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ISOMORPHISM OF SYLOW SUBGROUPS OF
INFINITE GROUPS

B. H. NEUMANN

1. Known results. The classical theorems of Sylow are fundamental
to the theory of finite groups, and it is, therefore, natural that attempts
have been made to extend them to infinite groups.

The first step is to extend to infinite groups the notion of a Sylow sub-
group: this is easy. Let p be a prime; then a p-group is a group all of
whose elements have orders that are powers of p. Among the p-subgroups
of a group @ there are maximal ones, and these are called the Sylow p-sub-
groups of G; in fact every p-subgroup of G is, by an easy application of
Zorn’s Lemma, contained in a Sylow p-subgroup.

The next step is to try to formulate for infinite groups the propositions
(irrespective so far of their validity) involving Sylow subgroups that are
true for finite groups. Some such propositions, as e.g. ‘“the order of a
Sylow p-subgroup of G is the highest power of p that divides the order
of G”’, have no natural extension to infinite groups. Other such proposi-
tions possess somewhat restricted extensions, as e.g. “‘the number of
distinet Sylow p-subgroups of G is congruent to 1 modulo p”’; this makes
sense if the number of distinct Sylow p-subgroups is finite, and it is then
in fact true (Dietzmann, Kurosch und Uzkow [4]; Kurosh [7, p. 163];
Specht [10, p. 383]). Again others can be formulated without change,
for infinite groups as for finite groups, as e.g. ““the normalizer of a Sylow
subgroup is its own normalizer”’, which, moreover, is easily seen to be
true. In this last class are also the propositions “‘every two Sylow p-sub-
groups are conjugate” and ‘“‘every two Sylow p-subgroups are isomor-
phic’’; clearly the former entails the latter, but not conversely. Neither
of these propositions is generally valid, and not even such stringent
assumptions as supersolubility coupled with the maximal condition for
subgroups suffice to make them valid (Zappa [12]). On the other hand,
the isomorphism of the Sylow p-subgroups, and an attenuated form of
their conjugacy, have been proved (first by Baer [1]) for a class of groups
called “locally finite” by Baer [1], “locally normal” by Kurosh [7] and

Received July 2, 1958.

20*



300 B.H. NEUMANN

by the Russian school of group theory generally, “ok” by Specht [10],
and for which I propose yet another term, namely “periodic FC groups”.

A group belongs to this class if every finite set of its elements is con-
tained in a finite normal subgroup. In such a group every element must
have finite order and finitely many conjugates only, that is to say, the
group is, in a now widely accepted terminology, ‘“periodic” and “FC”.
But the converse is also true, by virtue of the following theorem.

THEOREM OF DiETZMANN [3] (¢f- also [9, p. 185]). If an element of a
group G has finite order and finitely many conjugates only, then it is con-
tained in a finite normal subgroup of G'; and, more generally, a finite set of
elements of G is contained in a finite normal subgroup of G, if, and (trivially)
only if, each of the elements of the set has finite order and finitely many
conjugates only.

Now the theorem of Baer adumbrated above can be stated thus:

TaEOREM OF BAER [1]. In a periodic FC group G every two Sylow
p-subgroups S, S are isomorphic.

Two slightly different refinements, approximating to conjugacy of S
and §’, have been prove, namely:

COROLLARY OF BAER [1]. There is an automorphism of G that maps S
onto 8’ and that, moreover, maps every normal subgroup of G onto itself.

COROLLARY OF GOL’BERG [5]. T'here is an automorphism of G that maps
S onto 8' and that, moreover, coincides on every finite subset of G with an
inner automorphism (depending on the subset) of G.

Such an automorphism is called “locally inner’’; a locally inner auto-
morphism evidently maps each element on a conjugate element, and thus
leaves normal subgroups invariant. It follows that Gol’berg’s Corollary
implies Baer’s.

Kurosh [7, § 55] proves Baer’s Theorem with Gol'berg’s Corollary,
Specht [10, Abschnitt 3.2.5] proves it with Baer’s Corollary; their
methods of proof are different. A further proof will be given here, again
with Gol’berg’s Corollary; it is fundamentally not unlike the known
proofs, though it uses different tools. The reason for its inclusion here
is that it extends the corollary to a larger and more interesting class of
groups.

2. New theorems. We note some immediate extensions of Baer’s
Theorem; first we recall that an FC group is a group in which the classes
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of conjugate elements are finite. These groups have been much studied
in recent years.

TuroreM A. In an FC group G every two Sylow p-subgroups S, S’ are
isomorphic.

Proor. The periodic elements of ¢ form a subgroup P (see [9, Theorem
5.1]), which must contain § and §’, and must contain them as Sylow sub-
groups. Clearly P is periodic and FC, and application of Baer’s Theorem
completes the proof.

Another, independent proof will be given in the next sections. Here
we extend Baer’s Theorem further to groups in which the periodic ele-
ments have finite classes of conjugate elements. Let us introduce the
name PFC for this group property: thus we define @ to be a PFC group
if the periodic elements of G each have finitely many conjugates only.

TraroreEM B. In a PFC group G every two Sylow p-subgroups S, S" are
18omorphic.

Proor. The periodic elements of G again form a subgroup P; for by
Dietzmann’s Theorem every pair of periodic elements a, b is contained in
a finite normal subgroup of @, and this then also contains a—1b; hence
a-1b is periodic. As before, P is periodic and FC, and S and S’ are Sylow
p-subgroups of P, hence isomorphic by Baer’s Theorem.

If instead of assuming finite conjugacy classes for all periodic elements
one assumes them only for the elements of prime power orders, the
resulting generalization is only apparent; for the groups with this prop-
erty are still the PFC groups. We only have to remark that every perio-
dic element @ can be written as a product

a=0bc...d

where the factors on the right-hand side have prime powers orders, for
various primes; if each of these has finitely many conjugates only, then
the same is true of a.

On the other hand, if we assume finite conjugacy classes only for the
elements whose orders are powers of a single fixed prime p, then we get
a true, albeit slight, generalization of our results. We introduce the (I
hope ephemeral) name pPPFC for this group property: thus the group ¢
is pPPFC, where p stands for a prime number, if the elements of ¢ whose
orders are powers of p have finite classes of conjugate elements.

TuroreM C. In a pPPFC group G every two Sylow p-subgroups S, S’
are isomorphic.
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Proor. Let H be the subgroup of G' generated by the elements of
order a power of p. Then H is an FC group because it is generated by
elements each with finitely many conjugates only (cf. [9, Lemma 2.2}),
and S and §’ clearly are Sylow p-subgroups of H. Theorem A now com-
pletes the proof.

In fact even this result can still be sharpened a little: one need assume
only that each element of the set union SudS’ has finitely many con-
jugates in the subgroup generated by SuS’, so that this subgroup is FC.

3. Some lemmas. In order to find out how far the corollaries of Baer
and Gol’berg are capable of a parallel generalization, we have to provide
a direct proof of Theorem A. The proof that follows is basically the
same as the known proofs, but in place of an ad hoc transfinite induction
or a theorem on ‘“‘projection sets’” (Kurosh [7, § 55]) it uses Steenrod’s
Theorem. We begin with some lemmas; they were proved by Baer
([1, § 4]; cf. Specht [10, p. 391]) for periodic FC groups, but will be re-
quired here more generally for FC groups. We state and prove them
even more generally for pPPFC groups; the method is Baer’s.

LemMa 1. If F is a finite group, N a normal subgroup of F, and S a
Sylow p-subgroup of F, then SNN is a Sylow p-subgroup of N.

This fact is well known. For a proof see e.g. Baer [1, (4.1.1)], Kurosh
[7, p. 161], or Zassenhaus [13, p. 136].

LeMma 2. Let G be a pPPFC group, T a p-subgroup of G, and N a
Jinite normal subgroup of G. Then there is a p-subgroup S of G that contains
T and intersects N in a Sylow p-subgroup of N.

Proor. We show that there is a Sylow p-subgroup U of N that to-
gether with 7T generates again a p-group {7, U}=8. Denote by
U, U, ..., U, those p-subgroups of N that fail to do this: thus none of

{T,U,}, {T,U,}, ..., {T,U,}

is a p-group, and for all other p-subgroups U of N, if any, {T', U} is a
p-group. Choose k,e{T, U,} of order not a power of p, and express each
h; 0=1,2, ..., m) in terms of elements of 7' and elements of U,. Only
a finite number of elements of 7' are required for this, say

ty bgy oo oyt

oty
Their orders are powers of p, and as @ is assumed to be pPPFC, they
have finite classes of conjugate elements. By Dietzmann’s Theorem they
are contained in a finite normal subgroup M of G. Then L=MN is also
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a finite normal subgroup of G. Let V be a Sylow p-subgroup of L that

contains the intersection T'nL. Now V contains ¢, ¢,, ..., ,, because
they are in T'nL. Then V can not contain any of the U,, i=1,2, ..., m;
for

hie{ty, ty, ..., 1, U},

and the order of A, is not a power of p, whereas V is a p-group. Consider
U=VnN. By Lemma 1 this is a Sylow p-subgroup of N, and it is distinct
from all the U;,1=1, 2, ..., m; thus {T, U} is a p-group, and the lemma
follows.

Lrmma 3. The p-subgroup S of the pPPFC group G is a Sylow subgroup
of G if, and only if, SNN is a Sylow p-subgroup of N for every finite normal
subgroup N of G.

Proor. If T is a p-subgroup of ¢ and IV a finite normal subgroup of G,
and if T'n N fails to be a Sylow p-subgroup of N, then 7' is properly con-
tained in another p-subgroup S of 7, by Lemma 2; thus 7 is not a Sylow
p-subgroup of G, and the necessity of the stated condition follows. Con-
versely, assume that T is a p-subgroup of G which intersects each finite
normal subgroup N of ¢ in a Sylow p-subgroup of IV, and let S be a Sylow
p-subgroup of G containing 7. We show that then 7'=S; for let ge 8.
Then the order of g is a power of p and, as G is pPPFC, ¢ has finitely
many conjugates only; thus by Dietzmann’s Theorem, ¢ is contained in
a finite normal subgroup N of G. Now NnT is a Sylow p-subgroup of N
by our assumption on 7', and Nn&§ is a p-subgroup of N containing
NnT; hence NnS=Nn7T, and thus ge Nn S implies ge Nn7'. It follows
that S<T, and thus S§=T. This shows also the sufficiency of the condi-
tion, completing the proof of the lemma.

4. Proof of the extended corollary. Throughout this section we as-
sume G to be an FC group. We then note an easy consequence of known
results:

LemMma 4. Let F be a finitely generated subgroup of the FC group G.
Then the periodic elements of F form a finite subgroup N, and if F 1s
normal in G, then so is N.

The periodic elements of F' form a subgroup because F is FC, and a
finite subgroup because F is, moreover, finitely generated ([9, Theorem
5.1]). This subgroup is clearly characteristic in ¥, hence normal in ¢ if
F is normal in G.

We now let & stand for the set of all finitely generated normal sub-
groups of ¢, and D, E, F for typical elements of ¥, that is for typical
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finitely generated normal subgroups of G'. We order § by inclusion; then
it becomes a directed set, for if £, F are finitely generated normal sub-
groups of G, then both are contained in EF, and this is again finitely
generated and normal in G.

Let S and 8’ be two Sylow p-subgroups of &; our task is to construct
a locally inner automorphism of ¢ that maps S onto §’. To this end we
define to every Fe@ the “space” X; whose “points” are those auto-
morphisms of F' that

(i) map FnSinto FnS’, and

(ii) are induced by inner automorphisms of G.

Thus xe X if, and only if, (i) « is an automorphism of ¥ mapping Fn S
into Fn8’, and (ii) there is an element te@ such that z is (the restriction
to F of) the transformation by ¢.

We note that Fn S and FnS’ are finite groups; for they are clearly
subgroups of the group IV of all periodic elements of ¥, and this is finite.
Moreover, FnS=Nn8 and FnS'=Nn8" are Sylow p-subgroups of N,
by Lemma 3. It follows that every xeX; maps F'nS isomorphically
onto FnS’. We further deduce that X is not empty; for NnS and
NnS' are, as Sylow p-subgroups of N, conjugate in N ; hence there is an
element te N such that transformation by ¢ maps NnS onto NnS§'.
But transformation by ¢ induces an automorphism of F because F is
normal in G; hence it defines a point in X. On the other hand each X 5
is finite ; for let

Jofo oo fa

be a set of generators of F'; each of these has finitely many distinct con-
jugates only, because @ is FC; thus there are only finitely many sets

N fes o fd

conjugate to f, fs, ..., [ and that means the inner automorphisms of
G can induce only finitely many automorphisms of F; and X, consists
of some of these finitely many automorphisms.

If E<F and if ze X4, then the restriction y of x to £ is a point in X ;
for E is normal in @ and thus transformation by an element €@ which
induces z in F induces also an automorphism of Z'; and this must clearly
map EnS into EnS’. We can, therefore, define a mapping ¢pg of X
into X by putting z@ppr=y. Clearly ¢y is the identity mapping of X,
and if D<E<F then

Prp = PFEPED -

Thus the directed set &, the spaces Xz, and the mappings ¢gpg (for
E<Fef) define an inverse mapping system, and we can form the
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inverse limit X,, together with its (natural) projections ¢, of X, into
X ; these have the property that if Z<F then

P« = PxrPFE -

As we have seen, the spaces X are finite. We give them the discrete
topology; then they are compact. and the mappings g5 are (trivially)
continuous. We have also seen that the spaces X, are non-empty. By
Steenrod’s Theorem ([11, Theorem 2.1]; cf. also Lefschetz [8, p. 32]) the
inverse limit X, then is not empty. Let x, be a point of X,. We define
from this a mapping « of ¢ into G as follows. Let gc@, and let F be a
finitely generated normal subgroup of G containing g; such subgroups
exist, for the finitely many conjugates of g generate one. Then z,.p.p=2
is an automorphism of F, and we put gx =gx. This appears to depend on
the F' chosen, but in fact it does not; for if £ denotes the group generated
by g and its conjugates, then Fe and F <F, and denoting by y the
restriction of x=w,p.p to £, then

Y = XQpr = UxPxrPre = TxPxE;
and further
go = gz = gy = g(*«Pxg) »
which is seen to depend on g and the particular point z, only, not on F.
Next we show that « is a locally inner automorphism of ¢. Let

gl: J2> ’gn

be a finite set of elements of G, and F a finitely generated normal sub-
group containing them, e.g. the subgroup generated by all the conju-
gates of these elements. Then « has the same effect on the elements of
F as x,p,p; but this is a point of X4, that is an automorphism of F
induced by transformation by some element t€@. Thus we have

*) Grx = 17Net, gox = 4TG0 .., gux = ETG,P.
We choose g3 =g,9, to deduce the homomorphism property

(9192)x = 915Gk .

Next, if ge@ is arbitrarily given, we choose g=g,, g5, ..., g, as the con-
jugates of ¢ in G—these are finite in number because ¢ is FC—and we
deduce from (*) that « permutes these conjugates; it follows that « is
one-to-one and onto, and thus an automorphism of G. Finally we see
from (*) that it is locally inner.

It remains to show that « maps § onto 8’. Now if ge§ and if again

geFe, then g6 = gl@apep) € F 0 S
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because z.py z, being a point of X ;,, maps FnSinto FnS’. Thus Sx =S,
Conversely, if g’'e 8’ and if g'e Fe, then there is an element ge FnS
that is mapped on g’ by z.¢.pr and thus by «; for we have already seen
that every xeX, maps FnS isomorphically onto Fn§’. Thus also
S’ < 8w, and it follows that Sa=S’. This completes the proof of Theo-
rem A, together with its corollary:

CororLLARY A. If 8, 8’ are Sylow p-subgroups of the FC group Q, then
there is a locally inner automorphism of G that maps S onto S'.

5. A counterexample. It might be thought that a similar corollary
must be true under the assumptions of Theorem B, that is for PFC
groups; this is, however, not the case, as the following example shows.,

We take an infite index set I and for each 1€l a copy A4, of the tetra-
hedral group, that is the group generated by two elements a,, b, with the
defining relations af = b2 = (ah) = 1
(cf. Coxeter and Moser [2, p. 134]). We form the restricted direct product
H of all these A;; thus H is generated by all a;, b; and is defined by the
above relations together with

a,ia/j = a)-ai, a1b] = bja‘i’ b,"bJ = bjbi
foralli+jel. To obtain G we add a further generator ¢ and the relations
clac =a;7t, ¢l = b

for all tel. Then ¢ induces an outer automorphism (of order 2) of each
4;, and thus of H, and ¢* is an element of the centre of ¢. Clearly H
congists of all periodic elements of ¢, and all elements of H have finitely
many conjugates only; hence G is a PFC group. Now consider the group
8 generated by all a;, 11 ; this is a Sylow 3-subgroup of H, hence also of
(; so also is the group S’ generated by all a,b;, i€l. They are both ele-
mentary abelian 3-groups of the same order, and thus isomorphic—as
indeed they are bound to be, by Theorem B. By Corollary A there is in
fact a locally inner automorphism of H that maps § onto S’; but there
is no automorphism of @, and a fortiori no locally inner automorphism of
@, that maps S onto 8’. To see this we note that there is an element of
G, namely c, that transforms each element of S into its inverse; but there
is no element of G that does the same to §’: we write an arbitrary element
of @ in the form g=cmh, heH,

and consider the effect of transforming 8’ by g. Transformation by A
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affects only a finite number of generators a,b; of §’; transformation by
c¢™ affects none if m is even, and all if m is odd; but in this latter case
a;b; is transformed not into its inverse, but into a,7'b,. Hence no ge@

can transform each element of §’ into its inverse. Now if there were an
automorphism of G mapping 8 onto §’, then it would have to map ¢ on
an element ¢’, say, that transforms each element of S’ into its inverse; as
this has just been shown to be impossible, there is no such automor-
phism of G.

Finally we remark that the Sylow p-subgroups are unique in nilpotent
and even in locally nilpotent groups (Kurosh [7, p. 229]); but they are
not even necessarily isomorphic in FC-nilpotent (Haimo [6]) groups, nor
in metabelian groups. This is shown by the example constructed by
Zappa [12, § 5], and also by the free metabelian product of two cyclic
groups, one of order p and one of order p%. The verification, which is
not difficult, is omitted.
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