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LOCALLY COGENT BOUNDARY OPERATORS

VIDAR THOMEE

Let V be a domain with boundary S in the (m + 1)-dimensional Euclid-

ean space R™+l with points (¢, 2y, ..., z,) and L a linear differential
operator with constant coefficients. Let Cy®(V) be the set of infinitely
differentiable functions with compact supports in ¥V and let ||-|| denote

the usual L? norm in V. The following theorem is valid (Malgrange [6],
Ho6rmander [4]).

THEOREM 0.1. There exists a constant C such that for every ueCy™(V),
(0.1) l[ull = Ol Lu| .

This theorem does not give any information for boundary problems,
since it is only concerned with functions vanishing in a neighbourhood of
the boundary S of V. It isevident that a corresponding result is not valid
if all restrictions at the boundary are omitted and functions in the set
C>(V) of infinitely differentiable functions in the closure V of V are con-
sidered, since we can always find solutions in C®(V) to the equation
Lu =0 which are not =0in V. Evidently no such function satisfies (0.1).

It is natural to inquire for which sets I of linear boundary operators
there is an inequality of the type (0.1) for all ueC®(V) with lu=0. In
this case the boundary operator ! will be called weakly cogent for the
interior differential operator L.

Introducing an operator £ = (L, l) and a suitable norm in the corre-
sponding product space it is possible also to treat the inhomogeneous
boundary problem and to investigate if the boundary operator has the

property that there exists a constant C' such that for all ue C=(V)
ull = C||Lull .

The boundary operator [ will then be called a cogent boundary operator
for the interior differential operator L.

For a general differential operator L and a general region V it is not
easy to decide which boundary operators ! are cogent. Therefore, the
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problem is here restricted to homogeneous operators L and considered
locally for a part S, of the boundary which for the sake of simplicity
is supposed to be plane. All functions considered are supposed to be-
long to the set Cy®(VUS,) of functions in C°(V) which vanish outside
compact subsets of VuS,. In this case the term locally cogent is used.

Our main result is concerned with a boundary operator of Dirichlet’s
type on S,, which is supposed to be a subset of the plane ¢t =0, that is

~ ap,_l
(0.2) lu = (u, o u)

The characteristic polynomial L(, 7) of L is considered as a polynomial
in 7 for fixed £&. We show that the operator (0.2) is locally cogent for the
differential operator L on §, if and only if the number of zeros of L(¢, 7)
with positive imaginary parts is not greater than p for any &.

In the case of two dimensions (m=1) and an operator L with simple
characteristics, results are obtained also for boundary operators with
constant coefficients which are more general than the Dirichlet operator
(0.2).

For functions ueCy*(V), Hormander [4] determined the operators M
which can be estimated by means of L in the sense that there exists a
constant ' such that

|Mul| < Cl|\Luj, weC®(V).

These operators are called weaker than L. It might be expected that in
the case of locally cogent boundary operators, it would be possible to
estimate all operators M which are weaker than L by means of L when
ueCy®(Vus,) and lu=0. It is shown by examples that this is not so.

In the case of elliptic operators L, the problem of finding cogent
boundary operators has been studied under the name of “the coerciveness
problem” by Aronszajn [2], Schechter [8] [9], and Agmon [1]. Here it
proves possible to estimate all operators M, weaker than L, which in this
case are all operators of order < the order of L. A closely connected
problem has been studied by Hérmander [5].

The plan of the paper is the following:

In Section 1 notations and definitions are introduced and the relation
between locally cogent boundary operators and correctly posed boundary
problems is established (Theorem 1.1). Further a lemma which is used
in Sections 2 and 3 is proved.

In Section 2, boundary operators of Dirichlet’s type are studied. The
results are divided into a necessity part, Theorem 2.1, and a sufficiency
part, Theorem 2.2. In the former, the homogeneous boundary problem is
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treated, whereas the estimates obtained in the latter are valid also in the
inhomogeneous case. Examples are also given of operators M and
&£ =(L, 1) where [ is locally cogent for L and M is weaker than L, but
where Mu can not be estimated by means of Lu when ueCy*(Vu8,) and
lu=0.

In Section 3, the two-dimensional case with more general homogeneous
boundary operators is considered for an operator L with simple charac-
teristics. Also here the results are divided into a necessity part, Theorem
3.1, and a sufficiency part, Theorem 3.2.

We find it convenient in our arguments to let C' denote a positive con-
stant. It need not, however, always denote the same constant even in the
course of a particular proof. When necessary we distinguish between
different constants by using subscripts.

I wish to thank Professor L. Hérmander for several instructive and
stimulating discussions, and Professor W. Donoghue for revising the En-
glish manuscript.

1. Preliminaries. Let V be a region in the (m + 1)-dimensional Euclid-
ean space R™+1 with points z=(xy, 2,, ..., x,,) and L a differential ope-
rator with constant coefficients

L =LD)= 3 L,D".

lal=n

Here = (o, ..., &,), where «; are non-negative integers,

o] 2 x; and D* =Dy ... Dyt with Dy = —1 i .
=0 8xk
Let the boundary of V be S, and denote by C®(V) the set of restrictions
to the closure V=V U8 of V of complex-valued, infinitely differentiable
functions in Rm+1, The operator L can then be considered as an operator
from C®(V) to C=(V).

Suppose that S consists of N smooth pieces S;, =1, ..., N, and that
with each §; are associated o, differential operators with constant coeffi-
cients,

Ly = D) =213, D%, k=1 ...,051i=1...,N.

We denote by C%(S,) the restriction to S; of functions in C°(V). The
operator I, can then be considered as an operator from C®(V) to C*(8;).

We reduce the differential operators I, k=1, ..., o;, into an operator
L=y, ..., 1;,,) from C®(V) to the set C*(8;, 0;) of vectors with o; com-
ponents in C*(S,), and the operators [, i=1, ..., N, into an operator

I=(, ..., 1ly) from C*(¥) to the product space
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C®(8,0) = C°(8y, 09) % ... xC®%8Sy, 0y), & = (07, ..., 0y).

Finally we reduce the operators L and ! into an operator ¥ = (L, l) from
C*(V) to the product space C°(V, 8, ¢)=C®(V) x C*(8, o). With these
notations a boundary problem can be written as an equation

(1.1) Lu = F ,

where & is some element in C®(V, 8, ¢). In the sequel we shall refer to
L as the interior operator and to ! and its components as the boundary
operators.

% can now be regarded as a transformation between two normed
linear spaces if we provide C*°(V) with a norm ||-||, and C®(V, S, ¢) with a
norm ||-|l,. We shall be interested in such boundary problems (1.1) for
which the operator .# satisfies the condition in the following definition.

DermvitioN 1.1. The boundary operator 1 is cogent for the interior
operator L with respect to the norms ||-|,; and ||*|l,, if there exists a constant

C such that luly < C|lLul,,  we C2(V).

Since the problem of characterizing cogent boundary operators in
general offers great difficulties, we restrict the problem and study it lo-
cally on a given part S; of the boundary. We therefore consider the set
Co®(Vu8,;) of functions in C°(V) which vanish outside compact subsets
of VuS8; and make the following definition.

DEeFINITION 1.2. The boundary operator 1, is locally cogent on S, for the
interior operator L with respect to the norms ||-|l; and ||-||y if there exists a
constant C such that

lully £ CllLully, ueCy®(Vus).

For the boundary operator lu=(l,u, ..., Iyu) to be cogent for L, it is,
of course, necessary for l, to be locally cogent on §; for L, i=1, ..., N.
But easily constructed examples show that this is by no means sufficient.

For our investigations we will make use of the following quadratic
norms (dV is the element of volume in ¥V and dS the element of surface
area on S).

3 3
Ielly = IS |«p12dV} . gl = {S Iq)lzdS} :
and Y 5

$
olln,p = {H)J nD“qouRﬁ} . R=V.8,
al=p

where in case R =S, the derivation symbol D* is understood to refer to
derivations after directions in §; only.
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For ||-||; we shall use norms of the type

(1.2) lwlly = lulip,y

where p usually will be =0, and for |||, we shall consider norms such as

N o b
(1.3) 1L ully = | ILuly? + 3 kZ’ 1ir 2lls;, pgr®
=1 =1
In analogy with the Definitions 1.1 and 1.2 we introduce the following
ones for homogeneous boundary problems.

DEeriNITION 1.3. The boundary operator 1 1s weakly cogent for the interior
operator L if there exists a constant C such that

lully < CllLully, weC=(V), lu=0.

DeriniTION 1.4. The boundary operator 1, is locally weakly cogent on S;
for the interior operator L if there exists a constant C such that

(1.4) lully = C|lLully, ueCy®(Vus,), Lu=0.

It is evident that if the boundary operator ! is (locally) cogent for the
interior operator L (with respect to the norms defined in (1.2) and (1.3))
then the boundary operator ! is also (locally) weakly cogent for the in-
terior operator L.

We denote by H the Hilbert space L?(V) of all square integrable func-
tions in V with norm ||-|,. We denote by L, the minimal operator
corresponding to L(D), that is, the closure in H of the restriction of L to
the set Cy;®(V) of functions in (V) which vanish outside compact sub-
sets of V. Further we denote by L the formal adjoint of L which corre-
sponds to complex conjugation of the coefficients in L, that is

L-LD) = LD,
lal=n
The maximal operator L, , ., corresponding to L(D), is then defined as the
adjoint in H to the minimal operator corresponding to L(D), that is,

Lmax = (Zmin)* .

We consider a fixed part S; of S and denote by L, the restriction of L
to the functions in Cy*(VuUS;) with lu=0. L, can then be regarded as
an operator from H to H. We consider extensions L, of L, with domain
D(L,) and range R(L,) such that

Log ‘ZO:C Lmax .
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In this case the equation
(1.5) Lyu=F, FeH,

can be regarded as an abstract boundary problem, and we introduce after
Hadamard the following definition.

DEerINITION 1.5. We say that the abstract boundary problem (1.5) is cor-
rectly posed if there exists a constant C such that

(1.6) lully = CliLoully,  we D(Ly),
and if the range R(L,)=H.

(Visik [10] calls the operator L, solvable in this case).
We then have the following theorem which is due to Visik [10].

THEOREM 1.1, There exists an extension L, of L, corresponding to a
correctly posed abstract boundary problem if and only if the boundary opera-
tor 1; is locally weakly cogent on S, for the interior operator L.

Proovr. It is evident that if there exists an extension L, of L, corre-
sponding to a correctly posed abstract boundary problem, then the
boundary operator I, is locally weakly cogent for L, for (1.6) contains
(1.4).

We shall now prove the second part of the theorem. One can show
(cf. [4]) that L., has a bounded right inverse, that is, that there exists
a bounded operator R such that L, RB=1, the identity operator in H.

Let L, be the closure of L, in H. The existence of Ly is guaranteed by
(1.4). It also follows that the range R(L,) of f}o is a closed subspace in H.
Let P be the orthogonal projection on the subspace R(L,). Consider the
operator 7' defined by

Te = Ly 'Pp+R(I-P)p, o¢eH.
The operator 7' is defined for all elements in H and is a bounded operator
since all operators entering in the definition are bounded. Further we
have

(1.7) LTy = Pp+(I—-P)g = ¢, peH,

for L,,. is an extension of 20. It follows from (1.7) that the bounded
operator 7T has an inverse L,, for T¢ =0 implies p=0. The formula (1.7)
also implies that L, < L,,,.. Finally we have that L, is an extension of L,
for (Ly)~1="T is an extension of L,~!. This ends the proof of Theorem 1.1.

In the sequel we specialize the problem and assume that the part S, of

the boundary, which will be investigated with respect to locally cogent
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boundary operators, is plane, and that the region V is bounded and
situated entirely in one of the halfspaces defined by the plane containing
S, We suppose, which
does not restrict the
generality further, that t=1

S, is a part of the plane
x,=0, and that V is /
L S
contained in the set 0 t=t,

0<xz,=1 (see fig. 1).
For the sake of con- 174
venience we make a
minor change in the
notations and write Fig. 1
t=xg x=(Ty, ..., Zpy)
and D,=D,. We denote by S, the section ¥ n{t=ty}.

We shall also assume that the characteristic polynomial L(&, 7) of L,

L& v) = 3 L,v™&n ... &m,

laj =n

zy=t

is a homogeneous polynomial in &=(&,, ..., &,) and v with the coeffi-
cient 1 for . Then L(&, 7) can be factored

L&) = [T (=)

where 7,(£) are homogeneous functions of &, We finally assume (with a
slight change in the above notations) that on S, is given a boundary
operator lu=(lu, ..., lu), where

L =l(D), k=1,...,0,

is a differential operator with constant coefficients, the characteristic
polynomial {,(&, t) of which is homogeneous of degree y,, <n—1.
In the sequel we shall make use of the following lemma.

Lemwma 1.1. Let A be a complex number and let v(t) be a continuously
differentiable function of the variable t which vanishes for t=1. Then for
0=t<1 we have (D;= —1id/dt)

1
(1.8) o] 5 100 + { (D20 at,  allz,

0

(1.9) ) < \ (D,=A)o(t) dt, Imi<o.

IIA
C Y
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Proor. We first prove (1.9). Since v(1)=0 it follows that
t

o(t) = S §€it-93(D,— 1) o(s) ds

or 1

(O] < { 214D, - 2)o(s)| ds .
t
Hence for ImA<0

o) = \ |(D,—A)v(t)| dt .

SOy =

It remains to prove (1.8) for ImA>0. We have for Imi>0

t
ot) = v(0)ei* + Sie“(‘“s)(Ds—l)v(s) ds
0

or y

()] = [o(0)] I 4 Se‘““)l‘“‘l(Ds—-l)v(sM ds .

Since Im 1 > 0 this implies

2. Boundary operators of the Dirichlet type. In this section we shall
consider a boundary operator

w = u,...,lLu),
where the operator {,u has the characteristic polynomial
lk(§,7)=7k—l, k=1 ...,0.

The homogeneous interior operator L will have the characteristic poly-
nomial L(&, 7), and the functions ,(£), ¢=1, ..., n, will be the zeros of
L(&, ©) considered as a polynomial in 7 for fixed &. p(&) will denote the
number of the 7,(&) with positive imaginary parts and

P = maxp(§).
¢
The theorems of this section relate the integers P and ¢ to the local

cogency of I for L with respect to appropriate norms. Theorem 2.1 is
concerned with weak local cogency, thus

(2.1) el = llully »
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while Theorem 2.2, which also applies to the inhomogeneous boundary
problem, makes use of the norms (2.1) and

o }
(2.2) [Lully = {[1Lwlp? + k%: 1L wllsy, i

THEOREM 2.1. If the boundary operator
lu = (u, Dyu, ..., DFu)

18 weakly locally cogent on S, for the homogeneous interior operator L, then
P<o.

Proor. We prove the theorem by showing that the assumption that
there exists a point &, in which more than ¢ of the numbers t,(&,),
1=1, ..., n, have positive imaginary parts, leads to a contradiction. We
thus assume that 7,(§,), 1=1, ..., 0+ 1, have positive imaginary parts.
We shall construct a family of functions w(x, t)e C,*(V U S,), which satisfy
the boundary conditions on S, but for which the ratio

(2.3) [l /|| Ll

is not bounded when ¢ — 0.

In the construction of the functions w,(z, t) we have had the opportun-
ity of using ideas from an unpublished manuscript by Hérmander on
fundamental solutions with support in a half space. The construction
will be carried out in the following way. We shall first construct a
function U(z, t) with the properties:

(U),: U, t) is infinitely differentiable and not =0 for > 0.
(U)y: L(D)U(x, t)=0 for t=0.
(U)s: (DF0)(x, 0)=0, k=1, ...,0.

(U)y: There exists for every non-negative integer k and every a o
constant ('}, , such that for =0

D U, t)| < Cro 7= (4324 ... +2,0t.
We then take a function y(x, {) with the following properties:

(W) y(x, t)eCy™(V US,)
(¥)e: w(z, t)=1 in a spherical neighbourhood with radius ¢ >0 of the
origin.
We put
xz ¢
-, —), e>0,

€ &

(2.4) u(x, t) = e~V y(x, 1) U(
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and will presently show that the functions w,(x, t) defined n (2.4) satisfy
the following conditions:

(u)y: u£C*(VUS,).
(w)s: (DfEu)(x, 0)=0, k=1, ..., 0.

(w50 Ny — SS |U|? dx dt 4+ 0 when ¢ — 0.
20

(u,)g: |[Lu,)]y® — O when & — 0.

The properties (%,),, . - ., (%), now show that the ratio (2.3) does not re-
main bounded when ¢ — 0.
We now prove the existence of a function U(z, t) with the properties
(O)g; -+ vy (U
We can suppose that the functions 7,(§), t=1, ..., 6+ 1, are analytic
in & and have positive imaginary parts in a neighbourhood Q' of a point
&’. For since ¢+1 of the numbers 7,(¢), i=1, ..., n, have positive
imaginary parts in &, then
Im~ this is true also in a neigh-
bourhood 2 of &,. Now, if we
factor L(&, 7) into irreducible
factors, there is arbitrarily
close to &, a point &’ in 2, in
which all the irreducible fac-
tors have simple zeros as po-
lynomials in 7. These zeros are
Re ¢ then analytic in a neighbour-
Fig. 2 hood 2’ of &,’ with Q' < Q.
Let y be a closed smooth
curve in the complex 7-plane which for all £’ encloses the numbers
7,(£),9=1, ..., 0+1, and which has a positive distance to these num-
bers and to the real axis (see fig. 2).
For £eQ’' we put

971(5)

o+1

L&) = q (r—7;(8)
L

and consider the function

(2.5)  Ulx,t, &) = —

1 et (@E+r) p :
. T, x5 = 65+ ... 42,8, .
27I1/§L+(§, ‘t) 151 m>m

The function U(z, ¢, £) then has the properties (U),, ..., (U); and a
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part of the property (U),. In order to get a function which satisfies also
the property (U), completely, we take a function ¢(£)eC>(2') with

Vo) ae =1

and construct

(2.6) Uz, t) = S Ulw, £, &) g(&) d& .

We shall then prove that the function defined by (2.5) and (2.6) has the
properties (U),, ..., (U),.

(U);: It is immediately seen that U(z,t, &) can be differentiated an
arbitrary number of times with respect to « and ¢ under the integral sign.
Owing to the choice of ©', the coefficients of L (£, 7) considered as a
polynomial in 7 are analytic functions of & in ', Therefore the function
U(x, t, &) may also be differentiated an arbitrary number of times under
the integral sign with respect to £&. This will be used in the proof of (U),.
It follows that the function U(z, t) defined in (2.6) is infinitely differen-
tiable, and the differentiation can be performed under the integral sign
in (2.6).

In order to see that U(z, t) is not identically zero, we form

o

1 T
g — plxE ___ _ = pixé
(2.7) (DS U)x, 0,8) =¢€ pyr S L.C r)d‘r evs
Y

The last equality in (2.7) follows since y may be deformed into a circle
ygr Wwith centre at the origin and radius R, and

1 ¢ 7 1 7
S LI S S

2 d L(6,7)  2m ) L.(&7)
Y YR
1 dr 1 1
= — —_— —_ = 1 ey —> 00 .
Py ySR - +0(R) +0<R> when R

Then (D, U)(x, 0) is essentially the Fourier transform of ¢(£) and thus
cannot vanish identically.

It also follows from (2.7) that the function U(z, ¢, £) does not have the
property (U),.

(U),: We have

1 ¢ L
wamaa=%ﬂf%%

et@tidy = 0

4
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since the integrand is an analytic function of v in the whole r-plane.
We therefore also have

L(D)U(x, t) = SL(D) U, t, &) p(€)dE = 0.

(U)s: We have for k=1, ..., o,

DU m LT
- , 0, — plx§ ___
(DEU)@, 0. 8) = eixt — SL+(E, 4
Y
In the same way as in the proof of (U), above, we have for k=1, ..., o,
1 k-1 1 k-1
———,§~T r=——‘§ ! —dr =0 when R - oo.
2ni J L (&, 1) 2a1 J L (&, 7)
4 YR

It then also follows for k=1, ..., ¢ that

(DEU), 0) = | DEU(, 0,8 pl6) de = 0.
(U)s: We have

D U(z, t) = S D Uz, ¢, &) (&) dé

v 1 0 5?1 . E:nm ei(x5+tr)
S S L.(&7)

dv @(&) d&,

27
Y

and for an arbitrary non-negative integer £k,

DUz, t)] < t* S dr |p(é)] dé .

IETl . é::cnml * |‘L’|"‘° e-—t[mr
)]

27 L&, )|

<

Since Imt =% >0 on y for some constant », we have for fixed ¢ and «
(2.8) [t*D*Ux, t)| < Ctke™ < O .
Further we have for an arbitrary k20 and j=1, ..., n,

1 o %0 £X1 e *m .
(—iz;)kD*U(w, t) = S (—’ixj)"ewfl o \ T G e dr p(&) ] d& .
271 o T
Y
It follows from the proof of (U), that the function inside the brackets is
an infinitely differentiable function of & in £2’. Therefore, after a partial

integration we get

, gk 1 e g
— 3 e Do —_ b )\ -~ 7"
(—iz;)t DUz, t) Se :ms e
Y

i e d (&) } di .
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This implies
(2.9) [(—ix;)k DUz, t)| < C.
From the estimate

s o+ 3
j=1

we finally obtain from (2.8) and (2.9), |r* D*U (x, )| < C, which proves the
statement.

We finally prove that the functions u (z, t) in (2.4) have the properties
(ue)v ] (ue)4‘

(w,),: This property is an immediate consequence of (U), and (p);,.

(u,)o: We have

~—

3

. k11
(DfF-1u)(x, 0) = g~m+Drz 37 ( , )(D,jy))(x, 0) e~e-1-D (D }-1-1 [J) (f, 0) =0
Jj=0 J €

for k < ¢ according to (U),.
(w,)3: We first observe that

g\ Uz, 1) da dt

t=20

is finite according to (U), and = 0 according to (U);. We have

o2

S|U(x 1) p(ew, of)|? d dt — gS \U(x, §)) de dé
0

D
t=0

2 = SS ~m+) du dt

t=0

NV ="

t

when ¢ — 0 according to (y), and Lebesgue’s theorem on dominated con-
vergence.
(u,),: For r £p we have according to (y),

x t
u(x, t) = g~m+2Y (~, —) .

& &

Owing to the homogeneity of the operator L we have therefore for r <o

14
Lu, = ¢~m+D/2 g=n (LU) (:E —) =0,
£ €

and we have

Math. Scand. 7. 2
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| t\\ 2
L2 = “ g=(m+D) L<1p(x, U (’f, _)> da dt
L e &/ |
t20
= \ &2 |L(y(ex, et) U(z, t))|* da dt
rZole
120
<o\ e 3 DU, 12 ded .
< laf =n
r2ofe
120

This last integral, however, converges to 0 when ¢ — 0, for according to
(U); we have
|D>U(z, t)[2 < Cr-tm+2420) < (fp-2ngnp—(m+2)

o dxdt
.\S ym+2
r=1
t20

and the integral

is finite. This ends the proof of Theorem 2.1.
TaEOREM 2.2. If P =<0, then the boundary operator
lu = (u, Dyu, ..., De1u)

18 locally cogent on S, for L with respect to the norms defined by (2.1) and
(2.2).

Proor. We can suppose that 7,(§), =1, ..., p(¢) £ o0, are those of the
numbers 7,(&), t=1, ..., n, which have positive imaginary parts.
We denote by (¢, t) the Fourier transform of u(z, t)e Cy®°(V uS,) with
respect to x
W(E, 1) = (2m)-m2 S e-i2t u(z, {) da: .

The function (&, t) then satisfies the assumptions of Lemma 1.1, and we

obtain from (1.8) X

(2.10) a0 < [ o) + | [(D—m@)ace, o] de.

0

The same reasoning gives for the function (D,— 7,(£))4d(&, ¢),
(2.11)  [(Dy—my(&))lé, 1)

< [(Di=n@)al€, 0)| + \ |(Di— (&) (D~ wa(8)) A&, 0)| dt

[
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Since for any i, 7,(¢) is a homogeneous function of &, we have
lt(8)] = Cl§l, ¢t =1,...,m; [§ = (&2+ ... +&EF,
and we obtain from (2.11)

(2.12)  |(D;— 7y(&))al&, 1) < C ] [alg, 0)] +

1

+ 1DaE O + | (D= (&) (D= ol e, 1) e
0
Together with (2.10), (2.12) gives

lag, 1) = C(1+ &) 1A, 0) + (D)€, 0)] +

1

+ { |= @) (D= ace, ol ar.
0

We continue by treating the function

(Di= 7a(8)) (D= wal€)) i, 1)
in the same way, and so on. We obtain after o steps

(2.13) lag, )| = € X7 IEF [(DF4) (&, 0)] +
1+]<o
+ \ ]
WV

Since the numbers t;(§), ¢=0+1, ..., n, have non-positive imaginary
parts, it follows from Lemma 1.1 that

i — (€)W, 1) ] dt .

1
@19 | [T (D—®)i, t)'dt
o =1

.........................
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Together with (2.13), (2.14) gives
1

(2.15)  |a(§, 1) = { 2 EF (D& ,O)I+S|L(5, Dy a(é, b dt}-
0

<o

After squaring, integration with respect to ¢ between 0 and 1, and trivial
estimates, (2.15) can be written,

[a(§, )® dt = 2 [EF|(DFa)(&, )2+

+j<o

Oy
O

|L(E, DYie, 0) de } ,

whence after integration with respect to & and use of Parseval’s formula,

o—1
ot = 0| 3100wl 0 7+ ||L(D>unV2} ,
or with (2.1) and (2.2),
ull < CllLuls

which proves Theorem 2.2,
We illustrate the results obtained by some simple examples.

Examrpie 1. The Cauchy boundary operator lu=(l,u, ..., 1, u) with
L& v)=11, k=1, ..., m, is locally cogent on §; for any homogeneous
differential operator L of order .

For the number of zeros of L(&, 7) with positive imaginary parts is
trivially <n». This is essentially contained in Theorem 0.1.

ExampLE 2. The “empty’’ boundary operator (o=0) is locally cogent
on 8§, for a homogeneous differential operator L if and only if L is
hyperbolic with respect to the plane ¢=0.

For if ¢=0, according to Theorem 2.1, none of the numbers ,(&),
1=1, ..., n, may have a positive imaginary part. Owing to the homo-
geneity of 7;(£), this also implies that none of them may have a negative
imaginary part. Therefore all zeros of L(&, v) must be real. The other
part of the statement follows immediately from Theorem 2.2.

ExampLE 3. The boundary operator lu=wu(s=1) is locally cogent on
8, for the differential operator L with the characteristic polynomial

L t) =1 + &2+ ... +&2 = &, 00— ... —&,% p>0.

In fact, we have P=1. This result could be obtained from the proof of
a uniqueness theorem of Owens [7].

REMARK. In Theorem 2.2 we only estimated |ju]|,;. One might ex-
pect that it would be possible in the case of locally cogent boundary
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operators to estimate || Mu||,, where M is an arbitrary differential operator
with constant coefficients, weaker than L, that is, such that

Mully < CllLully, — weCe™(V).
Hoérmander [4] proved that M is weaker than L if and only if

(2.16) (e D) = € 3 IDLE

|20

(D* here acts on L(&, 7) considered as a function of £ and 7). We shall
give two simple examples which prove that such an estimate is in general
not possible.

We first consider an operator L(D) which is the product of a hyperbolic
operator H(D) of order & and an elliptic operator E(D) of order n—h.
For the corresponding characteristic polynomials we have

L(§, v) = H(& =) B, 7).
The operator M (D) with the characteristic polynomial
M, 7) = H( 7)o"
is then weaker than L(D) since (cf. (2.16))
|H(&, 7)|2 [v» 2 = CIH(E, ©)? |E(§, 7)|* = C|L(, 7)]*.

Suppose that the maximal number of zeros with positive imaginary parts
is . We shall prove that the estimate

(2.17) M (Dyully = CIL(D)ully
is not valid for all ueCy®*(Vus,) with (DF1lu)(z, 0)=0, k=1, ..., c.
Assume that 7;(&,), ¢=1, .., o, have positive imaginary parts and that

To,1(&,) is real. We put

o+1
Ly(&p, 1) = H (T_Ti(‘fo)) ,
=1
and construct in the same way as in the proof of Theorem 2.1 the function
@y it
U, 1) = - S Y ix
27t J L (&, T)
Y

where y is a curve in the complex 7-plane which encloses the numbers
1), t=1, ...,0+1. U(z, t) has the properties:

(U),: U(z, t) is infinitely differentiable and M(D)U(z, t) is not =0 for
t=0.
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(U)y: L(D)U(x,t)=0, for £20.
(O)g: (DF-U)(x, 0)=0,k=1, ...,0.
(U),: There exists for every « a constant C, such that for £>0

\D*Ulx, t)] < O, .

The properties (U),, (U),, (U); are proved in the same way as the cor-
responding properties in the proof of Theorem 2.1. The property (U), is
weaker in this case because of the fact that L (&,. 7) has a real zero. Since
this zero is simple we can write

(2.18) Uz, t) = ot @Sot+trs11(60)) ﬂ (Ta+1(§0) _ Ti(go))—l +

2=1

, L+(§0’ T)
14

where 9’ is a curve enclosing the zeros 7,(&,), =1, ..., 0, but not
7541(&). The first term on the right hand side in (2.18) evidently has
the property (U), and the second term can easily be seen to have this
property too (cf. the proof of the earlier (U7),).

We then form

ew:éo S e'l,t't d‘!’

271

xz ¢
u(x, t) = ent U (—, —) p(x. t), e > 0,
e €
where y(z, £) is a function in Cy®(V uS,) with y(x, 0) not =0. The follow-

ing properties are then fulfilled for the functions u,(x, f):

(ue)I: ue(x, t)ECON(VU SO)'
(w)y: (DFEu )z, 0)=0,k=1, ..., 0.
()3 1M (D)u]ly/I|IL(D)w,ly — oo when e — 0.

The properties (u,); and (u,), are proved in exactly the same way as
before. According to Leibniz’ formula for the differentiation of a product
we have

¢
(2.19) M(D)u,(x, t) = et (M(D)U) (T, —> (@, t) + O(el) .
€ &
For the first term on the right hand side we obtain

(2.20)

‘e"—' (M(D)D) (z E) w(z, 1) 1‘

- S\ g1 : (M(D)U) (o, é) |[ (i, £)[2 dw dt

t=20

= “ |(M(D)U)(0, t)* |p(a, et)[? da dt .

20

-~
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Here we have used the fact that |M(D)U(x, t)| =[(M(D)U)(O, t)[ which
follows from |¢”*®| = 1. Fatou’s lemma implies that

(2.21)  lim \\ [(M(D)U)(0, ) [p(a, et)[2 dax dt

e—>0 t';'o

2

(=L Iy 8

|(D)V) (0, 0 dt { (e, )2 da + 0.

According to (2.19), (2.20), and (2.21) we have

lim [ M(D)uly + 0.
e—>0
Because of (U), we have

L(D)u,z, t) = et (L(D)U) (z, é) p(x, t) + O(er) = O(et) ,
and hence
[L(D)uz, t)lly = O(e) ,
which establishes (u,),.

The properties (u,);, (%), (%,); immediately show that the estimate
(2.17) is not valid.

In the two-dimensional case every homogeneous differential operator
with constant coefficients which is neither hyperbolic nor elliptic is such
a product of an elliptic and a hyperbolic operator. For hyperbolic and
elliptic operators, on the other hand, it is possible to estimate all weaker
operators. For elliptic operators this follows from the papers quoted in
the introduction (cf. [1], [8]). For hyperbolic operators with simple
characteristics it is a special case of a theorem of Garding [3]. For hyper-
bolic operators with multiple characteristics it is not explicitly stated in
the literature but is easily proved in the same way as in the proof of
Theorem 2.2, since in this case the operators weaker than L are the
linear combinations of operators, the characteristic polynomials of which
are factors of L(¢, 7).

In general it is not even possible to estimate the operators correspond-
ing to derivatives of L(&, 7). In the special case of two dimensions and
simple characteristics, however, we shall see in Section 3 (Theorem 3.2),
that this is possible. We here give a counter-example in two dimensions
and with one double characteristic.

Let L have the characteristic polynomial

L, 7) = t¥(t—1é).
0

il = —iq2
85L(E’ 7) it

Thus
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The maximal number of zeros of L(£, 7) with positive imaginary parts is
here one. It could therefore be expected that for all u(z, t)eCy™®(V U S,)
with u(z, 0) =0, the estimate

(2.22) I1D2ully = CllLully

would be valid. To prove the contrary we put

400

Uz, t) = Uy(z) = S eizt (&) dE |
+o0 -
Usl, 1) = \ et g(e) dt ,

U(x: t) = Ul(x5 t)" Uz(x, t) s

where ¢(£) is a function with compact support on the positive half-axis

and
+00

Vo =1.

We then put for ¢ >0
x t
ui,e(x7 t) =& Ui (", _) w(x» t)9 T = 1: 2 )
g €
u’e(x’ t) = ul,s(x’ t)—u2, s(x: t) ’

where y(z, t) is a function in C;®(V U S§,) with y(x, t)=1 in a neighbour-
hood of the origin. We then have u,eCy*(V uS,) and u (z, 0)=0. Further
(2.23) Dpu, o, 1) = ¢ Uy (%) Divla,

€
and

x i

(2:24)  DPus (1) = e DU (5, -) wie, ) +

& e
xr z
+ 2(D,U,) (—, —) Dyy(x,t) + e U, <—, —) Diy(x, t) .
€ ¢ € €
It easily follows from (2.23) and (2.24) that
14
(2:25)  EmDPuly* = lim e (DU (2, 2) v, Ol
e—>0 £—>0 e &

= |y(0, 0)2 “ |D2Uy(x, t)2dxdt % 0,

=0
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for

+o0o

DU, 1) = — | &2 et () s

is not =0. On the other hand it follows from (2.23) that
x
LDy, e, 0) = —iDU) () Dewte, ) + 0Ge),
€

whence

0 ¢ 2
(2.26) lim |L(D)u, (z, &)]ly® = lim \g (D, Uy) (f) Dy, t)| dedt
e—>0 0 | &

-0
€ Ot

Ve

— lim ¢ \\ \D,U,(x) (D2y)(ex, ) dzdt = 0 .

e—>0

Further it is easily proved in the same way as in the proof of (,), in the
proof of Theorem 2.1 that

(2.27) lim ||L(D)u, ||y = 0.

e—=>0

(2.25), (2.26) and (2.27) therefore contradict (2.22) when ¢ — 0.

3. The two-dimensional case. In this section we shall consider a diffe-
rential operator L(D) with the characteristic polynomial

n

(3.1) L, v) = J] (v—1;8)

i=1
where 7;, t=1,...,n, are distinct complex numbers and ¢ and 7 are com-
plex variables. We denote by 7,*, 7,~, and 7,% ¢=1, ..., »*, »—, and »°,
respectively, those of the numbers 7;, ¢=1, ..., n, which have Imr,
positive, negative, and =0. We also consider a boundary operator
lu=(l,u, ...,l,u) where [, (D) has the homogeneous characteristic poly-
nomial [, (&, T) with constant coefficients of degree y, <n—1,k=1,...,0.
We put
(3.2) L(®) = (L, 7).

For the statement of the results we introduce the two matrices

and
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As in Section 2, our results are given by two theorems, the first establish-
ing the necessity and the second the sufficiency of our conditions. We
first make use of the norms

(3.3) lully = [lully .
and
o 4
(3.4) Lully = § I1Lafip? +sz 1Leulls, pi® [
=1
where p,, k=1, ..., o, are arbitrary non-negative integers.

THEOREM 3.1. If the boundary operator lu=(lu, ...,lu) is locally
cogent on S, for the differential operator L with respect to the norms defined
by (3.3) and (3.4), then the matrices A+ and A~ have rank v+ and v-,
respectively. In particular, o s = max (v*, v-).

Proor. This theorem can be proved in the same way that Theorem
2.1 was. We give, however, an alternative proof (cf. Schechter [9]), which
in this case becomes simpler. In the proof we shall suppose that the
theorem is false and then obtain a contradiction by means of a family of
functions u,(«, t) which belong to C,™(V uS,) but for which the ratio

(3.5) /L0l
is not bounded when ¢ — 0.

We thus suppose that the rank of at least one of the matrices A+ and
A~ is less than »+ or v, respectively. We suppose that the rank of A+
is less than »+.

For ¢ 0 we put

(3.6) Uz, t) = Cj(x+ v t+ei)!
j=1

and show that the constants C;, j=1, ..., »* can be chosen such that
U (z, t) will have the following properties:

(U,);: U=, t) is infinitely differentiable for ¢t >0 and &> 0.
(U,)y: Ugy(x, t) has a singularity at the origin and, for arbitrary ¢ >0,

S\. |UJ*dxdt -0 when ¢&—0.
x?+t2’§Q2

(U,)s: L(D)U (x,t)=0 for t=0 and ¢> 0.

(U)y: ((D)U) (&, 0)=0for k=1, ..., 0 and &£>0.
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If y(x, t) is a function satisfying the conditions

(W)i: ylx, 1)eCo™(V US,)

(9)e: iz, t)=1 for all (x, t) with r < g, where p, is some number >0,
then
(3.7) ux, t) = y(x, t) Uz, t)
has the properties

(u,);: w,€C™(VUS,) fore > 0.

(s [l lly — oo when & > 0.

(u.)3: [ILu|y is bounded when ¢ — 0.
(u.)g: 1x%ellsy, p, 18 bounded when & — 0.

From the properties (u,),, . .., (%), it follows that the functions u,(z, t)
defined in (3.7) contradict (3.5) for ¢ - 0.

We now prove that C;, j=1, ..., »*, in (3.6) can be chosen such that
Uy - .., (U,), are satisfied.

(U,),: This condition is satisfied for every choice of C;, j=1, ..., v+,
for U (z, t) has singularities only when

x4+ e = 0. J=1 ...,

’

that is, at the points

) <Rerj+ : ) =1 .
. Imr].+8’ Im-rj+ ’ J =1 .. vT.

which are all situated in the region ¢ <0 if ¢> 0.

(U,),: For ¢=0. all these singularities are situated at the origin. We
have -

Uy, t) = X Cylx+7;+t)1.
j=1

IfC;j=1, ....v+ arenot all =0, U(, t) is not =0, which is easily seen
since 7;* =+ 7, * for j k. We see if we introduce polar coordinates and use
the homogeneity of Ugy(x, t) that for arbitrary ¢ >0,

] n

L) i d .

\\ |Up(, £)2 da dt = \ pd \ |Ugy(cosg. sing)|? de
a1 g2 o

t=0

is infinite. According to Fatou’s lemma we have
lim \ \U, (%, t)|2 de dt = \5 \Uy(@, t)2dx dt = +oo.
>0 ayie'c 2 22H2'< 2
t20 t=0

which proves the assertion.
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(U,)s: We have
LD)((@+ 7+t +et)t) = L(1, 7;+) (= 1) n! (m+ 7,7t +£i)~+D = 0
since L(1, 7;4)=0. Therefore we have according to the linearity of L(D)
L(D)U (x,t) = 0.
(U,)s: We have in the same way as above
L(D) (@ -+ Tyt + 0)) = L(z*) (= 1) 9! (@ -+ T+ i) 7D,

k=1,...,0,
whence

v+
(3.9) (lk(D)Ue)(x, 0) = (— 1)y, ! (x+ei) @D 37 C;li(7;%),
j=1
k=1,...,0.
Since by assumption the rank of A+ is less than »+, we can find Cj,
j=1, ...,»*, not all zero, such that

v+
Zojlk(fj+)=0, k—_—_l, --.,0'.
j=1
With this choice of C}, j=1, ..., »*, we have according to (3.9)
(DU ), 00 =0, k=1,...,0.

In the sequel we assume C;, j=1, ..., »*, fixed in this way.

We finally prove that the functions wu,(x,t) have the properties
(ua)l’ ctt (ue)4'

(u,);: Thisis an immediate consequence of the properties (U,), and (p),.
u,).: We have for a suitable ¢ > 0 because of (y),

—

el 2 = \S \U,(2, t)2dzdt — 0o when &—0

rse
t=0

according to (U,),.

(u,)3: According to (3.7), (p),, and (U,);, L(D)u,(x, t)=0 for all points
(x, t) with =0 and r=(22+12)}<g,. We now only consider so small ¢
that all singularities (3.8) of U (z, t) have distances = }g, to the origin.
Since the singularities of u,(x, t) for all ¢ considered then have distances
2 3o, to the set r 2 g, also, we realize that for r = g, and thus for all ¢ > 0,

(3.10) IL(D)u,z, )] < C.

The constant C in (3.10) is independent of e. This proves the assertion.
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(u,),: The same reasoning can immediately be applied to [ u(z, t),
k=1, ..., 0, and their derivatives with respect to x, which establishes
this property.

The case where the rank of /- is less than »- is treated in the same way.
In this case we replace 7;*,j=1, ...,v*and ¢in (3.6) by 7,7, j=1, ..., »~
and —e.

For our second theorem we introduce the norms

(3.11) lully = [lully, n
and

o 4
(3.12) 1Lully = | [l Lul|ly? +kZI' 1t 2ellso, n-1-y,"

THEOREM 3.2. If the matrices A+ and A~ have the rank v+ and v-,
respectively, then the boundary operator lu=(l,u, . ..,1l u) is locally cogent
on S, for the differential operator L with respect to the norms defined in
(3.11) and (3.12).

Proor. We first introduce some notations. Let L,(D), L,*(D), L,~(D)
and L,%D) be the differential operators with the characteristic polyno-
mials

_ L&, 1) _ L(Eii)
Li(f: T) = "—T__Ti“é, Li+(§, T) = Mt—rﬁ& ’
_ _ _L(f, 7) 0 _ L(f’l_),
Lo =T LEm = ooy

As in (3.2) we put

Li(r) = Li(l: t)? Li+(r) = Li+(l7 T) ’
L(7) = Li~(1,7), LP) = L1, 7).

Further, let
bynaa(é, 1) = En 1 (&, 7)),

that is a differential operator of order n — 1 obtained by differentiation of
l.(D) with respect to z.

Let u(z,t) be an arbitrary function €Cy™*(VuS,). We denote by
(&, t) the Fourier transform of u(x, t) with respect to x.

Consider an arbitrary £20. With A=7;4, Lemma 1.1 gives

1

(3.13)  |L;HE DYAE, b)) < |(LiH(E DYa) (&, 0)] + S |L(&, Dy)a(é, t)| dt
and ’
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-

(3.14) |L;=(&, Dy)a(é, t)] <\ |L(&, Dyu(é, t)| dt
and

(3.15) ILE, Dyalé, b)) <

IL(&, Dya(&, t)| de

St O

since Im7,76<0 and Im7,2£ 0.
Now suppose that the rank of A+ is »*+. Without any loss of generality
we can then suppose

(3.16) e % 0.

According to Lagrange’s interpolation formula, we have

)
(3.17) Len-a(& 7) = L), k=1,...,v+.
k,m—1 Jé: Lj(Tj) J
Here L;(t;)# 0 since 7+ 7; for 1 +.
According to (3.16), (3.17) can be solved with respect to L,*(¢, 7),
j=1,...,v* and we get with constants a;;, b;;,~, b;;°

20

Li*(¢, ) = > @l n-1(&, 7) +kZ bjx~ Ly~ (&, 7) +g b L&, 1),
k=1 =1 1

=1, ..., vt
whence J ’ T

|(L,*(&, DY) (&, 0)] < ,% 10l | (b na (& DYA)(E, 0)] +

+ £ 1671 |(Li=(&, DY) (&, 0)| + g 16,01 | (L2, D)%) (€, 0) ],
j=1 ...,

and together with (3.14) and (3.15),

\(Ly*(& DY) (&, 0)| < © .§ (b m(&, DYA)(E 0)] +

1

+ x \L(&, D)a(, t)| dt}, =1,

0

Combined with (3.13), (3.14), and (3.15) this implies

IIA

\Ly(&, D)a(E, )] < © kz (E71 | (18, DY) (&, 0)] +

1

+\iLe pacc.onae, G-,
0



LOCALLY COGENT BOUNDARY OPERATORS 31

whence with a new constant C after taking squares and using Cauchy-

Schwarz’ inequality and possibly after addition of positive terms on the
right hand side,

|L;(&, Dyacé, t)? = C{ kg [E[PO1 | (1(8, D)) (&, 0)F +
=1

1
+\ 1L, Dyacg, o2 dt}, j=1...m,
9

or, since the L,(&, 1), j=1, ..., n, constitute a basis for the set of homo-
geneous polynomials in ¢ and 7 of degree n—1,

n—1 o
(3.18) X' & Dp-i-iq(g, )2 = C {2 |EPIR | (18, D) a) (€, O)F +
k=1

j=0

+'\ Q(E, )2 dt
0

The inequality (3.18) which is only proved for £=0 can with trivial
modifications be proved for £<0. In this case we use that the rank of
A-is v~. The inequality (3.18) is therefore valid for all real &.

Integration with respect to & of (3.18) and application of Parseval’s
formula gives

(3.19) X ID%ug} < C{k%; 16 (D) llsg, n1-,* + liL(D)ullvz}-

Irxf n—1

Integration with respect to ¢t between 0 and 1 gives

200 3 vl s 0f 3Dl e+ DY |
al=n—1

Since V is bounded in the direction of the t-axis, we have

(3.21) S D%l £ O Y ||ID%ul)?

Jal =n—1 a[ n—1

Combined with (3.20), (3.21) gives
fully = CllZul,
which completes the proof of Theorem 3.2.

REMARK. It follows from (3.19) that Theorem 3.2 remains true with
the stronger norm

3
by =4 sup ¥ IID"‘ullsf}-

0=<t=<1 o] =n-1
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ExampLe. The boundary operator lu= (l,u, ..., [ u) with

o = max(»t,v7)
and
lyu = Dp+k-1ly, k=1,...,0,
where p is a fixed integer with 0 <p=<n—g¢ is locally cogent on 8§, for
every L(D) with the characteristic polynomial (3.1).
For the rank of A+ is v+ since the determinant

(Tl+)p A (tv++)p v+
..................... =JI (z;*) J] (vjt—7;%) £ 0
(Tl+)p+v+-1 (Tv++)p+"+"1 1=1 J>i

since according to the assumption
t+ ot for i+j5 and Tt F0, j=1,...,vF.

Correspondingly we see that the rank of A~ is »~.
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