AN EXTREMAL PROBLEM RELATED TO THE THEORY OF QUASI-ANALYTIC FUNCTIONS

GÖSTA WAHDE

1. As is well known there are many problems intimately connected with the theory of quasi-analytic functions. We shall consider in this connection two (equivalent) extremal problems, the solutions of which we give in the following

THEOREM. Let

$$H(x) = \sum_{\nu=0}^{\infty} \frac{x^{2\nu}}{m_{\nu}^2}$$

with real m_r , $m_0 = 1$, be an even integral function. Let

$$\alpha_1 = \inf \int_0^\infty H(t) f(t)^2 dt$$

under the conditions

(1.2)
$$f real, \quad \int_{0}^{\infty} f(t) dt = (\frac{1}{2}\pi)^{\frac{1}{2}}, \quad \int_{0}^{\infty} t^{2\nu} f(t) dt = 0, \quad \nu \geq 1,$$

and

(1.3)
$$\alpha_2 = \inf \sum_{\nu=0}^{\infty} \frac{1}{m_{\nu}^2} \int_0^{\infty} f^{(\nu)}(x)^2 dx$$

under the conditions

(1.4)
$$f real, \quad f(0) = 1, \quad f^{(\nu)}(0) = 0, \quad \nu \ge 1.$$

Then

(1.5)
$$\alpha_{1} = \alpha_{2} = \frac{1}{\pi} \int_{0}^{\infty} \frac{1}{x^{2}} \log H(x) dx$$

if one of the members is finite.

When we solve these problems we also get an elementary proof of the main theorem in the theory of quasi-analytic functions (Carleman [2]), formulated as follows:

Received March 26, 1959.

A necessary and sufficient condition that the class $C_A(-\infty,\infty)$ of infinitely differentiable functions on $(-\infty,\infty)$ such that

$$|f^{(\nu)}(x)| \le k^{\nu+1}A_{\nu}, \quad A_0 = 1, \quad \nu = 0, 1, 2, \dots,$$

should be quasi-analytic is that

(1.6)
$$\int_{0}^{\infty} \frac{1}{x^{2}} \log \left(\sum_{\nu=0}^{\infty} \frac{x^{2\nu}}{A_{\nu}^{2}} \right) dx = \infty.$$

2. We start by considering the following extremal problem: Let $\{m_r\}_0^n$ be a given sequence of positive numbers with $m_0=1$ and let C_n be the class of n times differentiable functions on $[0, \infty)$ with

(2.1)
$$f(0) = 1, \quad f^{(\nu)}(0) = 0, \quad \nu = 1, 2, \dots, n-1,$$

such that $f(x), f'(x), \ldots, f^{(n)}(x)$ belong to $L^2[0, \infty)$. Form the functional

$$F_n(f) = \sum_{r=0}^n \frac{1}{m_r^2} \int_0^\infty f^{(r)}(x)^2 dx$$

and try to minimize it over the class C_n .

3. Let $f_n(x)$ be the solution of the differential equation

(3.1)
$$\sum_{\nu=0}^{n} \frac{(-1)^{\nu}}{m_{\nu}^{2}} D^{2\nu} y = 0$$

which belongs to C_n . Since (3.1) contains derivatives of even orders only, the general solution has the form

$$y = \sum_{\substack{v = -n_k \\ v \neq 0}}^{n_k} P_v(x) e^{r_v x}$$

with $r_{-\nu} = -r_{\nu}$, Re $\{r_{\nu}\} > 0$ for $\nu > 0$, where $P_{\nu}(x)$ are polynomials containing in all 2n arbitrary constants. Obviously, in $f_n(x)$ the n constants of $P_{\nu}(x)$, $\nu > 0$, must be zero and the others are determined by the conditions (2.1). Since every r_{ν} occurring in the exponents of $f_n(x)$ has a negative real part, $f_n(x)$ and all its derivatives obviously belong to $L^2[0, \infty)$.

We now consider $F_n(f_n+\eta)$, where $\eta(x)$ satisfies the conditions in C_n with the only exception $\eta(0)=0$, $(\eta \neq 0)$:

$$F_n(f_n+\eta) = F_n(f_n) + F_n(\eta) + 2\sum_{r=0}^n \frac{1}{m_r^2} \int_0^\infty f_n^{(r)}(x) \, \eta^{(r)}(x) \, dx$$

Partial integrations give for $\nu = 1, 2, \ldots, n$

$$\int_{0}^{\infty} f_{n}^{(r)}(x) \, \eta^{(r)}(x) \, dx = (-1)^{r} \int_{0}^{\infty} f_{n}^{(2r)}(x) \, \eta(x) \, dx \, ,$$

and hence

$$\sum_{\nu=0}^{n} \frac{1}{m_{\nu}^{2}} \int_{0}^{\infty} f_{n}^{(\nu)}(x) \, \eta^{(\nu)}(x) \, dx = \int_{0}^{\infty} \eta(x) \left(\sum_{\nu=0}^{n} \frac{(-1)^{\nu}}{m_{\nu}^{2}} f_{n}^{(2\nu)}(x) \right) dx = 0$$

since $f_n(x)$ satisfies (3.1). Consequently

$$F_n(f_n + \eta) = F_n(f_n) + F_n(\eta) > F_n(f_n)$$
.

Every f in C_n can evidently be expressed in the form $f_n + \eta$, and therefore f_n realizes

$$\min_{f \in C_n} F_n(f) = F_n(f_n) = \mu_n.$$

4. We compute the minimum value μ_n . For $\nu \ge 1$ partial integrations give ∞

 $\int\limits_0^\infty f_n{}^{(r)}(x)^2\; dx \; = \; (\,-\,1\,)^r f_n{}^{(2\nu-1)}(0) \; + \; (\,-\,1\,)^r \int\limits_0^\infty f_n{}^{(2\nu)}(x) \, f_n(x) \; dx \; .$

Hence

$$\mu_{n} = \sum_{\nu=0}^{n} \frac{1}{m_{\nu}^{2}} \int_{0}^{\infty} f_{n}^{(\nu)}(x)^{2} dx$$

$$= \sum_{\nu=1}^{n} \frac{(-1)^{\nu}}{m_{\nu}^{2}} f_{n}^{(2\nu-1)}(0) + \int_{0}^{\infty} f_{n}(x) \left(\sum_{\nu=0}^{n} \frac{(-1)^{\nu}}{m_{\nu}^{2}} f_{n}^{(2\nu)}(x) \right) dx$$

$$= \sum_{\nu=1}^{n} \frac{(-1)^{\nu}}{m_{\nu}^{2}} f_{n}^{(2\nu-1)}(0) .$$

Suppose first that the characteristic equation corresponding to (3.1) has only simple roots. Then

$$f_n(x) = \sum_{\nu=1}^n c_{\nu} e^{-r_{\nu}x}$$
.

The boundary conditions (2.1) are

(4.2)
$$\begin{cases} \sum_{\nu=1}^{n} c_{\nu} &= 1 \\ \sum_{\nu=1}^{n} c_{\nu} r_{\nu} &= 0 \\ \cdots \\ \sum_{\nu=1}^{n} c_{\nu} r_{\nu}^{n-1} &= 0 \end{cases}.$$

The determinant of (4.2) is of the Vandermonde type and we find

$$c_{r} = \frac{\prod_{j=1}^{n} r_{j}}{r_{r} \prod_{\substack{i=1 \ i \neq r}}^{1, n} (r_{j} - r_{r})};$$

and since $\prod_{j=1}^{n} r_{j} = m_{n}/m_{0} = m_{n}$,

$$f_n(x) = m_n \sum_{\nu=1}^n \frac{e^{-r_{\nu}x}}{r_{\nu} \prod_{j=\nu}^{n} (r_j - r_{\nu})}.$$

Inserting in (4.1) gives

$$\begin{split} \mu_n &= m_n \sum_{k=1}^n \frac{1}{\prod\limits_{j=k}^{1,n} (r_j - r_k)} \sum_{\nu = [\frac{1}{2}n]+1}^n \frac{(-1)^{\nu+1} r_k^{2\nu-2}}{m_\nu^2} \\ &= m_n \sum_{k=1}^n \frac{1}{\prod\limits_{j=k}^{1,n} (r_j - r_k)} \sum_{\nu = 0}^{[\frac{1}{2}n]} \frac{(-1)^{\nu} r_k^{2\nu-2}}{m_\nu^2} \end{split}$$

where the last step is justified since r_k satisfies the characteristic equation. We now state that

$$\mu_n = \sum_{k=1}^n \frac{1}{r_k}$$

and prove this by comparison with Lagrange's interpolation formula

$$P(z) = \sum_{k=1}^{n} \frac{P(r_k)}{\prod_{j=k}^{1, n} (r_k - r_j)} \cdot \frac{\prod_{j=1}^{n} (z - r_j)}{z - r_k}$$

giving a polynomial P(z) assuming at n given points r_k given values $P(r_k)$, $k=1, 2, \ldots, n$. Obviously $\mu_n = P(0)$ if

$$P(r_k) = \sum_{\nu=0}^{\left[\frac{1}{2}n\right]} \frac{(-1)^{\nu} r_k^{2\nu-1}}{m_{\nu}^{\ 2}} = \frac{1}{r_k} + \sum_{\nu=1}^{\left[\frac{1}{2}n\right]} \frac{(-1)^{\nu} r_k^{\ 2\nu-1}}{m_{\nu}^{\ 2}} \ .$$

P(0) must be equal to the value for z=0 of another polynomial $P_1(z)$ assuming in the points r_k the values

$$P_1(r_k) = 1/r_k.$$

Furthermore $P_1(0) = P'_2(0)$, with

$$P_2(z) = z P_1(z) .$$

Math. Scand.'

The polynomial $P_2(z)$ must consequently fulfil the conditions

$$P_2(0) = 0, \qquad P_2(r_k) = 1, \quad k = 1, 2, \ldots, n.$$

But this polynomial is easily written down directly:

$$P_2(z) \, = \, 1 \, - \frac{\displaystyle \prod_{k=1}^n \, (r_k \! - \! z)}{\displaystyle \prod_{k=1}^n \, r_k}$$

and we find

$$\mu_n = P_2'(0) = \sum_{k=1}^n \frac{1}{r_k}.$$

The assumption that the r_k should be simple roots is no restriction. For $\{m_k\}_1^n$ can be approximated arbitrarily closely by another sequence $\{m_k'\}_1^n$ so that all the roots r_k' of the corresponding characteristic equation are simple, and furthermore both μ_n' and $\{r_k'\}_1^n$ are continuous functions of $\{m_k'\}_1^n$.

5. In order to get a connection with the condition in the main theorem on quasi-analytic functions we now compute

(5.1)
$$\int_{0}^{\infty} \frac{1}{x^{2}} \log \left(\sum_{r=0}^{n} \frac{x^{2r}}{m_{r}^{2}} \right) dx.$$

Since the equation

$$\sum_{\nu=0}^{n} \frac{x^{2\nu}}{m_{\nu}^{2}} = 0$$

has the roots $\pm ir_{\nu}$, $\nu = 1, 2, \ldots, n$, we have

$$\sum_{\nu=0}^{n} \frac{x^{2\nu}}{m_{\nu}^{2}} = \prod_{\nu=1}^{n} \left(1 + \frac{x^{2}}{r_{\nu}^{2}}\right)$$

and (5.1) becomes

$$\sum_{v=1}^{n} \int_{0}^{\infty} \frac{1}{x^{2}} \log \left(1 + \frac{x^{2}}{r_{v}^{2}}\right) dx = \pi \cdot \sum_{v=1}^{n} \frac{1}{r_{v}}.$$

Hence

(5.2)
$$\mu_n = \frac{1}{\pi} \int_0^\infty \frac{1}{x^2} \log \left(\sum_{\nu=0}^n \frac{x^{2\nu}}{m_{\nu}^2} \right) dx.$$

6. Suppose now that the integral in (1.6) converges. Then, if we put $m_{\nu+1} = A_{\nu}$, $\nu \ge 0$, $m_0 = 1$, it is easy to see that the integral

$$\int_{0}^{\infty} \frac{1}{x^2} \log \left(\sum_{\nu=0}^{\infty} \frac{x^{2\nu}}{m_{\nu}^2} \right) dx$$

is also convergent, i.e.

$$\lim_{n\to\infty}\mu_n=c<\infty.$$

Then, if n is an arbitrary positive integer, there exists a function $f_n(x)$ such that

$$\sum_{r=0}^{n} \frac{1}{m_{r}^{2}} \int_{0}^{\infty} f_{n}^{(r)}(x)^{2} dx = \mu_{n} < c.$$

Hence for an arbitrary a > 0

$$\int_{0}^{a} f_{n}^{(\nu)}(x)^{2} dx < cm_{\nu}^{2}, \qquad \nu = 0, 1, \ldots, n,$$

and Schwarz's inequality gives for $0 \le x \le a$

$$|f_n^{(\nu)}(x)| \leq (ac)^{\frac{1}{2}} \cdot A_{\nu}, \quad \nu = 0, 1, \ldots, n-1.$$

Then, by a standard argument, we can select a subsequence $\{f_{n_k}(x)\}$ converging to a function g(x) and such that $f_{n_k}^{(p)}(x) \to g^{(p)}(x)$, uniformly in [0, a]. Now in g(x) we have an example showing that $C_A[0, a]$ is non-quasi-analytic. The transformation x = at/(1+t) then gives a function in $C_A(-\infty, \infty)$ (see [2, pp. 22-23]) which shows that this class is non-quasi-analytic.

7. To prove the sufficiency of the condition (1.6) we show that if $C_A(-\infty, \infty)$ is non-quasi-analytic then (1.6) cannot hold. We may assume that the sequence $\{\log A_p\}$ is convex (see [1, p. 15]).

If $C_A(-\infty, \infty)$ is non-quasi-analytic, it contains a function f(x) with

$$f^{(\nu)}(0) = f^{(\nu)}(c) = 0, \quad \nu \ge 0,$$

 $f(x) > 0 \quad \text{for} \quad 0 < x < c$

and $f(x) \equiv 0$ elsewhere (see [1, p. 53]). Let, for $0 \le x \le c$,

$$\varphi(x) = \frac{\int_{c}^{c} f(t) dt}{\int_{0}^{c} f(t) dt}.$$

Then $\varphi(0) = 1$, $\varphi^{(\nu)}(0) = 0$, $\nu \ge 1$, $\varphi^{(\nu)}(c) = 0$, $\nu \ge 0$. Let $\varphi(x) \equiv 0$ for x > c. $\varphi(x)$ belongs to $C_A[0, \infty)$, for integration is permitted within the class C_A

when $\{\log A_{\nu}\}$ is convex (Bang [1]). Consequently we have for some constant $a \ge 1$ $|w^{(\nu)}(x)| \le ak^{\nu}A$. $0 \le x < \infty$. $\nu \ge 0$.

where we may assume k < 1. But since $\varphi(x)$ belongs to the class C_n (see 2 above) we have $\mu_n \leq F_n(\varphi)$ for every n, and therefore

$$\mu_n \leq \sum_{\nu=0}^n \frac{1}{A_{\nu}^2} \int_{0}^{\infty} \varphi^{(\nu)}(x)^2 dx \leq a^2 c \cdot \sum_{\nu=0}^n k^{2\nu} < \frac{a^2 c}{1 - k^2},$$

and we conclude the convergence of the integral in (1.6).

8. We now return to the extremal problem (1.3). From (3.2) and the uniform convergence of $f_{n_k}^{(r)}(x)$ to $g^{(r)}(x)$ in every finite interval [0, a] we conclude that

$$\lim_{n \to \infty} F_n(f_n) = \sum_{\nu=0}^{\infty} \frac{1}{m_{\nu}^2} \int_0^{\infty} g^{(\nu)}(x)^2 dx = F(g)$$

and moreover that g(x) realizes

$$\alpha_2 = \min F(f) = F(g)$$

which then according to (5.2) has the value given in (1.5).

Finally, having made f(x) even, we pass from (1.4) to (1.2) by means of a Fourier transform; use of Parsevals formula gives at once the solution (1.5) of (1.1).

REFERENCES

- 1. Th. Bang, Om quasi-analytiske Funktioner, Kjøbenhavn, 1946.
- 2. T. Carleman, Les fonctions quasi analytiques, Paris, 1926.

UNIVERSITY OF UPPSALA, SWEDEN