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ON THE KERNEL OF LINDELOF’S REPRESENTATION
OF ANALYTIC PROLONGATION

AUREL WINTNER

1. For every « > 0, the series
o0

(1) L,(2) = 2 nomzn

n=0
(where 0° denotes lim ¢°=1) defines an entire function (of order «~1) of z.
If 0 <a <2, then an application of the residue theorem shows that, for
every z outside the infinite sector |argz| < §m«,

ct+ico

2w
(2) L(z) =1+ S FRprer dw ,

c—ioc0

where ¢ is any constant satisfying 0 <c<1 (the first term on the right
of (2) is

(3) L,0) =1,

by the preceding parenthetical proviso). In the limiting case x=0, the
integral on the left of (2) is convergent, and the sum on the left of (2)
acquires the value (1—2)-1, at every z not contained in the half-line
0 <2< oo, the limit of the sector excluded in (2) if 0<x < 2.

From these two facts, it was concluded by Lindel6f ([4]; reproduced in
[5, 122-124] and in [2, 77-79]) that, as &« — 0, the entire function L (2)
tends to (1—2z)~! uniformly on every compact z-set which contains no
point of the half-line 0<z < oco. Since (1 —2)~1 is the kernel of Cauchy’s
integral formula, this enabled Lindelof to conclude that (2), with « — 0,
can serve the same purpose as Mittag-Leffler’'s E-function, leading to
the following result (cf. loc. cit.): If

f(z) = cotez+ ...

is a power series possessing a non-vanishing radius of convergence, then,
for every « >0,

Lz f) = 3 c,nonen
- n—0
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is an entire function having the property that
L (z:;f) > f(z), where &« — 0,

holds uniformly on every compact subset of the principal star of the
analytic function defined by the function element f(z)=Ly(z;f) about
2=0,

2. In what follows, there will be deduced for the entire function (1), or
rather for the entire function L* (z) defined by

(4) 2L*,(2) = L,() -1

(cf. (3)), the existence of an integral representation quite different from
the explicit formula (2). Whereas (2) assumes 0 <« <2 and excludes the
sector |argz| £ dnx for every fixed «, the result will assume

(5) 0<ux<l

and will be valid on the entire z-plane. Actually, the result to be obtained
can also be formulated, without any reference to an integral representa-
tion, as follows:

(1) If « is an index satisfying (5) and if L* (2) is the entire function de-
Jined by (4) and (1), that is, by

(6) L*,(2) = X nomgn-1,
n=1

then the function L* (z) and all of its derivatives are positive at every point
of the real axis

(7) —00 < T < 0.

It will be easy to conclude that this holds in the limiting case x=1
also:

(i bis) The entire function

(8) L¥() = 3 nonant

n=1

and all of its derivatives are positive for real z.

The point in (i) or (i bis) is, of course, the inclusion of the lower half,
— o<z <0, of the line (7), since on the upper half of (7) the situation is
trivial from the positivity of the coefficients of (6), even if (5) or =1 is
replaced by «>1.
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3. If D denotes d/dx, then (i) is equivalent to the statement that,
under the assumption (5),

9) (=D)yrL* (—z) > 0, where =n = 0,1, ..

0

holds on the line (7) and therefore on the half-line 0 <x < co (this time
— oo < £ 0 is the trivial range). Since this means that L* (—z) is totally
monotone for 0 <x < oo, it follows from the Hausdorff-Bernstein theorem
(cf. [2, 281]) that there exists on the half-line 0 <t < oo a certain mono-
tone function u(f)=pu,(¢) in terms of which a Laplace-Stieltjes represen-
tation

)
L* (—x) = Se‘z’d,u (¢), where du,(f) =
0

holds for 0 <z <. But this representation must hold on the entire
axis (7). This follows from Landau’s extension (to Laplace-Stieltjes inte-
grals; cf. [3, pp. 88-89]) of the Vivanti-Pringsheim theorem (for power
series), simply because (6), hence L* (—2z) as well, is an entire function.
Consequently,

(10) L* (2) = Sez‘d[ua(t), where du,(t) 2 0,
0

must hold (in the sense of convergence) on the entire z-plane.

Conversely, if (10) is granted, then it is clear that L* (x) and all of its
derivatives are positive at every point of the line (7), simply because
1, (f) cannot be a constant (since (8) is not). Accordingly, (i) is equivalent
to the following assertion:

(ii) Corresponding to every index « satisfying (5), there exists on the half-
line 0 £t < oo a monotone function u (t) in terms of which the Laplace repre-
sentation (10) of the entire function (6) is valid for all z.

Similarly, (i bis) can be rephrased as follows:
(ii bis) The assertion of (i) remains true in the limiting case «=1.

I was unable to deduce from (4) and from Lindel6f’s integral (2) the
assertion (10) of (ii). If the line

w = ¢+t

iwhich, with —oo<t< oo and with any positive constant ¢<1, is the
(ntegration path of (2)) is chosen to be

w = L+it,

19*
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then (2) and (4) lead to a Fourier integral in logz. But it is hard to see
how what thus results (for 0 <x <2) can be transformed into a Laplace
representation (10) if z= —xz (and 0 <« <1). The emphasis lies, of course,
on the assertion du (f) = 0 of (10).

4. For these reasons, the proof will be made to depend, not on a residue
formula like (2), but on a fact which lies entirely within the real field.
It is the following fact, derived in [7, § 10] (from another result): For
every index satisfying (5), the Stieltjes moment problem

(11) S wtdp (u) = I'n+1)[I'(an+1), where n =0,1,...,
0

has a solution dg, (u)=0 (the same is true, but trivial, in the limiting
case « =1, since (11) is then satisfied by the function ¢;(u) which is 0 or
1 according as 0Su <1 or 1 fu<oo0).

Let this fact be combined with the relation which results if § is chosen
to be an+1, and s is replaced by nv, in

Ip) = S e-355-1ds
0
(the substitution s =mnv is not allowed if n=0). Since this leads to
I'(on+1) = nlten \ (e*v*)*dv ,
0

it follows from (11) that, if n=1,2, ...,

(12) (n—1)ln-on — S S (ue—vv*)nde_(u)dv
00

5. Since dg, (%)= 0, it follows from Fubini’s theorem on product mea-
sures that the integral (12) can be rearranged into

0
if dA_(¢) is defined for 0 £t < oo by

(13) dA(t) = Sd(pa(u)dv, where C,: ue%v* =1t
Cy
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(the integration extends in (13) over those points (u, v) of the quadrant
(0= u <o, 02v<oco) which are situated on the analytic curve or curves
ue~"*=t, defined by a fixed t). It follows from (12) that there exists on
the half-line 0 <¢< o a monotone function 4 (¢) satisfying

(14) n ™ = St”dla(t)/('n—-l)!, where dA, () 2 0 (n=1,2,...).
0

If the (monotone) function u,(t) is defined for 0 <t < o by

(15) wlt) = sdifo),  du 20,
0

then the integral which is the numerator on the right of (14) is the
(n— 1)-st Stieltjes moment of y,(¢). Hence the definition (6) can be written

in the form -

(16) @) = 3 e\ tmdg m!
m=0 o

(m=n—1 runs here through all non-negative integers, that is, m=0 is
included).

Clearly, (10) follows from (16) by term-by-term integration. The latter
is readily justified from dg, (f) = 0 and from the circumstance that z can
be assumed to be positive.

This proves (ii), hence (i) as well.

6. In order to prove (ii bis), it is sufficient to ascertain that (i bis)
follows from (i) or (ii). To this end, let « — 1. Then it is clear from (6)

that L*(2) — L*y(2)
holds uniformly on every fixed 2-circle, which implies that
DrL* (2) — D*L*,(z)
holds for every fixed n. It follows therefore from (i) that
DrL*(x) 20 on (7).

But this means that L*,(—x) is totally monotone and so, by the Haus-
dorff-Bernstein theorem, there must exist a du,(f) = 0 satisfying the case
a=1 of (10). Finally, since (8) is not a constant, it follows from the case
a=1 of (10) that the sign of equality cannot hold in D»L*,(x) = 0. This
proves (i bis).
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7. The end of the proof of (ii) depended on the fact that, if (> 0) is
arbitrary, (10) is equivalent to (14) by virtue of (15); cf. (6) and (16).
Hence, (ii) and (ii bis) together are equivalent to the first of the following
assertions:

(iii) If 0<x =1, then the Stieltjes moment problem

(17) " idy (2) = (n—1)ln-—"=, where n = 1,2, ...,

S8

has a solution du (t) 2 0. In addition, (17) is a determined moment problem.
If =1, then (17) reduces to

1/e
(17 bis) S " duy(t) = (m—1)In—", wheren = 1,2, ...
0

(and becomes therefore a Hausdorff moment problem, since e=2.71...>1),
whereas if 0 <o <1, then du, () =0 cannot hold for large ¢.

By Stirling’s formula, the reciprocal value of the n-th root of the
moment (17) is asymptotically proportional to n*-1. It follows therefore
from theorems IT and I of Carleman [1, pp. 80-81] that not only the
Stieltjes problem (17) but also the corresponding Hamburger problem is
a determined moment problem if 0 <« = 1. The remaining assertions of
(iii) follow from the circumstance that, as » — oo, the n-th root of the
moment (17) tends to oo or 1/e according as O0<ax <1 or a=1.

If (15) and (13) are applied to x =1, then the exceptional standing of
the limiting case (17 bis) of (17) becomes understandable from the paren-
thetical remark made after (11).

8. Somewhat more than the first assertion of (iii) is contained in the
following result concerning Mellin transforms:

(iv) On the half-plane Rez > 0, the branch of the analytic function I'(z)z—*
which 18 positive for z > 0 is the bilateral Laplace transform of a non-negative
mass-distribution, and the same is true for I'(z)z=*° if « is restricted by (5).

In other words, there belongs to every positive « <1 a function y,(u)
which is monotone for — oo <% < o and has the property that

(18) I'(z)z=* = Se—z“dzpa(u), where dy, (u) = 0,

—00
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holds on the half-plane Rez > 0. In order to prove this, recourse must be
had to the relation (14) which, in view of (15), contains somewhat more
than (17).

First, (14) means that

(19) I(z)z—* = Stzd}.a(t), where d1 (t) = 0,
0
holds for z=1,2, .... But the moment problem involved is a deter-

mined moment problem; cf. (iii). Hence, for reasons of analyticity, (19)
must hold on the half-plane Rez>1. Actually, since the function on the
left of (19) is regular for Rez>0, it follows from di_ (t)=z0 and from
Landau’s theorem, cited above, that (19) is valid (by convergence) for
Rez>0. The assertion (18) of (iv) now follows by placing {=e~% in (19).

There is little doubt that residue methods, as applied in Mellin’s work
(cf. [6]), lead to some explicit determination of the di,(t) or dw,(¢) in (19)
or (18), where 0 <x =<1.

9. According to the last part of (iii), the situation undergoes a drastic
change when (5) is replaced by «=1. This indicates that the restriction
« =1, made above, is not merely ad hoc; in other words, that the follow-
ing negation holds:

The assertions of (i)-(i bis), (ii)-(ii bis), (iii) and (iv) are false for every
a>1.

In order to prove this, it is sufficient to show that for no «>1 can
there exist on the half-line 0 < < oo a monotone function y,(t) satisfying
(17). But if «>1, then it is clear from Stirling’s formula that there
belongs to every ¢>0 an N having the property that the n-th moment
(17) is less than ¢ whenever n>N. Since this and dp,(t) =0 imply the
identical vanishing of y,(¢), there results from (10) the contradiction that
(6) vanishes identically.

Norte. In refereeing this posthumous paper, L. Carleson has made the
following remarks:

1° The assertion (iii) in section 7 is a consequence of the representation

(o] xn

(P)

— =\ ewdp, ),  dp) 20,
P e Kl ACIRX0)
0

proved by Pollard in Bull. Amer. Math. Soc. 54 (1948), p. 1115. Differen-
tiating (P) n times and putting =0 one finds (11) and the ensuing
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consequences. Assertions (i) and (i bis) in section 2 follow from (iii) on
multiplication by z*-1/(n — 1)! and addition.

2° The result (iv) in section 8 is connected with the fact that I'(z)z—**
(x=1) does not increase too fast with Rez. The statement is correct,
but it is not quite clear how it would follow directly from the determi-
nateness of the moment problem.
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