MATH. SCAND. 7 (1959), 126—-132

AN EXTREMAL PROBLEM RELATED
TO THE THEORY OF QUASI-ANALYTIC FUNCTIONS

GOSTA WAHDE

1. As is well known there are many problems intimately connected
with the theory of quasi-analytic functions. We shall consider in this
connection two (equivalent) extremal problems, the solutions of which
we give in the following

THEOREM. Let o 2v
x
H(z) =
() =20 e
with real m,, my=1, be an even tntegral function. Let
oo
(1.1) & = infSH(t)f(t)z dt
0
under the conditions
o] (o]

(1.2)  freal, Sf(t) dt

0

(3)t, gtz”f(t) dt=0 w»vz1,
0

3

and o

oo} 1 .
(1.3) oy = inf 3 25 fO(z)2dw

v=0 M, b

under the conditions
(1.4) freal, f(0)=1, fP0) =0, »21
Then

1¢1
(1.5) &y = 0y = —S——ZlogH(x) dw

7 X

if ome of the members is finite.

When we solve these problems we also get an elementary proof of the
main theorem in the theory of quasi-analytic functions (Carleman [2]),
formulated as follows:
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A necessary and sufficient condition that the class C 4( — oo, o) of infinitely
differentiable functions on (— oo, co) such that

IfP@)| = kF*'4,, 4,=1, »=0,1,2, ...
should be quast-analytic is that

0?1 (?Sz'x2v
(1.6) '\Elog(z EE)dw: 0o .
O v

v=0

2. We start by considering the following extremal problem: Let
{m,}3 be a given sequence of positive numbers with m,=1 and let C,, be
the class of » times differentiable functions on [0, ) with

(2.1) fO)=1, f20) =0 »=12...,0-1,
such that f(z), f'(z), ..., f™(z) belong to L2[0, c0). Form the functional

.
A )
F.(f) = 7%6'm—ﬁ§f (x)% dx

and try to minimize it over the class C,,.

3. Let f,(x) be the solution of the differential equation

( Dz”y =0

l\q§

(3.1)

Il
=)

v v

which belongs to C,. Since (3.1) contains derivatives of even orders
only, the general solution has the form

ng
y =2 P)e

y=—nj
v=0

with r_,= —r,, Re{r,} >0 for »>0, where P,(x) are polynomials con-
taining in all 2n arbitrary constants. Obviously, in f,(z) the n constants
of P (x), v>0, must be zero and the others are determined by the condi-
tions (2.1). Since every r, occurring in the exponents of f,(x) has a
negative real part, f,(x) and all its derivatives obviously belong to
L0, o).

We now consider F,(f, +7), where n(x) satisfies the conditions in C,
with the only exception 7(0)=0, (y=£0):

Fulfutn) = Folf) + Fot) + 23—\ £,9%0) 7o) d

=0 v
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Partial integrations give for »=1,2, ..., n
oo

o]

\ £29@) 1%a) o = (= 17\ £,20@) () der,

<

and hence
3 L8500 o e = a3 C o) an - 0
=0 m"zo i ° o om2 T

since f,(x) satisfies (3.1). Consequently

Fo(fatn) = Folfy) + Fu(n) > Fu(f,) .

Every fin C, can evidently be expressed in the form f,, +#, and therefore
[n realizes
feCn
4. We compute the minimum value u,. For »=1 partial integrations

give 0

V£uP@PR = (—17£,5720) + (=17 £,8@) fu(o) do
0 0

Hence o

g

S f20(x)2 dx
0

S
Pt

m.2

v

I
<

-1y

v=1 m 2

—_

M=

(4.1) = L2 72(0) +°§fn(x) (2 —;7:;; fn(z”)(x)) dx
0

= 2':’ (_—___l)_v fn(‘lv—l)(o) .

y=(inpr1 M2

Suppose first that the characteristic equation corresponding to (3.1)
has only simple roots. Then

[al@) = Zﬁcve—rpw .
v=1

The boundary conditions (2.1) are

(4.2) r=1
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The determinant of (4.2) is of the Vandermonde type and we find

Hr

¢, = »——————1 ;
r, [T (rj=r)
4
and since [17_,r;=m,[my=m,,
e
falz) = m, 2 —
=ty ﬂ (rj—r,)
jr
Inserting in (4.1) gives
n 1 n ( _ 1)v+1 rkZV-—?.
”n = mn 2 1,n 2
k=1 v=[4n}+1 m,
H —7%)
+k
1 [4n] ( . 1)vrk2»—2

[\1:

= m

n
k

It
ol

2

=0 m

I e=ro™ ™
+k

where the last step is justified since 7, satisfies the characteristic equa-
tion. We now state that
LA |
(4.3) pn = 3
k=1 Ty

and prove this by comparison with Lagrange’s interpolation formula

P(ry) .g(z—rj)

21

PE) = 3
k=t ﬂ(rk_rj)

J*k
giving a polynomial P(z) assuming at n given points r, given values
P(r,), k=1, 2, ..., n. Obviously u, =P(0) if
[4n] ( — l)vr 2v—1 1 [3n] ( _ l)vrk2v—-1
Pir)= Y+ "%k __ S
(rk) vé() mv2 T * y=1 mv2
P(0) must be equal to the value for z=0 of another polynomial P,(2)
agsuming in the points 7, the values
Py(ry) = 1fr .
Furthermore P,(0) = Py(0), with
Py(z) = 2P4(2) .

Math. Scand.’ 9
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The polynomial P,(z) must consequently fulfil the conditions
P,(0) = 0, Pyry)=1, k=12,...,n.
But this polynomial is easily written down directly:

Pyz) = 1 - k=t T
Il
k=1
and we find
' ro1
pn = Py(0) =Z'—"
k=1 Tg

The assumption that the r, should be simple roots is no restriction.
For {m,}} can be approximated arbitrarily closely by another sequence
{m}7 so that all the roots r, of the corresponding characteristic equation
are simple, and furthermore both y,, and {r,}? are continuous functions
of {m}};.

5. In order to get a connection with the condition in the main theorem
on quasi-analytic functions we now compute

o0
o 1 ” xz”

5.1 \——lo ( —) da .
(5.1) )z g =20’ e
Since the equation

n va
Z 0
il=20' mvz
has the roots +ir,v=1,2, ..., n, we have

(<]
n 1 xz n 1
(2 1og (1 —)d - .
,£{§x2 og( +’v x nvgn
Hence -
1¢1 n g2
(5.2) Un =7_t§;210g(:§mv2) dx .

6. Suppose now that the integral in (1.6) converges. Then, if we put
m, =4, v20, my=1, it is easy to see that the integral
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T1 o 2
S;"'IOg(ZmQ de
0

»=0 »

is also convergent, i.e. .
limu, =c < .
n—>oo
Then, if n is an arbitrary positive integer, there exists a function f,(x)
such that
r=0 m
Hence for an arbitrary a >0
a
an(”)(:c)2 de < em?, v=0,1,...,n,
0
and Schwarz’s inequality gives for 0z <a

I£. @) < (ac)t-A4,, y=0,1,...,n—1.

Then, by a standard argument, we can select a subsequence {f, ()}
converging to a function g(x) and such that f)(x) -~ g®(z), uniformly in
[0, a]. Now in g(x) we have an example showing that C [0, a] is non-
quasi-analytic. The transformation #=at/(1+t) then gives a function in
C 4(— o0, ) (see [2, pp. 22-23]) which shows that this class is non-quasi-
analytic.

7. To prove the sufficiency of the condition (1.6) we show that if
C4(—o0, o) is non-quasi-analytic then (1.6) cannot hold. We may
assume that the sequence {log4,} is convex (see [1, p. 15]).

If C4(— o0, o0) is non-quasi-analytic, it contains a function f(z) with

fP0) = f) =0, w»zo0,
ftx) >0 for O<xz<c

and f(x) =0 elsewhere (see [1, p. 53]). Let, for 0=z =c,

§ f(t) dt

Then ¢(0)=1, ¢*(0)=0, »=1, ¢"(c)=0, »=20. Let g(x)=0 for z>c.
@(x) belongs to C 4[0, ), for integration is permitted within the class C 4

9.
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when {log 4,} is convex (Bang [1]). Consequently we have for some con-
>

stant azl |(p(y)(x)l < akvAy’ 0 <x < o0, v 2 0 ,

where we may assume k<1. But since ¢(x) belongs to the class C,

(see 2 above) we have u, < F,(¢) for every n, and therefore

a?c

1
11—k’

"E A

v

II/\

n
PP@)2 dr < a%c- 3 kY <
v=0

o8

and we conclude the convergence of the integral in (1.6).

8. We now return to the extremal problem (1.3). From (3.2) and the
uniform convergence of f(”) to ¢g”(x) in every finite interval [0, a] we
conclude that

LimF,(f,) = 200—1—- g (x)2 dx = F(g)
=0

n—>00 v 7”,,2

ot 3

and moreover that g(x) realizes
xy = minF(f) = F(g)

which then according to (5.2) has the value given in (1.5).
Finally, having made f(x) even, we pass from (1.4) to (1.2) by means of
a Fourier transform; use of Parsevals formula gives at once the solution

(1.5) of (1.1).
REFERENCES

1. Th. Bang, Om quasi-analytiske Funktioner, Kjobenhavn, 1946.
2. T. Carleman, Les fonctions quasi analytiques, Paris, 1926.

UNIVERSITY OF UPPSALA, SWEDEN



