], [38], [40], [41], [43] for the weighted
Hardy-Littlewood averages and related operators.

By [2], [21], and [22] we see that, in general, the conditions for the bounded-
ness of Riemann-Liouville fractional integrals and fractional one-sided max-
imal operators are quite different from the criterion for the boundedness of the
Hardy operator Hf (x) = ∫ x

0 f (t) dt . On the other hand, it is interesting that
for the Hardy averaging operator H1, in some cases, H1:L+

p 
→ L+
q,u is equi-

valent to T :L+
p 
→ L+

q,u for several types of averaging operators and related
fractional maximal operators. In the case m = 1, n1 = 1, and E = (0,∞),
Meskhi [24, Theorem 1 & Theorem 3] showed that (1.1) holds for T = Hα ,
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1 < p, q < ∞, and αp > 1 if and only if B < ∞, where

B =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sup
t>0

(∫ ∞

t

x−qu(x) dx
)1/q

t (p−1)/p, if p ≤ q,

{∫ ∞

0

(∫ ∞

t

x−qu(x) dx
)p/(p−q)

· tp(q−1)/(p−q) dt
}(p−q)/(pq)

, if q < p.

Here Hαf (x) = ∫ 1
0 (1 − t)α−1f (tx) dt , α > 0. We point out that the con-

dition B < ∞ is independent of α and it is also the well-known criterion
for H1:L+

p 
→ L+
q,u. By using different methods, Prokhorov [35] proved (1.1)

for T = Hα , 0 < q < ∞, and max(1, 1/α) < p < ∞. The criterions
on u obtained in [35, Theorem 1 & Theorem 2] are equivalent to the con-
dition B < ∞. If J αση is the Erdelyi-Köber operator defined by J ασηf (x) =∫ 1

0 (1 − tσ )α−1tση+σ−1f (tx) dt , σ > 0, 0 < α ≤ 1, and η > 1/σ − 1, then
by [25, Theorem 3.1 & Theorem 3.4], J αση:L

+
p 
→ L+

q,u for 1/α < p < ∞
and 0 < q < ∞ if and only if B < ∞. Moreover, by [23, Theorem 3] we
see that B < ∞ is a necessary and sufficient condition for M−

αβ :L+
p 
→ L+

q,u,

where M−
αβf (x) = sup0<z<1 z

−β ∫ 1
1−z(1 − t)α−1f (tx) dt , 1 < p ≤ q < ∞,

and β + 1/p < α ≤ 1. In [27, Theorem 5.3 & Theorem 5.5] another cri-
terion on u was obtained for (1.1) to hold with T = Hα . The same condi-
tion also characterized Gα:L+

p 
→ L+
q,u, where 0 < p, q < ∞, Gαf (x) =

exp(α
∫ 1

0 (1 − t)α−1 log f (tx) dt), and α > 0. See [27, Theorem 5.1]. In [18]
the author showed that (1.1) holds for T = Gφ and 0 < p, q < ∞ if and only
if Aδ < ∞ for all δ > 1, where

Aδ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sup
t>0

(∫ ∞

t

x−δq/pu(x) dx
)1/q

t (δ−1)/p, if p ≤ q,

{∫ ∞

0

(∫ ∞

t

x−δq/pu(x) dx
)p/(p−q)

· t (δq−p)/(p−q) dt
}(p−q)/(pq)

, if q < p.

Note that B = Ap. The function φ considered in [18] includes the cases
φ(t) = αtα−1 and φ(t) = α(1 − t)α−1, where α > 0. These results point out
an interesting fact that T :L+

p 
→ L+
q,u for T to be operatorsHα , J αση, M−

αβ , and
Gα are equivalent.

In general, the study of weighted estimates for multi-dimensional operators
is more difficult. Many problems in the two-weight case remain open and the
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solutions for some solved problems are not easy to check. However, under
suitable restrictions on weights, several weighted estimates in simple forms
for some multi-dimensional operators have been obtained. In [37] Sawyer
solved the two-weight problem for I2:L+

p,v 
→ L+
q,u, where 1 < p ≤ q < ∞,

I2f (x) = ∫ x1

0

∫ x2

0 f (t1, t2) dt1 dt2, and E = (0,∞) × (0,∞). The criterion
obtained in [37] consist of three weight conditions. Ifv is a multiple weight, that
is, v(x1, x2) = v1(x1)v2(x2), then a criterion under one condition was derived
by Wedestig [42], and another Muckenhoupt-type condition was established by
Meskhi [26]. Some results for a class of multi-dimensional integral operators
and related operators that are similar to that given in the previous paragraph
were established in [20]. In [14] and [15] Kokilashvili and Meskhi investigated
criterions for T :L+

p 
→ L+
q,u in the multi-dimensional case and T are fractional

maximal functions and potentials with multiple kernels. On the other hand, in
the case m = 1 and n1 = n, necessary and sufficient conditions on u for (1.1)
to hold with 1 < q ≤ p < ∞, T = Hφ , where φ(t) = tn−1, can be obtained
in [38]. Sinnamon [38] also showed that the one-dimensional results in the
case p < q do not carry over to dimension n > 1.

In this paper we obtain necessary and sufficient conditions on u so that (1.1)
holds for T to be the multiple Hardy-Littlewood averaging operator Hφ and
related operatorsGφ , M−

gh, G−
gh, and G−∗

gh . We show that, under suitable condi-
tions on φ, g, and h, T :L+

p 
→ L+
q,u for T to be these operators are equivalent.

Our theorems extend several one-dimensional results to multi-dimensional
cases and to operators with multiple kernels. Moreover, we show that if p < q

and ni > 1 for some i = 1, . . . , m, inequality (1.1) holds for T to be any oper-
ators given above only if u(x) = 0 for almost all x ∈ E. A similar result for the
case m = 1 and E = Rn has been obtained by Sinnamon [38, Theorem 3.4].

For i = 1, 2, . . . , m, if ni > 1, we call a region Si ⊆ Rni smoothly star-
shaped if there exists a nonnegative, piecewise-C1 function ψi defined on the
unit sphere in Rni with Si = { x ∈ Rni \ {0} : |x| ≤ ψi(x/|x|) }. See also [39].
Define Ei = ⋃

α>0 αSi , where Si ⊆ Rni is a smoothly star-shaped region. For
nonzero xi ∈ Ei , there is a least positive dilation αxi Si which contains xi . Let
Bi = { x ∈ Rni \ {0} : |x| = ψi(x/|x|) } and note that xi/αxi ∈ Bi so that xi
is on the boundary of αxi Si . For any nonzero xi ∈ Ei , we make the changes
of variables xi = ξiσi , where ξi > 0 and σi ∈ Bi . Then for any measurable
function g defined on Ei , we have

∫
Ei

g(xi) dxi =
∫
Bi

∫ ∞

0
g(ξiσi)ξ

ni−1
i dξi dσi. (1.2)

Ifni = 1, we consider the caseEi = (0,∞) and
∫
Ei
g(xi) dxi = ∫ ∞

0 g(xi) dxi .
Suppose that for some 1 ≤ � ≤ m, nk(s) > 1 for s = 1, . . . , �. Then for x =
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(x1, . . . , xm) ∈ E, we write xi = ξiσi for i = k(1), . . . , k(�), where ξi > 0 and
σi ∈ Bi . If � < m, we have nj(s) = 1 and we consider the case Ej(s) = (0,∞)

for s = 1, . . . , m− �. Let ξ = (ξ1, . . . , ξm) and σ = (σ1, . . . , σm). In the case
� < m, ξi = xi and we set σi = 1 for i = j (1), . . . , j (m− �). Then we write
x = (ξ1σ1, . . . , ξmσm) = ξ ◦ σ , where ξ ∈ R∞

0 = (0,∞)× · · · × (0,∞). For
any nonnegative measurable function f defined on E,

∫
E
f (x) dx =

∫
B

∫
R∞

0

f (ξ ◦ σ )[ξn−1] dξ dσ , (1.3)

where dx = dxm . . . dx1, B = Bk(1) ×· · ·×Bk(�), [ξn−1] = ∏m
i=1 ξ

ni−1
i , dξ =

dξm . . . dξ1, and dσ = dσk(�) . . . dσk(1). If each ni = 1, we consider the case
E1 = · · · = Em = (0,∞) and (1.3) is reduced to

∫
E f (x) dx = ∫

R∞
0
f (x) dx.

Throughout this paper, we assume that all functions are measurable on
their domains. For 0 < z < ∞, we define z∗ by 1/z+ 1/z∗ = 1. The notation
A � D means that A ≤ cD for some positive constant c depending at most
on m, p, q, and a parameter τ . We also take exp(−∞) = 0, log 0 = −∞,
00 = ∞0 = 1, and ∞/∞ = 0/0 = 0 · ∞ = 0.

Notation. Let 1 = (1, . . . , 1), 0 = (0, . . . , 0), and ∞ = (∞, . . . ,∞).
Let n = (n1, . . . , nm). For a = (a1, . . . , am) ∈ Rm and b = (b1, . . . , bm),
we write a ◦ b = (a1b1, . . . , ambm). In the case b ∈ Rm, we write a = b if
ai = bi for all i = 1, . . . , m, and a �= b if a = b does not hold. We also write
a > b (or a ≥ b) if ai > bi (or ai ≥ bi) for all i = 1, . . . , m, and a < b
(or a ≤ b) if b > a (or b ≥ a). For c ∈ R, let ca = (ca1, . . . , cam), a/c =
c−1a = (a1/c, . . . , am/c) if c �= 0. If bi �= 0 for all i = 1, . . . , m, we write
c/b = cb−1 = (c/b1, . . . , c/bm) and a/b = a ◦ b−1 = (a1/b1, . . . , am/bm).
If a > 0, we write ac = (ac1, . . . , a

c
m) and ab = (a

b1
1 , . . . , a

bm
m ). We also define

[a] := ∏m
i=1 ai . If 0 ≤ a ≤ b ≤ ∞, let Rb

a = (a1, b1)× · · · × (am, bm).

2. Main Theorems

Let 0 < p, q < ∞, d = (d1, . . . , dm) ∈ Rm, and u: E 
→ [0,∞]. Define

A
pq

d (u) =
⎧⎨
⎩

‖Apqd (u; x)‖p/(p−q), if p > q, n ≥ 1,

sup
x∈E

[x]1−q/pApqd (u; x), if p = q, n ≥ 1, or p ≤ q, n = 1,

where

A
pq

d (u; x) =
∫

R∞
1

u(t ◦ x)
[
tn−(q/p)d−1] dt.
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For 1 < τ ≤ p we also define

Kpτ,d =

⎧⎪⎪⎨
⎪⎪⎩

(∫
I
φ(t)p/(p−τ)[t(τ1−d)/(p−τ)] dt

)(p−τ)/p
, if 1 < τ < p,

sup
t∈I
φ(t)[t1−d/p], if τ = p.

Theorem 2.1. Let T = Hφ . Let 1 < p = q < ∞ and n ≥ 1, or 1 < p ≤
q < ∞ and n = 1. If (1.1) holds, then Apqd (u) < ∞ for all d > n, and

[
n ◦ (d − n)

d

]1/p(∫
I
φ(t) dt

)
A
pq

d (u)
1/q ≤ ‖T ‖L+

p →L+
q,u
. (2.1)

Conversely, if there exist 1 < τ ≤ p and d > n such that Kpτ,d < ∞ and
A
pq

d (u) < ∞, then (1.1) holds and

‖T ‖L+
p →L+

q,u
�

[
τ − 1

d − n

](τ−1)/p

Kpτ,dA
pq

d (u)
1/q . (2.2)

Theorem 2.2. Let T = Hφ . Let 1 < q < p < ∞ and n ≥ 1. If there exist
p/q < τ ≤ p and d > n such thatKpτ,d < ∞ andApqd (u) < ∞, then we have
(1.1) and

‖T ‖L+
p →L+

q,u
�

[
τ − 1

d − n

](τq−p)/(pq)
Kpτ,dA

pq

d (u)
1/q . (2.3)

If u = ∏m
i=1 ui , where ui :Ei 
→ [0,∞], then Apqd (u) < ∞ for all d > n is

necessary for (1.1) to hold and

[
q(d − n)

p

]1/q(∫
I
φ(t)

[
t(qd−pn)/(p2−pq)] dt

)
A
pq

d (u)
1/q ≤ ‖T ‖L+

p →L+
q,u
.

(2.4)

Theorem 2.3. Let 1 < p < q < ∞, n ≥ 1, and n �= 1. Then (1.1) holds
for T = Hφ if and only if u(x) = 0 for almost all x ∈ E.

We note that Theorem 2.3 still holds for any operator T that maps functions
in L+

p into L+
q,u and satisfies the inequality ‖Hφf ‖q,u ≤ c‖Tf ‖q,u for all

f ∈ L+
p .

As an application, we consider the case φ(t) = [(1 − tb)a−1 ◦ tc◦b+b−1],
where a = (a1, . . . , am) > 0, b = (b1, . . . , bm) > 0, and c = (c1, . . . , cm) >
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−1. In this case, Hφf (x) is reduced to

Jabcf (x) =
∫

I
[(1 − tb)a−1 ◦ tc◦b+b−1]f (t ◦ x) dt

and� = ∫
I φ(t) dt = ∏m

i=1 B(ci+1, ai)/bi , whereB(·, ·) is the beta function.

Corollary 2.4. Let T = Jabc.

(1) Let 1 < p = q < ∞ and n ≥ 1, or 1 < p ≤ q < ∞ and n = 1.
Suppose that pa > 1 and p(c + 1) ◦ b > n. Then (1.1) holds if and only
if Apqd (u) < ∞ for all d > n.

(2) Let 1 < q < p < ∞ and n ≥ 1. Let qa > 1 and p(c + 1) ◦ b > n.
If Apqd (u) < ∞ for some n < d < p(c + 1) ◦ b, then (1.1) holds.
Conversely, if (1.1) holds and u = ∏m

i=1 ui , where ui :Ei 
→ [0,∞],
then Apqd (u) < ∞ for all d > n.

(3) Let 1 < p < q < ∞, n ≥ 1, and n �= 1. Then (1.1) holds if and only if
u(x) = 0 for almost all x ∈ E.

Corollary 2.4 can be obtained by Theorems 2.1–2.3 and the fact thatKpτ,d <∞ for any 1 < τ < min{p, pa1, . . . , pam} and n < d < p(c + 1) ◦ b.

Theorem 2.5. Let T = M−
gh and φ(t) = g(t)h(1 − t). Suppose that h is

nonincreasing on each variable and h(1−) > 0.

(1) Let 1 < p = q < ∞ and n ≥ 1, or 1 < p ≤ q < ∞ and n = 1. If
(1.1) holds, then Apqd (u) < ∞ for all d > n. Conversely, if there exist
1 < τ ≤ p and d > n such that Kpτ,d < ∞ and Apqd (u) < ∞, then we
have (1.1).

(2) Let 1 < q < p < ∞ and n ≥ 1. If there exist p/q < τ ≤ p and
d > n such that Kpτ,d < ∞ and Apqd (u) < ∞, then we have (1.1).
Conversely, if (1.1) holds and u = ∏m

i=1 ui , where ui :Ei 
→ [0,∞],
then Apqd (u) < ∞ for all d > n.

(3) Let 1 < p < q < ∞, n ≥ 1, and n �= 1. Then (1.1) holds if and only if
u(x) = 0 for almost all x ∈ E.

Since h(1−)Hgf (x) ≤ M−
ghf (x) ≤ Hφf (x) for f ∈ L+

p and x ∈ E, we
have

h(1−)‖Hg‖L+
p →L+

q,u
≤ ‖M−

gh‖L+
p →L+

q,u
≤ ‖Hφ‖L+

p →L+
q,u
. (2.5)

Then Theorem 2.5 can be obtained by Theorems 2.1–2.3 and (2.5). It is in-
teresting to note that Theorem 2.5(3) still holds for any T = M−

gh such that
h(1−) > 0.
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If we choose g(t) = [(1 − t)a−1 ◦ tc], h(z) = [z−b], where a > 0, b ≥ 0,
and c > −1, then M−

gh is reduced to

Mabcf (x) = sup
z∈I

[z−b]
∫

Iz

[
(1 − t)a−1 ◦ tc]f (t ◦ x) dt.

By Corollary 2.4 and Theorem 2.5 we have Corollary 2.6.

Corollary 2.6. Let T = Mabc.

(1) Let 1 < p = q < ∞ and n ≥ 1, or 1 < p ≤ q < ∞ and n = 1.
Suppose that p(a − b) > 1 and p(c + 1) > n. Then (1.1) holds if and
only if Apqd (u) < ∞ for all d > n.

(2) Let 1 < q < p < ∞ and n ≥ 1. Let q(a − b) > 1 and p(c + 1) > n. If
A
pq

d (u) < ∞ for some n < d < p(c + 1), we have (1.1). Conversely, if
(1.1) holds andu = ∏m

i=1 ui , whereui :Ei 
→ [0,∞], thenApqd (u) < ∞
for all d > n.

(3) Let 1 < p < q < ∞, n ≥ 1, and n �= 1. Then (1.1) holds if and only if
u(x) = 0 for almost all x ∈ E.

In the following we investigate (1.1) for T = Gφ , G−
gh, and G−∗

gh . First we
consider the case T = Gφ . Suppose that φ: I 
→ (0,∞) satisfies the following
conditions:

(K1) � = ∫
I φ(t) dt = 1,

(K2) M1 = exp
∫

I φ(t) logφ(t) dt < ∞,

(K3) M2 = exp
(∫

I φ(t) log[t1−n] dt
)
< ∞.

We first deal with the existence of Gφ .

Lemma 2.7. Let 0 < p < ∞ and let φ: I 
→ (0,∞) satisfy (K1)–(K3).
Then for all f ∈ L+

p , Gφf (x) exists and is finite for almost all x ∈ E.

Proof. Let f ∈ L+
p . If n �= 1, by (1.3) we have

∫
R∞

0
f (ξ ◦σ )p[ξn−1] dξ <

∞ for almost all σ ∈ B. Therefore
∫

I f ((t ◦ η) ◦ σ )p[tn−1] dt is finite for all
η > 0 and for almost all σ ∈ B. This implies that

∫
I f (t ◦ x)p[tn−1] dt is finite

for almost all x ∈ E.
Let x be such an element in E. Then

exp

(∫
I
φ(t) log

(
φ(t)−1f (t ◦ x)p[tn−1]

)
dt

)
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exists and is finite. Since

(Gφf (x))p = Gφ(f
p)(x)

= M1M2 exp

(∫
I
φ(t) log

(
φ(t)−1[tn−1]f (t ◦ x)p

)
dt

)
,

where M1 and M2 are defined by (K2) and (K3), respectively, we see that
Gφf (x) exists and is finite.

The proof of the case n = 1 is similar and we omit the details.

Theorem 2.8. Let T = Gφ , where φ: I 
→ (0,∞) satisfies (K1)–(K3).

(1) Let 0 < p = q < ∞ and n ≥ 1, or 0 < p ≤ q < ∞ and
n = 1. If (1.1) holds, then Apqd (u) < ∞ for all d > n and we
have (2.1). Conversely, if there exist τ > 1 and d > n such that
Mτ,d = exp

(∫
I φ(t) log(φ(t)[t1−d/τ ]) dt

)
< ∞ and Apqd (u) < ∞, then

(1.1) holds and we have (2.2) with Kpτ,d being replaced by Mτ/p

τ,d .

(2) Let 0 < q < p < ∞ and n ≥ 1. If there exist τ > p/q and d > n
such that Mτ,d < ∞ and Apqd (u) < ∞, then (1.1) holds and we have
(2.3) with Kpτ,d being replaced by Mτ/p

τ,d . Conversely, if (1.1) holds and
u = ∏m

i=1 ui , where ui :Ei 
→ [0,∞], then Apqd (u) < ∞ for all d > n
and we have (2.4) with the integral

∫
I φ(t)[t

(qd−pn)/(p2−pq)] dt being

replaced by exp
(∫

I φ(t) log[t(qd−pn)/(p2−pq)] dt
)
.

(3) Let 0 < p < q < ∞, n ≥ 1, and n �= 1. Then (1.1) holds if and only if
u(x) = 0 for almost all x ∈ E.

As an application, we consider the case φ(t) = [a ◦ (1 − t)a−1], a =
(a1, . . . , am) > 0. In this case, φ satisfies (K1)–(K3) and Gφf (x) can be
reduced to

Jaf (x) = exp

(∫
I

[
a ◦ (1 − t)a−1] log f (t ◦ x) dt

)
.

Moreover,

M1 = [a ◦ e
1
a −1] and M2 =

[
e
(
γ 1+ �′(a+1)

�(a+1)

)
◦(n−1)

]
,

where γ is the Euler constant, e = (e, . . . , e), �(a + 1) = (�(a1 + 1), . . . ,
�(am + 1)), and �′(a + 1) = (�′(a1 + 1), . . . , �′(am + 1)). We also have

Mτ,d =
[
a ◦ e

1
a −1+

(
γ 1+ �′(a+1)

�(a+1)

)
◦(d/τ−1)

]
.
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Corollary 2.9. Let T = Ja.

(1) Let 0 < p = q < ∞ and n ≥ 1, or 0 < p ≤ q < ∞ and n = 1. Then
(1.1) holds if and only if Apqd (u) < ∞ for all d > n.

(2) Let 0 < q < p < ∞ and n ≥ 1. If Apqd (u) < ∞ for some d > n, we
have (1.1). Conversely, if (1.1) holds and u = ∏m

i=1 ui , where ui :Ei 
→
[0,∞], then Apqd (u) < ∞ for all d > n.

(3) Let 0 < p < q < ∞, n ≥ 1, and n �= 1. Then (1.1) holds if and only if
u(x) = 0 for almost all x ∈ E.

The results of the case m = 1, n1 = 1, E = (0,∞), and 0 < p, q < ∞
of Corollary 2.9(1) and (2) have been obtained by [18, Corollary 3.4] and [27,
Theorem 5.1].

Theorem 2.10. Let T = G−
gh or G−∗

gh . Suppose that h(1−) > 0, conditions

(K1)–(K3) are satisfied with φ replaced by g, and h(z)p/λ/G̃(z) is nonincreas-
ing on each variable for some λ > 1. Let φ(t) = g(t)h(1 − t)p/λ/G̃(1 − t).

(1) Let 0 < p = q < ∞ and n ≥ 1, or 0 < p ≤ q < ∞ and n = 1. If
(1.1) holds, then Apqd (u) < ∞ for all d > n. Conversely, if there exist
1 < τ ≤ λ and d > n such that Kλτ,d < ∞ and Apqd (u) < ∞, then we
have (1.1).

(2) Let 0 < q < p < ∞ and n ≥ 1. If there exist p/q < τ ≤ λ and
d > n such that Kλτ,d < ∞ and Apqd (u) < ∞, then we have (1.1).
Conversely, if (1.1) holds and u = ∏m

i=1 ui , where ui :Ei 
→ [0,∞],
then Apqd (u) < ∞ for all d > n.

(3) Let 0 < p < q < ∞, n ≥ 1, and n �= 1. Then (1.1) holds if and only if
u(x) = 0 for almost all x ∈ E.

Proof. For f ∈ L+
p and x ∈ E, we define k(x)λ = f (x)p. Then

h(1−)(Ggk(x))λ/p ≤ Tf (x) ≤ (M−
gh∗k(x))λ/p,

where T = G−
gh or G−∗

gh , and h∗(z) = h(z)p/λ/G̃(z). This implies that

h(1−)‖Gg‖λ/pL+
λ →L+

λq/p,u

≤ ‖T ‖L+
p →L+

q,u
≤ ‖M−

gh∗‖λ/p
L+
λ →L+

λq/p,u

.

Then Theorem 2.10 can be proved by Theorem 2.5 and Theorem 2.8.

It is interesting to note that Theorem 2.10(3) still holds for any T = G−
gh

and G−∗
gh such that h(1−) > 0 and conditions (K1)–(K3) are satisfied with φ

being replaced by g.
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Let g(t) = [a ◦ (1 − t)a−1] and h(z) = [zb], where a = (a1, . . . , am) > 0,
b = (b1, . . . , bm) > 0. Then for x ∈ E,

G−
ghf (x) = G−

abf (x) = sup
z∈I

[zb] exp

([
a
za

] ∫
Iz

[(1 − t)a−1] log f (t ◦ x) dt
)
,

G−∗
gh f (x) = G−∗

ab f (x) = lim
ε↘0

sup
z∈I

[zb]

([
a
za

] ∫
Iz

[(1 − t)a−1]f (t ◦ x)ε dt
)1/ε

.

Choose λ such that λ1 >
pb
a . Then h(z)p/λ/G̃(z) is nonincreasing in each

variable. Let φ(t) = [a ◦ (1 − t)(p/λ)b−1]. We have

Kλτ,d =
m∏
i=1

aiB

(
pbi − τ

λ− τ
,
λ− di

λ− τ

)(λ−τ)/λ
< ∞

for τ < λ, τ1 < pb, and d = (d1, . . . , dm) < λ1.

Corollary 2.11. Let T = G−
ab or G−∗

ab , and pb > (max{1, p/q})1.

(1) Let 0 < p = q < ∞ and n ≥ 1, or 0 < p ≤ q < ∞ and n = 1. Then
(1.1) holds if and only if Apqd (u) < ∞ for all d > n.

(2) Let 0 < q < p < ∞ and n ≥ 1. If there exists d > n such thatApqd (u) <∞, then (1.1) holds. Conversely, if (1.1) holds and u = ∏m
i=1 ui , where

ui :Ei 
→ [0,∞], then Apqd (u) < ∞ for all d > n.

(3) Let 0 < p < q < ∞, n ≥ 1, and n �= 1. Then (1.1) holds if and only if
u(x) = 0 for almost all x ∈ E.

In the following we consider a simple case as an example of our main results.
Letm = n = 2, n1 = n2 = 1, E1 = E2 = (0,∞), E = (0,∞)× (0,∞), and
I = (0, 1)× (0, 1). The operators considered in this paper are reduced to the
following forms.

Hφf (x1, x2) :=
∫ 1

0

∫ 1

0
φ(t1, t2)f (t1x1, t2x2) dt2 dt1,

Gφf (x1, x2) := exp

(∫ 1

0

∫ 1

0
φ(t1, t2) log f (t1x1, t2x2) dt2 dt1

)
,

M−
ghf (x1, x2) := sup

0<z1,z2<1
h(z1, z2)

∫ 1

1−z1

∫ 1

1−z2

g(t1, t2)f (t1x1, t2x2) dt2 dt1,
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G−
ghf (x1, x2) := sup

0<z1,z2<1

h(z1, z2) exp

(
1

G̃(z1, z2)

∫ 1

1−z1

∫ 1

1−z2

g(t1, t2) log f (t1x1, t2x2) dt2 dt1

)
,

G−∗
gh f (x1, x2) := lim

ε↘0
sup

0<z1,z2<1

h(z1, z2)

(
1

G̃(z1, z2)

∫ 1

1−z1

∫ 1

1−z2

g(t1, t2)f (t1x1, t2x2)
ε dt2 dt1

)1/ε

,

where G̃(z1, z2) = ∫ 1
1−z1

∫ 1
1−z2

g(t1, t2) dt2 dt1. Inequality (1.1) is then reduced
to

(∫ ∞

0

∫ ∞

0
Tf (x1, x2)

qu(x1, x2) dx2 dx1

)1/q

≤ C

(∫ ∞

0

∫ ∞

0
f (x1, x2)

p dx2 dx1

)1/p

. (2.6)

Here f ≥ 0 and T is any one of the operators given above. For 0 < p, q < ∞,
d1, d2 ∈ R, and u: (0,∞)× (0,∞) 
→ [0,∞],

A
pq

d1,d2
(u) =

⎧⎪⎨
⎪⎩

∥∥Apqd1,d2
(u; x1, x2)

∥∥
p/(p−q), if p > q,

sup
0<x1,x2<∞

(x1x2)
1−q/pApqd1,d2

(u; x1, x2), if p ≤ q,

where

A
pq

d1,d2
(u; x1, x2) =

∫ ∞

1

∫ ∞

1
u(t1x1, t2x2)t

−qd1/p

1 t
−qd2/p

2 dt2 dt1.

For 1 < τ ≤ p we also have

Kpτ,d1,d2
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{∫ 1

0

∫ 1

0
φ(t1, t2)

p

p−τ t
τ−d1
p−τ

1 t
τ−d2
p−τ

2 dt2 dt1

}(p−τ)/p
, if 1 < τ < p,

sup
0<t1,t2<1

φ(t1, t2)t
1−d1/p

1 t
1−d2/p

2 , if τ = p.

Theorem 2.1 shows that for T = Hφ and 1 < p ≤ q < ∞, if (2.6) holds, then
A
pq

d1,d2
(u) < ∞ for all d1 > 1 and d2 > 1. Conversely, if there exist 1 < τ ≤ p

and d1 > 1, d2 > 1 such that Kpτ,d1,d2
< ∞ and Apqd1,d2

(u) < ∞, then (2.6)
holds. Theorem 2.2 gives results for the case 1 < q < p < ∞. Similarly,
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Theorems 2.5, 2.8, and 2.10 establish (2.6) for T = M−
gh, Gφ , and G−

gh, G−∗
gh ,

respectively, under the condition Apqd1,d2
(u) < ∞.

3. Proof of Theorem 2.1

We first consider the sufficiency part. Let hτ = f p, 1 < τ ≤ p, and d > n.
Then

Hφf (x) ≤ Kpτ,d

(∫
I

[
td−τ1]1/τ

h(t ◦ x) dt
)τ/p

. (3.1)

Consider the case 1 < p = q < ∞, n ≥ 1, and n �= 1. By (3.1) and (1.3) we
have∫

E
Hφf (x)pu(x) dx

≤ (Kpτ,d)
p

∫
B

∫
R∞

0

(∫
I

[
td−τ1]1/τ

h(t ◦ (ξ ◦ σ )) dt
)τ
u(ξ ◦ σ )

[
ξn−1] dξ dσ .

Let g(s) = [sd−τ1]1/τ h(s ◦ σ ). Then
∫

I

[
td−τ1]1/τ

h(t ◦ (ξ ◦ σ )) dt = [
ξ−d]1/τ

∫
Rξ

0

g(s) ds

and by [33, Theorem 2.1], we have

∫
R∞

0

(∫
Rξ

0

g(s) ds
)τ
u(ξ ◦ σ )

[
ξn−1−d] dξ

�
[
τ − 1

d − n

]τ−1

C(σ )

∫
R∞

0

g(ξ)τ
[
ξ τ1+n−1−d] dξ ,

where

C(σ ) = sup
s>0

[
sd−n] ∫

R∞
s

u(ξ ◦ σ )
[
ξn−d−1] dξ = sup

s>0
A
pp

d (u; s ◦ σ ).

By
∫

R∞
0
g(ξ)τ [ξ τ1+n−1−d] dξ = ∫

R∞
0
f (ξ ◦ σ )p[ξn−1] dξ we obtain

‖Hφf ‖p,u � Kpτ,d

[
τ − 1

d − n

](τ−1)/p(∫
B
C(σ )

∫
R∞

0

f (ξ ◦ σ )p
[
ξn−1] dξ dσ

)1/p

≤
[
τ − 1

d − n

](τ−1)/p

Kpτ,dA
pp

d (u)
1/p‖f ‖p.
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Consider the case 1 < p ≤ q < ∞, n = 1, and E1 = · · · = Em = (0,∞).
By (3.1), we have

∫
E
Hφf (x)qu(x) dx ≤ (Kpτ,d)

q

∫
R∞

0

(∫
I

[
td−τ1]1/τ

h(t ◦ x) dt
)τq/p

u(x) dx.

Let g(s) = [sd−τ1]1/τ h(s). By [33, Theorem 2.1] and similar calculation to
that given in the previous case we have

‖Hφf ‖q,u ≤ Kpτ,d

{∫
R∞

0

(∫
Rx

0

g(s) ds
)τq/p

u(x)[x−d]q/p dx
}1/q

�
[
τ − 1

d − 1

](τ−1)/p

Kpτ,dA
pq

d (u)
1/q‖f ‖p.

In the following we consider the necessity part. Suppose that (1.1) holds
for T = Hφ . Let 1 < p = q < ∞, n = (n1, . . . , nm) ≥ 1, n �= 1,
d = (d1, . . . , dm) > n, and a = (a1, . . . , am) > 0. Suppose that for some
1 ≤ � ≤ m, nk(s) > 1 for s = 1, . . . , �. Then for x = (x1, . . . , xm) ∈ E, we
write xi = ξiσi for i = k(1), . . . , k(�), where ξi > 0 and σi ∈ Bi . If � < m, we
have nj(s) = 1 and we consider the case Ej(s) = (0,∞) for s = 1, . . . , m− �.
Let ξ = (ξ1, . . . , ξm) and σ = (σk(1), . . . , σk(�)). In the case � < m, ξi = xi
for i = j (1), . . . , j (m − �). Let B = Bk(1) × · · · × Bk(�) and let ψ be a
nonnegative function defined on B such that ψp is integrable on B. We choose
f (x) = ga(ξ)ψ(σ ), where

ga(ξ) =
2∑

j1=1

. . .

2∑
jm=1

m∏
i=1

χIji (ξi)a
−ni/p
i

(
ai

ξi

)di (ji−1)/p

. (3.2)

Here Iji = (0, ai) if ji = 1 and Iji = (ai,∞) if ji = 2. We first show that∫
E f (x)

p dx < ∞. Since

∫
R∞

0

ga(ξ)
p[ξn−1] dξ =

2∑
j1=1

. . .

2∑
jm=1

m∏
i=1

∫
Iji

a
−ni
i

(
ai

ξi

)di (ji−1)

ξ
ni−1
i dξi

=
2∑

j1=1

. . .

2∑
jm=1

m∏
i=1

(−1)ji

di(ji − 1)− ni
=

[
d

n(d − n)

]
,
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we see that
∫

E
f (x)p dx =

∫
B

(∫
R∞

0

ga(ξ)
p[ξn−1] dξ

)
ψ(σ )p dσ

=
[

d
n(d − n)

] ∫
B
ψ(σ )p dσ < ∞.

Here dσ = dσk(�) . . . dσk(1). On the other hand, for ξ > a, we have

Hφf (x) =
∫

I
φ(t)ga(t ◦ ξ)ψ(σ ) dt

=
2∑

j1=1

. . .

2∑
jm=1

ψ(σ )

{( m∏
i=1

a
−ni/p
i

(
ai

ξi

)di (ji−1)/p)

×
∫ 1

0
. . .

∫ 1

0
φ(t1, . . . , tm)

( m∏
i=1

χIji (tiξi)t
di (1−ji )/p
i

)
dtm . . . dt1

}

≥ [
ad−nξ−d]1/p

ψ(σ )

∫
I
φ(t) dt.

The last inequality is based on the facts that a−ni
i > a

di−ni
i ξ

−di
i and t−dii > 1

for 0 < ti < 1. Let � = ∫
I φ(t) dt. Then

∫
E
Hφf (x)pu(x) dx ≥ �p[ad−n]

∫
B

∫
R∞

a

u(ξ ◦ σ )
[
ξn−1−d]ψ(σ )p dξ dσ .

Inequality (1.1) with T = Hφ implies

∫
B
Cp

[
d

n(d − n)

]
ψ(σ )p dσ

≥ �p

∫
B

(
[ad−n]

∫
R∞

a

u(ξ ◦ σ )
[
ξn−1−d] dξ

)
ψ(σ )p dσ .

Since this inequality holds for all nonnegative functions ψ defined on B such
that ψp is integrable on B, we obtain

Cp
[

d
n(d − n)

]
≥ �p[ad−n]

∫
R∞

a

u(ξ ◦ σ )
[
ξn−1−d] dξ = �pA

pp

d (u; a ◦ σ )

for almost all σ ∈ B. Moreover, this inequality holds for all a > 0 and hence
we have (2.1).
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Consider the case 1 < p ≤ q < ∞, n = 1, and E1 = · · · = Em = (0,∞).
Let d > 1 and f (x) = ga(x), where a > 0 and ga is defined by (3.2).
Then

∫
E f (x)

p dx = [ d
d−1

]
. For x > a, we have Hφf (x) ≥ [ad−1x−d]1/p�.

Therefore∫
E
Hφf (x)qu(x) dx ≥ �q[ad−1]q/p

∫
R∞

a

u(x)[x−d]q/p dx.

If (1.1) holds for T = Hφ , then

C

[
d

d − 1

]1/p

≥ �[ad−1]1/p

(∫
R∞

a

u(x)[x−d]q/p dx
)1/q

= �[a]1/q−1/pA
pq

d (u; a)1/q .

Since this inequality holds for all a > 0, we have (2.1).

4. Proof of Theorem 2.2

First we prove the sufficiency part. Consider the case n ≥ 1 and n �= 1.
Suppose that p/q < τ ≤ p, d > n, and Kpτ,d < ∞ and Apqd (u) < ∞. Let
hτ = f p. Inequalities (3.1) and (1.3) imply

∫
E
Hφf (x)qu(x) dx

≤ (Kpτ,d)
q

∫
B

∫
R∞

0

(∫
I
[td−τ1]1/τ h(t ◦ (ξ ◦σ )) dt

)τq/p
u(ξ ◦σ )[ξn−1] dξ dσ

and then by [33, Theorem 3.1] and by letting g(s) = [sd−τ1]1/τ h(s ◦ σ ), we
have

{∫
R∞

0

(∫
I
[td−τ1]1/τ h(t ◦ (ξ ◦ σ )) dt

)τq/p
u(ξ ◦ σ )[ξn−1] dξ

}p/(τq)

=
{∫

R∞
0

(∫
Rξ

0

g(s) ds
)τq/p

u(ξ ◦ σ )
[
ξn−1−(q/p)d] dξ

}p/(τq)

�
[
τ − 1

d − n

](τq−p)/(τq)
C1(σ )

p/τ

{∫
R∞

0

g(ξ)τ
[
ξn−d+τ1−1] dξ

}1/τ

,
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where
∫

R∞
0
g(ξ)τ [ξn−d+τ1−1] dξ = ∫

R∞
0
h(ξ ◦ σ )τ [ξn−1] dξ and

C1(σ ) =
{∫

R∞
0

(∫
R∞

s

u(ξ ◦ σ )
[
ξn−1−(q/p)d] dξ

)p/(p−q)

× [
s((d−n+1)q−p1)/(p−q)] ds

}(p−q)/pq
.

Hence

‖Hφf ‖q,u

� Kpτ,d

[
τ − 1

d − n

](τq−p)/(pq){∫
B
C1(σ )

q

(∫
R∞

0

h(ξ ◦ σ )τ [ξn−1] dξ

)q/p
dσ

}1/q

≤ Kpτ,d

[
τ − 1

d − n

](τq−p)/(pq){∫
B
C1(σ )

pq/(p−q) dσ
}(p−q)/pq

‖f ‖p.

Here
∫

B C1(σ )
pq/(p−q) dσ = A

pq

d (u)
p/(p−q). Therefore we have (1.1) and (2.3)

with T = Hφ .
If n = 1 and E1 = · · · = Em = (0,∞), we have

∫
E
Hφf (x)qu(x) dx ≤ (Kpτ,d)

q

∫
R∞

0

(∫
I
[td−τ1]1/τ h(t ◦ x) dt

)τq/p
u(x) dx.

Then a similar proof can also be applied to obtain (2.3).
In the following we suppose that (1.1) holds and u = ∏m

i=1 ui , where
ui :Ei 
→ [0,∞]. For x = (x1, . . . , xm) ∈ E, we write xi = ξiσi if ni > 1
and xi = ξi if ni = 1, where ξi > 0 and σi ∈ Bi . For a positive integer M we
define

ui,M(xi) = min{ui(xi),M}χ(0,M)(ξi)+ min
{
ui(xi), ξ

−q(ni+1)/r
i

}
χ(M,∞)(ξi),

where 1/r = 1/q − 1/p. Let uM(x) = ∏M
i=1 ui,M(xi). In the case n ≥ 1 and

n �= 1, we write x = ξ ◦ σ , where ξ = (ξ1, . . . , ξm), σ = (σ1, . . . , σm), and
σi = 1 if ni = 1. For d > n, let

fM(x) = [
ξ (qd−pn)/(p2−pq)]UM(σ ; ξ)1/(p−q), (4.1)

whereUM(σ ; ξ) = [ξn−(q/p)d]Apqd (uM; x). By (1.3) and the dual result of [33,
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Theorem 2.1],
∫

E
fM(x)p dx =

∫
B

∫
R∞

0

UM(σ ; ξ)p/(p−q)[ξ (qd−pn)/(p−q)+n−1] dξ dσ

≤ C∗
∫

B

∫
R∞

0

uM(ξ ◦ σ )p/(p−q)[ξn−1] dξ dσ < ∞,

where C∗ is some finite constant. On the other hand, since ‖HφfM‖q,uM ≤
C‖fM‖p and

HφfM(x) ≥ K
[
ξ (qd−pn)/(p2−pq)]UM(σ ; ξ)1/(p−q),

where K = ∫
I φ(t)

[
t(qd−pn)/(p2−pq)] dt, we have

K

{∫
B

∫
R∞

0

[ξ (q
2d−pqn)/(p2−pq)+n−1]UM(σ ; ξ)q/(p−q)uM(ξ ◦ σ ) dξ dσ

}1/q

≤ C

{∫
B

∫
R∞

0

[ξ (qd−pn)/(p−q)+n−1]UM(σ ; ξ)p/(p−q) dξ dσ
}1/p

< ∞.

Since∫ ∞

0
ξ
(qdi−pni)/(p−q)+ni−1
i Ui,M(σi; ξi)p/(p−q) dξi

≤ p

q(di − ni)

∫ ∞

0
ξ
(q2di−pqni )/(p2−pq)+ni−1
i Ui,M(σi; ξi)q/(p−q)ui,M(ξiσi) dξi,

where Ui,M(σi; ξi) = ∫ ∞
ξi
ui,M(yiσi)y

ni−qdi/p−1
i dyi , we have

∫
R∞

0

[
ξ (qd−pn)/(p−q)+n−1]UM(σ ; ξ)p/(p−q) dξ

≤
[

p

q(d − n)

] ∫
R∞

0

[
ξ (q

2d−pqn)/(p2−pq)+n−1]UM(σ ; ξ)q/(p−q)uM(ξ ◦ σ ) dξ .

Then

C ≥ K

[
q(d − n)

p

]1/q

·
{∫

B

∫
R∞

0

[
ξ (qd−pn)/(p−q)+n−1]UM(σ ; ξ)p/(p−q) dξ dσ

}1/q−1/p

.
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By letting M → ∞, uM ↑ u and we have (2.4).
The proof of the case n = 1 and E1 = · · · = Em = (0,∞) is similar. We

omit the details.

5. Proof of Theorem 2.3

Suppose that (1.1) holds for T = Hφ . Assume nk(s) > 1 for s = 1, . . . , �. If
� = m, then ni > 1 for each i = 1, . . . , m. If 1 ≤ � < m, we set nj(s) = 1
and Ej(s) = (0,∞) for s = 1, . . . , m − �. For ε > 0 and ρk(s) ∈ Bk(s), we
define Dε(ρk(s)) = { σ ∈ Bk(s) : ‖σ − ρk(s)‖ < ε }, s = 1, . . . , �. For each s,
it is easy to see that for almost all ρk(s) ∈ Bk(s), |Dε(ρk(s))| > 0 for all ε > 0,
where |Dε(ρk(s))| is the measure of Dε(ρk(s)) as a subset of Bk(s). Now fix
such a ρk(s) ∈ Bk(s) and let ρ∗ = (ρk(1), . . . , ρk(�)). Let ε > 0 and Dε(ρ

∗) =
Dε(ρk(1)) × · · · × Dε(ρk(�)). For x = (x1, . . . , xm) ∈ E, we write xi = ξiσi
and let ξ = (ξ1, . . . , ξm). Here if � = m then σi ∈ Bi for i = 1, . . . , m, and if
1 ≤ � < m then ξi = xi and we set σi = 1 for i = j (1), . . . , j (m − �). Let
σ ∗ = (σk(1), . . . , σk(�)). Let a = (a1, . . . , am) > 0 and define

fε(x) = χRa
0
(ξ)χDε (ρ∗)(σ

∗).

Then

‖fε‖pp =
[

an

n

] �∏
s=1

|Dε(ρk(s))|

and
‖Hφfε‖qq,u ≥ �q

∫
Dε (ρ∗)

∫
Ra

0

u(ξ ◦ σ )[ξn−1] dξ dσ ∗.

Here� = ∫
I φ(t) dt and dσ ∗ = dσk(�) . . . dσk(1). Since ‖Hφfε‖q,u ≤ C‖fε‖p,

this implies

�q

∫
Dε (ρ∗)

∫
Ra

0

u(ξ ◦ σ )[ξn−1] dξ dσ ∗ ≤ Cq
[

an

n

]q/p( �∏
s=1

|Dε(ρk(s))|
)q/p

.

Hence

1∏�
s=1 |Dε(ρk(s))|

∫
Dε (ρ∗)

∫
Ra

0

u(ξ ◦ σ )[ξn−1] dξ dσ ∗

≤ Cq�−q
[

an

n

]q/p( �∏
s=1

|Dε(ρk(s))|
)q/p−1

. (5.1)

Inequality (5.1) holds for almost all ρk(s) ∈ Bk(s), s = 1, . . . , �, and for
all ε > 0. By taking limits as ε → 0, |Dε(ρk(s))| → 0. Since p < q,
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the right-hand side of (5.1) approaches zero and the left-hand side of (5.1)
approaches

∫
Ra

0
u(ξ ◦ρ)[ξn−1] dξ for almost all ρ∗ ∈ Bk(1)×· · ·×Bk(�). Here

if � = m then ρ = (ρ1, . . . , ρm) = ρ∗ and if � < m then we set ρi = 1 for
i = j (1), . . . , j (m − �). This implies

∫
Ra

0
u(ξ ◦ ρ)[ξn−1] dξ = 0 for almost

all ρ∗ ∈ Bk(1) × · · · × Bk(�). Since a > 0 is arbitrary, we have u(x) = 0 for
almost all x ∈ E.

6. Proof of Theorem 2.8

The proof is similar to that given in Theorem 2.1–2.3. For any τ > 1, let
hτ = f p. ThenGφf (x) = Gφh(x)τ/p and (1.1) for T = Gφ holds if and only
if (∫

E
Gφh(x)τq/pu(x) dx

)p/(τq)
≤ Cp/τ

(∫
E
h(x)τ dx

)1/τ

(6.1)

holds with the same constant C. For d > n and τ > max{1, p/q} such that
Mτ,d < ∞, we write logh(t◦x) = log(φ(t)[t1−d/τ ])+log(φ(t)−1[td/τ−1]h(t◦
x)). Then Gφh(x) ≤ Mτ,d

∫
I[t

d/τ−1]h(t ◦ x) dt and therefore

∫
E
Gφh(x)τq/pu(x) dx ≤ M

τq/p

τ,d

∫
E

(∫
I
[td/τ−1]h(t ◦ x) dt

)τq/p
u(x) dx.

By similar proofs to that given in Theorem 2.1–2.2, the sufficiency part of
(1)–(2) can be obtained.

In the following, we suppose that (1.1) holds for T = Gφ . Then (6.1) holds
for τ = 1. Consider the case 0 < p ≤ q < ∞. Let n = (n1, . . . , nm) ≥ 1,
d = (d1, . . . , dm) > n, and a = (a1, . . . , am) > 0. The result of the necessary
part of the case p = q, n ≥ 1, and n �= 1 can be obtained by a similar proof
to that given in Theorem 2.1 with h(x) = ga(ξ)ψ(σ ), where ga(ξ) is given
in (3.2) with p = 1 and the inequality Gφh(x) ≥ [ad−nξ−d]ψ(σ ) for ξ > a.
If p ≤ q, n = 1, and E1 = · · · = Em = (0,∞), let h(x) = ga(x) with
p = 1. Then

∫
E h(x) dx = [ d

d−1

]
and Gφh(x) ≥ [ad−1x−d] for x > a. Then

the necessity part of this case can be easily derived by a similar argument to
that given in Theorem 2.1. The result of the case q < p can also be obtained
by a similar argument to that given in Theorem 2.2 with hM(x) = fM(x)p for
any positive integer M and the inequality

GφhM(x) ≥ Md
[
ξ (qd−pn)/(p−q)]UM(σ ; ξ)p/(p−q),

where fM is given by (4.1) and Md = exp
(∫

I φ(t) log[t(qd−pn)/(p−q)] dt
)
.
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In the case 0 < p < q < ∞, n ≥ 1, and n �= 1, if (6.1) holds for τ = 1,
by choosing h = fε , we have

∫
E
Gφh(x)q/pu(x) dx ≥

∫
Dε (ρ∗)

∫
Ra

0

u(ξ ◦ σ )[ξn−1] dξ dσ ∗,

where fε , Dε(ρ
∗), and dσ ∗ are given in Theorem 2.3. Therefore by a similar

proof to that given in Theorem 2.3 we have u(x) = 0 for almost all x ∈ E.
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