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CLOSED PRIMARY IDEALS
IN A CLASS OF BANACH ALGEBRAS!

YNGVE DOMAR

1. Preliminaries. Our main purpose is to prove two theorems (Theo-
rem 1 and Theorem 2) on the primary ideal structure in a class of Banach
algebras which was introduced and discussed by Beurling [1] and Wermer
[6] and then studied in a larger context in [3]. As corollaries we obtain
results on integral equations of convolution type (Theorem 4) and on
polynomial approximation (Theorem 5). For the proof of Theorem 1 we
need a property of entire functions of exponential type. Since it may be
of independent interest, it is stated as a separate theorem (Theorem 3).

We shall start by defining a Banach algebra of the type under question
and then we shall enlist, referring to [3], those of its properties which we
need for the discussion.

Let p be a Lebesgue measurable real-valued function on the real line

—oo<x<oo. We assume that p is bounded on every compact interval,
that

(1) px) 21,

for every xz, that

(2) (@, +23) £ pay) p(e) ,
for every x, and z,, and finally that

3) g log p(x)

1+2dx<oo
X

We form the Banach space F,, of complex-valued Lebesgue measurable
functions f with the finite norm

| 1/@)1 pla) de

—00
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The condition (2) guarantees that F, is a Banach algebra under the com-
mutative convolution operation

[o <}

frg = \f(x—y) 9(y) dy .
It is shown in [3, Ch. 1 and 2], that F, has the dual real line —so <t < oo
as its space of regular maximal ideals. The Gelfand representation of an
element f € F), is given by its Fourier transform

A

J@) =\ e f(z)de .

8-/-.8

Thus to every real ¢ there corresponds a regular maximal ideal I(t),
consisting of the elements f e F,, for which ft)y=0. Conversely, we ob-
tain in this way every regular maximal ideal. F, is regular, i.e. to every
real toAa,nd every ¢ >0 there exists an element fe F,, such that f(t,)+0,
while f(t) =0 if |t —1,| > ¢. Furthermore, ¥, has the following fundamental
property (the generalized Tauberian theorem, cf. [3, Theorem 1.53]):

A. Every proper closed tdeal is included tn at least one regular maximal
ideal.

The space F of bounded linear functionals on F), can be identified
with the class of measurable complex-valued functions ¢ on —co<z <00
such that

« p(—2)

in the sense that the value for fe F), of the corresponding functional is

8
8
|
&
==
&
Iy

—00

The spectrum A, for a function ¢ € F is defined as the set of all ¢
for which the corresponding ideal Iy(t) contains every f e F, for which

(4) grf=0.
(See [3, Ch. 3.1]). For any ¢ € F; and any fe F, we have
pxfe F;‘ ,

and if f’ is another element in F,, we have

e*(frf)=(p*f)*f".
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This shows that for any given @ e F; the class of all fe F, which
satisfy (4), is a closed ideal. Hence the property A has the following
consequence::

B. A, is empty if and only if ¢=0 almost everywhere. ([3, Theorem
3.21A1)

We need moreover the following results from [3]:

C. Suppose that fe F, and ¢ € F} and that f (t) vamishes on a set which
contains A, in its interior. Then

pxf=0.
([3, Theorem 3.21D].)

D. Suppose that ¢ € Fy has A, consisting only of the point t=0. Then
@ coincides almost everywhere with an entire function of exponential type 0
([3, Theorem 3.35).). For any positive integer n we denote the n-th derivative
of this function by ¢™. Then
gmeF*,

and if (4) holds for a function f € F,, this tmplies that

gV xf=0.
([3, Theorems 3.31 and 3.34].)

2. Primary ideals. Statement of the main theorems. A primary ideal
in F, is an ideal, which is included in exactly one regular maximal ideal.
We shall below introduce certain additional assumptions on p, which
have as a consequence that p(z) grows to infinity faster than any poly-
nomial, when |z| - oco. This implies that to every regular maximal ideal
I,(t) there corresponds an infinite number of closed primary ideals. For
to any positive integer n we obtain such an ideal if we form the class
L,(t) of all f e F,, such that

foy=fw=...=fon =o.
The rapidity of growth of p then guarantees both the existence of these
derivatives and the closure property of the ideals. That they are primary

is a consequence of the regularity of F,. Another closed primary ideal,
corresponding to ¢, is

It =NIL.

We can now state the main theorems:



112 YNGVE DOMAR

TrHEOREM 1. If p fulfills the additional assumptions 1 below and if I(t)
18 @ closed primary ideal, included in Iy(t) but not in I_(t), then it has to
coincide with one of the ideals 1,(t), n=0,1,2, ...

THEOREM 2. If p fulfills the additional assumptions 2 below and if 1(t)
18 a closed primary ideal, included tn I_(t), then it has to coincide with

I_().
We have the following immediate consequence of these theorems:

CoroLLARY. If p fulfills the additional assumptions 1 and 2 below, then
any closed primary ideal in F, is of the form I ,(t), where n is a non-negative
integer or oo.

We shall now give the additonal assumptions which we need. Especially
the assumptions 1 look very restrictive, but it should be observed that
the restrictions concern the smoothness more than the rapidity of growth.
Both of the additional assumptions are for instance fulfilled if

px) =el*, 0 <a<1,
or if p coincides with
(o
exp , g>1,

(tog [
for large ||.
ADDITIONAL ASSUMPTIONS 1. Let us suppose that there exist, for every

posttive integer n, positive numbers x, and m,, such that
1° the n-th derivative p™(x) exists and

pP(x)x™ > 0,
if o]z,
2° pm@) = 1,
if ||z,

3° the inequality
[P’ +2")| = [p"(")] [p™(z")|
holds if |x'| z x,, |2"'| 2z, and |x'+2"'| 22,
4° with q() =log p(),
plz) \Mm 1
|p<">(x)|) a,(®) 1g'()]

are monotonically decreasing when x < —wx, and monotonically increasing
when vz,

ane) = (
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5° the statement

dr

S [9(van@) +oq @ay@)] -, < o

x| >y

holds true. We may obviously assume that x, is monotonically increasing
with n.

ADDITIONAL ASSUMPTION 2. Let us suppose that p is even and that
log p(x) is a convex function of log|x| for large |x|, and finally that

— 10, X

———— > oo as x| > oo .

271 log ||

3. A theorem on entire functions of exponential type 0. In order to
prove Theorem 1, we need the following theorem:

TaEOREM 3. Suppose that s(x)>0 is monotonically decreasing when
x 20 and monotonically increasing when x=0. Suppose furthermore that
the positive function b(x) has the property that

(5) r(y) = sup[lovs(a+yb z))—logs(x)]
satisfies
& J i

Then there exists, for any positive integer m, a finite constant M,, such that

2 S(x) h

up ()]
" (@)’
Sfor any entire function @ of exponential type 0 and such that the right hand
member is finite.

Proor or THEOREM 3. The function r(y) is apparently monotone for
y<0 and for y>0. Using (6) and the arguments in Paley-Wiener
[5, § 10], it is easy to see that we can find a not identically vanishing
entire function g of exponential type 1 such that

(7) sup |g(y)|e™ < oo
KJ

\ 19 e dy < oo .

Math. Scand. 7. 8
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It is obviously possible to choose ¢ in such a way that

9(0) = 1
and g'(0) = ... = gm0) =0.

Let P(y) be a finite trigonometrical polynomial
Ja, ety
with every 4, real and > 1, and such that at y=0
P(y) = 1+0(@y™).

Then we form the function

Im {P
h(y) = 9(y) —ﬁmy{m(ly)}
Apparently "
(8) \ Ihw)ierw dy = € < w.

Further we introduce the expression

P v
) = { g(z+yb(@) hiy) dy ,

where @ is any entire function of exponential type 0 such that

PO _
z  S(x)
Then (9) can be written
! 9(2) 5=
(10) zny—z— S @(x+2b(x)) Sig (P(z) - P(z)) dz,

r

where I' denotes the real axis of the complex z-plane taken in the direc-
tion — oo to co. Formulas (5) and (7) imply that for every « the function

¢z +2b(x)) g(z)

has a bounded absolute value on the real axis. Since it is an entire func-
tion of exponential type 1, a well-known theorem (see for instance Boas
[2, Theorem 6.2.4]) shows that

|p(2 +2b(x))| 1g(2)| e~1méel

is bounded in the complex plane. The integral (10) can be evaluated by
changing I'in such a way that it avoids the point 2= 0, and then splitting
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the integral into the two parts which contain P(z) and ;(—2), respectively.
Owing to our assumption that every A,>1, these two integrals can be
computed by means of simple residue calculus. We obtain

m! ¢
an =\ pla+vb@) hy) dy = gz i)

-0

On the other hand the modulus of the left hand member of (11) is

8

mV o
\ sz +yb@) iy dy .

—00

Coa
and by (5) and (8) this is in turn

m!
Co—s(x)
7

IIA

e |h(y)| dy = C'C’o—-é’( x) .

gmg

Hence

!
s(x),

()| [b(x)]™ = CC,y

J

which proves the theorem.

ReMARK. If the function s in Theorem 3 moreover satisfies

for every x, and
8(y +a5) = s(2y)s(s) ,

for every x, and z,, then since

v logs(x)
—_— L 0
S 1+a2

-—00

obviously is fulfilled, the classes F,_, and Fg_, have the properties
which were announced in Section 1. Using property D in Section 1 we
see that the condition laid on ¢ in Theorem 3 follows if we assume that

€ Pl
and that A, consists at most of the point {=0. It should be observed
that this version of the theorem can be proved by Fourier analysis
arguments similar to those used in [3]. This makes it possible to extend
the theorem to more general locally compact Abelian groups.

8%
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4. Consequences of the additional assumptions 1.

LemMma 1. For any positive integer n let ¢, be a constant such that

Cn z 1, Cp 2 Ip(m(<xn+1)l! Cn 2 P(")(xnu) .
We form the function p,, defined by the relations
— Cns 'Lf |x| = Tp+1
Pa(®) = max(c,, p(")(x)), if (@] > Ty -

Then the inequalities (1), (2) and (3) are fulfilled if p is substituted by p,.
The function p,(x) is moreover monotomcally decreasing if x<0 and
monotonically increasing if x>0. Finally, if m>n,

(12) (@) = O(pa()), as  |a|— oo,

We omit the proof since the statements are immediate consequences
of (1), (2), (3) and of 1°, 2° and 3° in the additional assumptions 1.

Lemma 2. Suppose that f € F,, and that
(13) f0)y = ... = fo-n0) = 0.
Then | x
fen@) = -\ @y p) dy

belongs to the class F,_

Proor. We shall only give a brief sketch of the proof. Using repeated
integration by parts it is easy to show that
§ (@) pyfa) d < oo
Formula (13) implies, ;o(o)wever, that
\ @-pyrsmay = o.

—00

Hence oo

fom@) = \ =y £ dy.

(n—-l )!

and using this formula the statement

o0

JI7m @) pu@) do < oo,

may be proved in a similar way.
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Lemma 3. If @ e Fy, and if A consists only of the point t=0, then for
any n>0 we have gm I
if m2m,, where m, is defined in the additional assumptions 1.

Proor. In the additional assumptions 1 we have defined the function
q(x) for every real x and the functions a,(x) for every positive integer n
in case |x|2x,. We extend the definition of the functions a,(x) by
defining them as an arbitrary positive constant d, if |z| <x,. We shall

h
prove that ra(y) = sup [¢(z+ya,(x))—q)]

satisfies oo )
" Taly
(14) ﬁ§° 1“:3/—2dy < oo,

Let us first assume that x>0 and y20. If x<x, it follows from (2)

h
that q(z+ya, (@) — q(@) = q(ya,(x)) = q(yd) .

Since g(x) is monotonically increasing if 2 >z,, (2) and 4° in the addi-
tional assumptions 1 give, if x, <z =<y,

q(z+ya, (@) — () £ q(ya (@) £ q(ya,(y)) .

By Lagrange’s mean value therem and 4° in the additional assumptions
1 we have furthermore, if y <x and x>z,

q(* +ya, (@) — ¢(x) £ ya, (@) @) £ ya,(y')d' ')

where '
y = max(y, x,) .

Quite similar results can be proved if one or both of x and y are
negative. Hence by (3) and 5° in the additional assumptions 1 we see
that (14) holds.

We now apply Theorem 3 with p and a, as the functions s and b,
respectively. We then obtain (cf. the remark following the theorem) that

sup [P Lo

x p(x)
for every m and n, if p € )} and if 4, consists of the only point ¢=0.
Hence, if furthermore m =m,, we have by 4° in the additional assump-
tions 1, that on)
¢ =)l

su — < 20
a  Plo)

which proves the lemma.
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5. Proof of Theorem 1. Let us first observe that we can assume that
t=0, for by means of mappings of the form

f(@) > f(x)e

we see that we have isomorphic primary ideal structures at the various
ideals I(t).

Let us assume that I(0) is a closed primary ideal, corresponding to
t=0, but not included in I_(0). Closed ideals, being closed linear sub-
spaces of the Banach space F,, are completely characterized by the set
of bounded linear functionals which vanish on them. For the ideals 7,(0)
these functionals are the derivatives of f(t) at =0 up to the order n and
linear combinations of them. These functionals correspond to the class
of functions ¢ € F, which are equivalent to polynomials of degree <mn.
Hence, if we can prove that the only functions ¢ € F}, which satisfy

| o(=2) @) dw = 0

for every f € I(0), are equivalent to polynomials with a uniformly bounded
degree, then the theorem is proved. It is easy to prove by standard con-
volution arguments that every closed ideal in F, is invariant under
translation. Hence the theorem is a consequence of the following pro-
position:

ProrosiTION. The only functions ¢ € F 5 which satisfy
pxf=0

for every f € 1(0), are those equivalent to polynomials of a certain uniformly
bounded degree.

ProoF oF THE PROPOSITION. Since /(0) is a primary ideal, A consists
only of the point ¢=0 or is empty. From D in Section 1 we therefore
conclude that for every positive integer m and for every f e I(0)

g™ xf = 0.
Let n be the smallest positive integer such that

1(0) ¢ 1,,(0).
This means that

(15) fo)y =F10) = ... =fe0) =0
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for every fe I(0), whereas there exists at least one function f, € I(0),
such that

(16) f@0) + 0
By Lemma 3 all the functions

(p(mn), (p(rnn+1)’ e, ¢(mn+n)
belong to the class F; , and by (15), Lemma 2 and (12) all the functions
LFL oo o™,

belong to the class F), . Hence starting from the relation
P xf =0,

which is valid for every fe I(0), and integrating » times by parts, we
obtain

(17) <p(m"+") *f(‘") =0.

Because of Lemma 1, the function p,, fulfills all the assumptions which
were laid on p in Section 1. We have therefore a clear notion of spectrum
of an element in the class F;n, and the results in Section 1, are true with
p substituted by p,,. A direct computation shows that if fe I(0) we have
N 1 .,
(18) Jeme) = *S;f
for t+0, and for t=0 if the left hand member is defined by continuity.
By use of (18) it follows that the class of functions f©™, considered as
elements of F, , is not included in any of the regular maximal ideals
in the class which correspond to ¢+0, and by (16) it is not even included
in the regular maximal ideal, which corresponds to t=0. Hence (17) has
the consequence that the spectrum of g™, where this function now is
considered as an element of F , is empty. By B in Section 1 this

implies that tmatm o
g =0,

almost everywhere. Hence ¢ is equivalent to a polynomial of at most
the degree m, +n—1. This proves the proposition and hence also the
theorem.

6. Proof of Theorem 2.

Lemma 4. If the additional assumptions 2 are fulfilled, then there exists
a positive entire function
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o0
P@) = ¥ a,,x*

0
with every a,, = 0, and such that for every ¢ >0
[p@)]P < o2 P() < P(x) < [p(a(1+¢))]?
if x| s sufficiently large.
Proor. It is sufficient to prove that

(19) [p(x)]* = 272P(x) £ P(x) = 2°[p(x)]

if z is sufficiently large. Firstly, the restriction to positive x is a con-
sequence of the fact that the functions are even. Secondly, for any &> 0
we have by Lagrange’s mean value theorem and the convexity assump-
tion in the additional assumptions 2

logp(x(1 +¢)) —logp(x) = logp(el =18 1+9) —log p(e**”)

d
d d—xlogp(x)
> log(l+g) ——-1 = log(1+e¢)-logas—— .
2 log(1+¢) d(log) ogp(x) = log(l+¢)-logx o1 logw

Hence, using the last condition in the additional assumptions 2 we have
for sufficiently large x
pEte) &
plx)
Starting from
y = ly(t) = lim 2 logp(e)

t— — o0
we form a sequence of tangents, with increasing slopes,
Y = ly,(t), n=20,1,...,

to the convex function
y = 2logp(e),

such that if (£,,41, ¥sn+1) denotes the point of intersection between

Y = ly(t) and Y = lonta(t)
we have

Yont1 = 2logp(e+) — 1.

It can be proved, using the convexity, that

lzn(t) pS l2n+2(t)— l’ if tz t2n+3 ’
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and that .
lZn(t)"‘l 2 l2n+2’ if ¢ = tz'n"l .

Using this it is easy to prove that

(20) [p())® = e 3 el < ¢@e-1) [p(eh)]? .

iy

n=0 e—1
Then, let us consider

lon(t) = by t+cyy s

where obviously b,,= 0. Let m,, denote the smallest even integer which
is 2b,,. We obtain from (20)

2 < 2040 gmamttem < 6(3,6_19 [p(e!)]? e
n=0Q €—
if t>0. Hence
00 e(3e—1
i 5 5 emtt g < 0D s
n=

if x> 1. We therefore conclude that the function

o)
P(x) =14+ 2 ecz,ﬁ-l xm2n+2
n=0

fulfills (19).

Proor or THEOREM 2. We form the class F of all measurable f, such
that

oo

\|f z)dr < oo.

@
—00

Lemma 4 and Cauchy-Schwarz’ inequality give
( \ If (@)] p(x) dx) < const. \ if (@) x) dx ,

which shows that F} is a subclass of F, equipped with a stronger
topology. Using the Parseval relation we have for functions in F%

e ] e %
(21) \ @2 Pe) de =~ 'ay, \ Ifow) e,
— R

and this relation shows that the class F% might as well be characterized
as the class of Fourier transforms in the L2 sense of the class of functions
f for which the right hand member of (21) exists and is finite.

This shows that every fe F%, such that the corresponding f vanishes
at t=0 together with all its derivatives, can be represented as a sum
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f=r+r,

where f* and f- belong to F% and have Fourier transforms which
vanish on ¢ <0 and ¢ 2 0, respectively. Obviously

lim (f+ el +f— e-—iez) — f

e—>0
in the strong limit sense, and hence the closure of the class of fe F%
such that f vanishes identically in a neighborhood of t=0 contains
every function f € F2 such that f vanishes together with all its derivatives
at t=0.

The closure was then taken in the F% sense, but since the F, topology
is weaker we have the result: The F, closure of any class of functwns
which contains every f e F,, such that f vamshes in a neighborhood of t=0
contains the whole class F% nI (0).

But since any closed primary ideal of type I(0) can be characterized
by relations pxf=0,

where @ € F} and A, consists only of the point ¢{=0, the property D,
§ 1, implies that 1(0) contams every function f, such that f vanishes on a
neighborhood of ¢=0. Hence we have: I(0) contains the whole class
F3nI_(0).

It remains only to show that FHnI_(0) is dense in I_(0). To that
end we shall prove:

a) Every fel_(0), such that |f|p is bounded, can be approximated ar-
bitrarily closely by elements in F%nI_(0).

b) Every feI_(0) can be approximated arbitrarily closely by elements
g el_(0) such that |g| p is bounded.

Proor oF a). Since p is monotone, f(x(1+ ¢)) belongs to I_(0) for every
&¢>0, and f can be approximated arbitrarily closely by these elements.
But (19) gives

S |f(x(1+¢))]? P(x) dz < const. S |f(2(1+2))|? [p(x(1+¢))]? da
< const. sup |f|p- S Iflpde,

—00

and hence the functions f(2(1 + ¢)) belong to LEnI_(0).

Proor or b). It is easy to see that it is possible to approximate any
felI_(0) arbitrarily closely by functions of the form

g=f*h’
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where 5 belongs to F,, and has the property that |A|p is bounded. By
use of (2) it can be proved that then also |g| p is bounded, and ¢ obviously
belongs to I_(0).

7. Some corollaries.

TrEOREM 4. If p fulfills the additional assumptions 1 and if the function
fin F, has the property that

fey=0, if t+t,

and f(n)(tﬂ) :’: 0 ’

then all solutions in F} of the integral equation
pxf=0

are polynomials of at most the degree n— 1, multiplied by €™,
If p fulfills the additional assumptions 2 and if the function f in F, has
the property that f vanishes at t=t, together with all its derivatives, then

pxf=0

for every @€ Fy; such that pe ™% is an entire function of exponential
type 0.

Proor. The first part follows at once from Theorem 1 using the fact
that the primary closed ideal of functions f, in F,, such that

pxfo=0
is not included in I,(t,).
The second part is a consequence of Theorem 2 which shows that
I_(t,) has no proper primary closed sub-ideal. For that reason, if ¢ has
the form announced in the theorem, the ideal of all f; such that

p*fo=0
includes I (Z,), and hence also f.

Starting from a function p which satisfies the conditions in Section 1
we form the subspace F) < F which consists of all continuous functions
which satisfy ¢(x o(p( z ) at infinity, and for which A, consists
at most of the point {=0. This subspace is closed, which is very easily
seen, using the definition of spectrum and C, in Section 1.

The space of bounded linear functionals on FY can be identified with
a certain class of bounded Borel measures on —oo < < oo, and since C
in Section 1 shows that only the values of the Fourier—Stieltjes transforms
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oo

\ e du(w)

—00

in the neighborhood of ¢t=0 are of any relevance as for the values of
the corresponding functionals, we can as well assume that the measures
are absolutely continuous. It turns out that the space of bounded
linear functionals on F? is isomorphic with a space of equivalence classes
of F, such that the values of the functional, corresponding to a certain
equivalence class is given by

\ o= f(a) de,

3

where f is any element in the equivalence class.

By means of Theorem 4 we shall now prove two properties of the space
o,

THEOREM 5. If p fulfills the additional assumptions 1 and if ¢ is a func-
tion in Fg which is not a polynomial, then the closure of the space of all
linear combinations of translations of ¢ contains all polynomials.

If p fulfills the additional assumptions 2, then the subspace of all poly-
nomials is dense in F?).

Proor. As for the first part, let f be any function in F, (that is any
bounded linear functional on F7) such that

(e o]

S(p(t—-x)f(x)dx =0.

—00

Then f has to be included in /_(0) by Theorem 4, first part. Hence

P(—2) f(x)dx = 0

g2

for every polynomial P(x), and thus the closure of the space of linear
combinations of translations of ¢ contains every polynomial.

If the second part were not true, it would be possible to find a not
identically vanishing function f € F, such that

(22) \ P(—z) f(x)dz = 0

for every polynomial P(z), whereas
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o0

(23) \ P(—2) f(x) da + 0

—00

for some ¢ € F). But (22) implies that feI_(0), and therefore (23)
and Theorem 4, second part, would be contradictory.

The second part of Theorem 5 gives apparently a solution of the well-
known Bernstein approximation problem (see for instance Mergelyan [4])
in certain cases, where the weight function is of non-quasianalytic type,
i.e. satisfies (3).
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