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MULTILINEAR SQUARE FUNCTIONS AND
MULTIPLE WEIGHTS

LOUKAS GRAFAKOS, PARASAR MOHANTY and SAURABH SHRIVASTAVA∗

Abstract
In this paper we prove weighted estimates for a class of smooth multilinear square functions
with respect to multilinear A �P weights. In particular, we establish weighted estimates for the
smooth multilinear square functions associated with disjoint cubes of equivalent side-lengths. As
a consequence, for this particular class of multilinear square functions, we provide an affirmative
answer to a question raised by Benea and Bernicot (Forum Math. Sigma 4, 2016, e26) about
unweighted estimates for smooth bilinear square functions.

1. Introduction

Let φ(ξ1, ξ2, . . . , ξm) be a bounded measurable function defined on them-fold
Cartesian product of Rn with m ≥ 2, n ≥ 1. For m-tuples of nice functions
�f = (f1, f2, . . . , fm), the multilinear multiplier operator Tφ associated with

the symbol φ is defined by

Tφ( �f )(x) =
∫
Rmn

φ(ξ1, ξ2, . . . , ξm) exp

(
2πi

( m∑
j=1

x · ξj
)) m∏

j=1

f̂j (ξj ) dξj ,

where x · y denotes the standard inner product of vectors x and y in Rn.
The above expression for Tφ( �f )(x) in space variables for functions fj takes

the form

Tφ( �f )(x) =
∫
Rmn

K(y1, y2, . . . , ym)

m∏
j=1

fj (x − yj ) dyj ,

where K = φ̌, provided the integral is interpreted appropriately as an action
of a distribution to a tensor product of functions, if necessary.
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The modern theory of multilinear operators is motivated by the remarkable
works of Lacey and Thiele [8], [9] on Lp-boundedness of the bilinear Hilbert
transform. The bilinear Hilbert transform is a bilinear singular integral oper-
ator possessing a crucial property of modulation invariance. There has been
considerable progress in understanding the core issues and difficulties in the
area of multilinear singular integral operators in the past decade.

In this paper we are concerned with operators that are closely related to
multilinear Calderón-Zygmund operators. The multilinear Calderón-Zygmund
theory has been studied and developed systematically by Grafakos and
Torres [7]. The weighted theory of these operators has been developed by
Lerner et al. [12]; in this paper the authors study a maximal function which
plays the analogous role in the multilinear Calderón-Zygmund theory as the
classical Hardy-Littlewood maximal function plays in the context of the lin-
ear Calderón-Zygmund operators. They also introduce multilinearA �P weights
which completely characterize the weighted Lp-boundedness of this multilin-
ear maximal operator.

Given anm-tuple of locally integrable functions �f = (f1, f2, . . . , fm), the
multilinear maximal operator M( �f ) is defined by

M( �f )(x) = sup
Q�x

m∏
j=1

1

|Q|
∫
Q

|fj (yj )| dyj , x ∈ Rn.

For anm-tuple of exponents p1, p2, . . . , pm we will denote by p the expo-
nent given by 1

p
= 1

p1
+ · · · + 1

pm
and �P = (p1, . . . , pm).

Definition 1.1. Let 1 � p1, . . . , pm < ∞. Given an m-tuple of weights
�w = (w1, w2, . . . , wm), set

v �w =
m∏
j=1

w
p/pj
j .

We say that �w satisfies the multilinear A �P condition if, and only if
(

1

|Q|
∫
Q

v �w dy
)1/p m∏

j=1

(
1

|Q|
∫
Q

w
1−p′

j

j dyj

)1/p′
j

� K

for all cubes Q.
Here we follow the standard interpretation of the average

(
1

|Q|
∫
Q

w1−p′
j dyj

)1/p′
j

as (ess infQ wj)−1 when pj = 1.
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Observe that the Muckenhoupt’s classical Ap weights always give rise to
multilinear A �P weights in the sense that

m∏
j=1

Apj ⊂ A �P .

Moreover the preceding inclusion relation is strict. See [12] for more details
and important properties of multilinear A �P weights.

The following characterization of the multilinear A �P weights in terms of
the classicalAp weights has been proved in [12]. This will be used in the proof
of our main result.

Theorem 1.2 ([12]). Let �w = (w1, w2, . . . , wm) and 1 � p1, . . . , pm <

∞. Then �w ∈ A �P if, and only if,

w
1−p′

j

j ∈ Amp′
j
, j = 1, 2, . . . , m, and v �w ∈ Amp,

where the condition w
1−p′

j

j ∈ Amp′
j

is understood as w1/m
j ∈ A1 when pj = 1.

The multilinearA �P weights completely characterize weightedLp-bounded-
ness of multilinear maximal function M( �f ) in the following sense.

Theorem 1.3 ([12]). Let 1 < pj < ∞, j = 1, 2, . . . , m, be such that
1
p

= 1
p1

+ · · · + 1
pm

. Then the strong-type weighted inequality

‖M( �f )‖Lp(v �w) <∼
m∏
j=1

‖fj‖Lpj (wj )

holds for every �f = (f1, f2, . . . , fm) if, and only if, �w = (w1, w2, . . . , wm)

satisfies the multilinear A �P condition.

We refer to [4], [13], [11] for recent developments on weighted estimates
for multilinear operators using sparse domination principle.

Throughout this paper, the notation A <∼ B is used to indicate that there is
a constant C > 0 such that A ≤ CB.

2. Multilinear square functions

Let {Q}Q∈� be a collection of disjoint cubes in Rmn. Let �Q be smooth func-
tions adapted to cubes Q ∈ �, meaning that �Q(x) = �

( x−cQ
�(Q)

)
, where cQ

is the center of Q, �(Q) is its length, and � is supported in the double of Q
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and equals 1 on Q. Let T�Q( �f ) denote the multilinear multiplier operator as-
sociated with the function�Q. The multilinear smooth square function T�( �f )
associated with the collection � is defined by

T�( �f )(x) :=
(∑
Q∈�

|T�Q( �f )(x)|2
)1/2

.

We would like to remark that obtaining Lp-estimates for multilinear square
functions is much harder than its classical counterpart. In his celebrated pa-
per [17], Rubio de Francia proved Lp-estimates for the classical Littlewood-
Paley operator associated with an arbitrary sequence of disjoint intervals in R.
An analogue of this result in the multilinear setting is an open problem to
this day. In the theory of classical Fourier multipliers, by the virtue of the
Plancherel theorem, the L2-estimates for the Littlewood-Paley operators al-
ways hold. However, in the multilinear case there is no preferred Lp-space
for which we a priori have boundedness of the multilinear operators under
consideration are supported in higher dimensional spaces and the geometry of
disjoint cubes pose additional difficulties in higher dimensions. Furthermore,
the multiplier symbols for the multilinear operators under consideration have
their supports in higher dimensional spaces and the geometry of disjoint cubes
pose additional difficulties in higher dimensions in dealing with such operators.

The main motivation of this paper comes from a recent work of Benea and
Bernicot [1] on bilinear square functions. In their paper the authors addressed
the bilinear case (i.e. m = 2), considered the �r -valued operator

T�,r ( �f )(x) :=
(∑
Q∈�

|T�Q( �f )(x)|r
)1/r

, r > 2,

and proved the following.

Theorem 2.1 ([1]). Let {Q}Q∈� be a collection of disjoint cubes in R2 and
�Q be smooth bump functions adapted to cube Q ∈ �. If r ′ < p1, p2 ≤ ∞
and r ′

2 < p < r are such that 1
p1

+ 1
p2

= 1
p

, then we have

‖T�,r ( �f )‖p <∼ ‖f1‖p1‖f2‖p2 .

The proof of this theorem in very involved and relies on sophisticated tech-
niques from time-frequency analysis. The authors developed suitable time-
frequency techniques to deal with the geometry of cubes. The use of �r -norm
is due to the method of their proof and does not seem to address the question
of bilinear square function (i.e., r = 2).
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We emphasize that Theorem 2.1 establishes un-weighted Lp-estimates for
�r -valued, r > 2, bilinear operators onR×R. The question for bilinear square
functions, i.e., r = 2, remains open. In this paper we provide an affirmative
answer to this question for smooth square function associated with collection
of disjoint cubes whose side lengths are equivalent. Not only do we address the
question in the general setting of multilinear smooth square functions defined
in Rn, but we also prove weighted estimates at the same time for the best
possible range of exponents and multilinear A �P weights. This gives us a com-
plete analogue of the corresponding classical result about Littlewood-Paley
operators in the context of multilinear multiplier operators. The proof of our
main result (Theorem 3.1) is motivated from the ideas presented in [15] (see
also [6]) for the bilinear square functions and [16] for the classical Littlewood-
Paley operators.

3. Main result

We prove the following result.

Theorem 3.1. Let {Q}Q∈� be a collection of disjoint cubes in Rmn and for
each Q let �Q be a bump function adapted to Q such that

sup
Q

∫
Q

∣∣(1 −�)N�Q(ξ)
∣∣2
dξ = C < ∞,

where N > mn
(

1
4 + 1

2 max
(

1
p
, 1

))
. Let p1, p2, . . . , pm ≥ 2 satisfy 1

p1
+ 1

p2
+

· · · + 1
pm

= 1
p

. Then the weighted inequality

‖T�( �f )‖Lp(v �w) <∼
m∏
j=1

‖fj‖Lpj (wj ) (1)

holds for all �f and every �w = (w1, w2, . . . , wm) ∈ A �P/2, where �P/2 =(
p1

2 ,
p2

2 , . . . ,
pm
2

)
.

Remark 3.2. Recall that in the classical setting the Littlewood-Paley oper-
ator associated with an arbitrary sequence of disjoint intervals is bounded from
Lp(w) into itself for 2 < p < ∞ if w ∈ Ap/2. See [17] for details. Therefore,
Theorem 3.1 provides a complete multilinear analogue of the corresponding
classical result.

Proof. We shall use the notation α = (α1, α2, . . . , αm) ∈ Zmn, where each
of αj , j = 1, 2, . . . , m, lies in Zn. We also set |α| = ∑m

j=1 |αj |, where |αj | is
the the sum of the entries of αj .
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We prove that the multilinear square function T�( �f ) is dominated, in the
pointwise a.e. sense, by a suitable form involving multilinear averages. More
precisely, we show that there exist cubes Rα centered at 0 such that

|T�( �f )(x)| <∼
∑
α∈Zmn

|α|mn/2
(1 + |α|)2N

( m∏
j=1

1

|Rα|
∫
x+Rα

|fj (yj )|2 dyj
)1/2

(2)

for a.e. x, where N is as in the hypothesis of the theorem.
Let {aQ} be a square summable sequence of scalars with

∑
Q |aQ|2 = 1.

For each α ∈ Zmn, let Qα denote the cube in Rmn obtained by translating the
unit cube in Rmn by α. Note that the cube Qα may be written as the product
of cubes in Rn:

Qα =
m∏
j=1

Qαj .

Setting 
(y1, y2, . . . , ym) = ∑
Q∈� aQ�̌Q(y1, y2, . . . , ym), we write∣∣∣∣

∑
Q∈�

aQT�Q(
�f )(x)

∣∣∣∣

=
∣∣∣∣
∑
Q∈�

aQ

∫
Rmn

�̌Q(y1, y2, . . . , ym)

m∏
j=1

fj (x − yj ) dyj

∣∣∣∣

=
∣∣∣∣
∫
Rmn

∑
Q∈�

aQ�̌Q(y1, y2, . . . , ym)

m∏
j=1

fj (x − yj ) dyj

∣∣∣∣

=
∣∣∣∣
∫
Rmn


(y1, y2, . . . , ym)

m∏
j=1

fj (x − yj ) dyj

∣∣∣∣

≤
∑
α∈Zmn

∫
Qα

|
(y1, y2, . . . , ym)|
m∏
j=1

|fj (x − yj )| dyj

≤
∑
α∈Zmn

(∫
Qα

m∏
j=1

|fj (x − yj )|2 d �y
)1/2(∫

Qα

|
(y1, y2, . . . , ym)|2 d �y
)1/2

.

(3)
Plancherel’s identity yields

∥∥(1 + |·|2)N
(·)∥∥
L2(Qα)

≤ ∥∥(1 −�)N
̂(·)∥∥2 =
∥∥∥∥(1 −�)N

∑
Q

aQ�Q

∥∥∥∥
2

=
∥∥∥∥
∑
Q

aQ(1 −�)N�Q

∥∥∥∥
2

.
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Since supp(�Q) ⊆ Q and the collection {Q}Q∈� consists of disjoint cubes,
we obtain that

∥∥(1 + |·|2)N
(·)∥∥2
L2(Qα)

≤
∑
Q

|aQ|2
∫
Q

∣∣(1 −�)N�Q

∣∣2
dx ≤ C.

Therefore, we obtain

‖
‖L2(Qα)
<∼

1

(1 + |α|)2N .

Substituting the above in (3) and using a duality argument for �2, we obtain

|T�( �f )(x)| <∼
∑
α∈Zmn

1

(1 + |α|)2N
(∫

Qα

m∏
j=1

|fj (x − yj )|2 d �y
)1/2

,

where N is a large positive integer. Now for each α ∈ Zmn we set

Rα = [− max
1≤i≤m,1≤j≤n |αij |, max

1≤i≤m,1≤j≤n |αij |
]n
.

Then Rα is a cube in Rn centered at 0 with |Rα| ≤ (2|α|)n which satisfies

x −Qα ⊂ (x + Rα)
m

for all x ∈ Rn. Then we have
(∫

Qα

m∏
j=1

|fj (x− yj )|2 d �y
)1/2

≤ |Rα|m/2
( m∏
j=1

(
1

|Rα|
∫
x+Rα

|fj (yj )|2 dyj
))1/2

.

This yields (2).
In view of the convergence of the sum in (5), it suffices to obtain weighted

estimates for each term of the sum in (2) separately. For every j , set rj = pj
2

and note that rj ≥ 1. Hölder’s inequality with exponents rj and r ′
j yields

1

|Rα|
∫
x+Rα

|fj (yj )|2 dyj

≤
(

1

|Rα|
∫
x+Rα

|fj (yj )|pjwj dyj
)1/rj( 1

|Rα|
∫
x+Rα

w
1−r ′j
j dyj

)1/r ′j
.

When rj = 1, the average

(
1

|Rα|
∫
x+Rα

w
1−r ′j
j dyj

)1/r ′j
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is interpreted as (ess infRα wj )
−1. Therefore we obtain,

m∏
j=1

(
1

|Rα|
∫
x+Rα

|fj (yj )|2 dyj
)

≤
m∏
j=1

(
1

|Rα|
∫
x+Rα

|fj (yj )|pjwj dyj
)1/rj( 1

|Rα|
∫
x+Rα

w
1−r ′j
j dyj

)1/r ′j

≤
m∏
j=1

(
1

v �w(x + Rα)

∫
x+Rα

|fj (yj )|pjwj dyj
)1/rj

×
(
v �w(x + Rα)

|Rα|
)2/p m∏

j=1

(
1

|Rα|
∫
x+Rα

w
1−r ′j
j dyj

)1/r ′j

≤ [ �w]A �P/2

m∏
j=1

(
ARα,v �w

(
|fj |pj wj

v �w

)
(x)

)1/rj

,

where AQ,w(f ) is the weighted average

AQ,w(f )(x) := 1

w(x +Q)

∫
x+Q

|f |w dy.

It follows that

( m∏
j=1

1

|Rα|
∫
x+Rα

|fj (yj )|2 dyj
)1/2

≤ [ �w]1/2
A �P/2

[
ARα,v �w

(
|fj |pj wj

v �w

)
(x)

]1/pj

.

(4)
In view of (4) and (2), we obtain that the multilinear square function T�( �f )

is dominated by a sum of terms involving weighted averagesARα,v �w
(|fj |pj wjv �w

)
.

First observe that it suffices to prove the desired estimate on the Lp(v �w)-norm
of a single term

∏m
j=1

[
ARα,v �w (|fj |pjwj/v �w)

]1/pj , with a uniform constant with
respect to the length of Rα . Note that as pj ≥ 2 we have 2/m ≤ p. If p ≥ 1,
the assertion follows by Minkowski’s inequality and the convergence of the
series ∑

α∈Zmn

|α|mn/2
(1 + |α|)2N (5)

for N > 3
4mn. This condition coincides with the condition in the statement

of the theorem when p ≥ 1. Now if p satisfies 2
m

≤ p < 1, then we use the
inequality that

(∑
α |Cα|

)p ≤ ∑
α |Cα|p instead of Minkowski’s inequality to
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deduce the desired estimate provided the series

∑
α∈Zmn

|α|pmn/2
(1 + |α|)2Np

converges; but this is the case since N >
(

1
4 + 1

2p

)
mn when p < 1.

Hölder’s inequality yields∥∥∥∥
m∏
j=1

[
ARα,v �w

(
|fj |pj wj

v �w

)]1/pj∥∥∥∥
Lp(v �w)

≤
m∏
j=1

∥∥∥∥ARα,v �w

(
|fj |pj wj

v �w

)∥∥∥∥
1/pj

L1(v �w)
.

Furthermore, in order to prove the desired estimate (1), it is enough to show
that for doubling weights w, we have

‖AQ,w(f )‖L1(w)
<∼ ‖f ‖L1(w)

with bounds independent of �(Q).
Let Q be a cube whose center is at the origin and denote Q(x) = x +Q.

Then

AQ,w(f )(x) = 1

w(Q(x))

∫
Q(x)

|f |w dy = 1

w(Q(x))

∫
Q

|f (x−y)|w(x−y) dy.

Integrating the above with respect to w(x)dx,∫
Rn
AQ,w(f )(x)w(x) dx =

∫
Q

∫
Rn

1

w(Q(x))
|f (x − y)|w(x − y)w(x) dx dy

=
∫
Q

∫
Rn

1

w(Q(x + y))
|f (x)|w(x)w(x + y) dx dy

=
∫
Rn

|f (x)|w(x)
∫
Q

1

w(Q(x + y))
w(x + y) dy dx.

Since w is doubling we get that w(Q(x + y)) ≈ w(Q(x) for all y ∈ Q with
constant independent of y. Therefore, the term∫

Q

1

w(Q(x + y))
w(x + y) dy <∼ 1.

This completes the proof.

Remark 3.3. We would like to indicate that the pointwise a.e. estimate (2)
with the multi-linear maximal function

M2( �f )2(x) := sup
Q�x

m∏
j=1

1

|Q|
∫
Q

|fj (yj )|2 dμ(yj ), x ∈ Rn,
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on the right hand side in the inequality (2) can be obtained rather easily.
In a straightforward manner Theorem 1.3 implies that the operator M2

satisfies the strong-type weighted estimates

‖M2( �f )‖Lp(v �w) <∼
m∏
j=1

‖fj‖Lpj (wj )

for 2 < pj < ∞, j = 1, 2, . . . , m, with 1
p

= 1
p1

+ · · · + 1
pm

and every
multilinear weight �w = (w1, w2, . . . , wm) in the classA �P/2. As a consequence
we can obtain the weighted estimates for multilinear square functions for all
2 < pj < ∞, j = 1, 2, . . . , m.

However, this approach does not yield strong-type weighted estimates at
end-points, i.e. when pj = 2 for some j ’s. We have used the weighted av-
eraging operators to circumvent this issue and obtained strong type weighted
estimates for the entire possible range of exponents in Theorem 3.1.

4. Application to bilinear square function associated with strips

The bilinear multiplier operators associated with symbols of the form φ(ξ−η)
are of specific interest and fall under the category of modulation invariant
operators. The well-known bilinear Hilbert transform is an important example
of such operators. See [4], [8], [9] for more details.

The bilinear Littlewood-Paley operators associated with such bilinear mul-
tipliers may be defined in a similar fashion. We refer the interested reader
to [2], [3], [5], [6], [10], [14], [15] and the references therein for some relevant
background on this.

Here we focus on the following situation. Let {Ij }j∈N be a sequence of
intervals with |Ij | ≈ 1 for all j and let φj be a smooth function adapted to
interval Ij .

The bilinear smooth square function associated with the sequence {φj }j is
defined by

S(f, g)(x) :=
(∑
j∈N

|Sφj (f, g)(x)|2
)1/2

,

where Sφj is the bilinear multiplier operator associated with symbol φj (ξ −η).
Consider a smooth functionψ supported in [−1, 1] such that

∑
k ψ(ξ−k) =

1. For each j we have

φj (ξ − η) =
∑
k

φj (ξ − η)ψk(ξ + η − k).
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Denote �j,k(ξ, η) = φj (ξ − η)ψ(ξ + η − k) and note that �j,k are smooth
bilinear multipliers whose supports have bounded overlaps.

For compactly supported functions f , g and h consider

〈Sj (f, g), h〉 =
∫
R

∫
R
f̂ (ξ)ĝ(η)φj (ξ − η)ĥ(ξ + η) dξ dη

=
∑
k

∫
R

∫
R
f̂ (ξ)ĝ(η)�j,k(ξ, η)χAj,k (ξ + η)ĥ(ξ + η) dξ dη

=
∑
k

∫
R

∫
R
f̂ (ξ)ĝ(η)�j,k(ξ, η)θj,k(ξ + η)ĥ(ξ + η) dξ dη,

where Aj,k = {ξ + η : (ξ, η) ∈ supp(�j,k)} and θj,k is a smooth function
supported in 2Aj,k with θj,k = 1 on Aj,k . Therefore, we have

∣∣〈Sj (f, g), h〉∣∣ ≤
∫
R

(∑
k

|T
�j,k
(f, g)(x)|2

)1/2(∑
k

|T̃j,k(h)(x)|2
)1/2

dx,

where T̃j,k(h) = (θj,kĥ)̌ is the Fourier multiplier operator with smooth sym-
bol θj,k .

Note that for each fixed j , the intervalsAj,k have bounded overlaps and since
they are of equivalent size, the supports of θj,k also have bounded overlaps
uniformly with respect to j . Consequently, for each j the Littlewood-Paley
operator associated with the multiplier sequence θj,k is bounded on Lp for
p ≥ 2 with a uniform bound with respect to j .

Therefore, we obtain

‖Sj (f, g)‖2 <∼
∥∥∥∥
(∑

k

|T
�j,k
(f, g)(x)|2

)1/2∥∥∥∥
2

Using the boundedness of the bilinear smooth square function

(f, g) →
(∑
j,k

|T
�j,k
(f, g)(x)|2

)1/2

we obtain ∥∥∥∥
(∑

j

|Sj (f, g)(x)|2
)1/2∥∥∥∥

2

<∼ ‖f ‖p‖g‖q

for all p, q > 0 such that 1
p

+ 1
q

= 1
2 .

An analogous problem with rough cutoffs was addressed by Bernicot [2].
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