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ALGEBRAIC RESULTS FOR CERTAIN VALUES OF
THE JACOBI THETA-CONSTANT θ3(τ )

CARSTEN ELSNER and YOHEI TACHIYA

(Dedicated to Professor Iekata Shiokawa on the occasion of his 75th birthday)

Abstract
In its most elaborate form, the Jacobi theta function is defined for two complex variables z and
τ by θ(z|τ) = ∑∞

ν=−∞ eπiν
2τ+2πiνz, which converges for all complex numbers z, and τ in the

upper half-plane. The special case

θ3(τ ) := θ(0|τ) = 1 + 2
∞∑
ν=1

eπiν
2τ

is called a Jacobi theta-constant or Thetanullwert of the Jacobi theta function θ(z|τ). In this paper,
we prove the algebraic independence results for the values of the Jacobi theta-constant θ3(τ ). For
example, the three values θ3(τ ), θ3(nτ), andDθ3(τ ) are algebraically independent overQ for any
τ such that q = eπiτ is an algebraic number, where n ≥ 2 is an integer and D := (πi)−1d/dτ

is a differential operator. This generalizes a result of the first author, who proved the algebraic
independence of the two values θ3(τ ) and θ3(2mτ) for m ≥ 1. As an application of our main
theorem, the algebraic dependence over Q of the three values θ3(�τ ), θ3(mτ), and θ3(nτ) for
integers �,m, n ≥ 1 is also presented.

1. Introduction and statement of the results

Let τ be a complex variable in the upper half-planeH := {τ ∈ C | Im(τ ) > 0}.
The series

θ2(τ ) = 2
∞∑
ν=0

q(ν+1/2)2 , θ3(τ ) = 1 + 2
∞∑
ν=1

qν
2
,

θ4(τ ) = 1 + 2
∞∑
ν=1

(−1)νqν
2

are known as theta-constants or Thetanullwerte, where q = eπiτ . In particular,
the function θ3(τ ) is called a Jacobi theta-constant or Thetanullwert of the Ja-
cobi theta function θ(z|τ) = ∑∞

ν=−∞ eπiν
2τ+2πiνz, which is entire in z ∈ C and
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holomorphic for τ ∈ H. The study of the transcendence and algebraic inde-
pendence of the values of the theta-constants has made remarkable progress by
the celebrated theorem ofYu. V. Nesterenko [7] on the algebraic independence
results of the values of the Ramanujan functions

P(z) = 1 − 24
∞∑
n=1

σ1(n)z
n, Q(z) = 1 + 240

∞∑
n=1

σ3(n)z
n,

R(z) = 1 − 504
∞∑
n=1

σ5(n)z
n,

where σk(n) = ∑
d|n dk .

Theorem A ([7, Theorem 1]). For any complex number s with 0 < |s| < 1,
at least three of the numbers

s, P (s), Q(s), R(s)

are algebraically independent over Q.

Combining Theorem A and the relations between the Ramanujan functions
and the theta-constants (see [6]), D. Bertrand [1] deduced the following Corol-
laries A.1 and A.2 on algebraic independence of the values of theta-constants.
Let D := (πi)−1d/dτ be a differential operator.

Corollary A.1. Let j ∈ {2, 3, 4} and τ ∈ H. Then at least three of the
numbers eπiτ , θj (τ ), Dθj (τ ), D2θj (τ ) are algebraically independent over Q.

Corollary A.1 was shown independently by D. Duverney, Ke. Nishioka,
Ku. Nishioka, and I. Shiokawa [2] in the case where q = eπiτ is algebraic.
In particular, the sum

∑∞
n=1 q

n2
is transcendental for any algebraic number q

with 0 < |q| < 1.

Corollary A.2 (see also [9, Corollary 4.7]). Let j , k and � ∈ {2, 3, 4} with
j �= k. For any τ ∈ H, at least three of the numbers eπiτ , θj (τ ), θk(τ ),Dθ�(τ)
are algebraically independent over Q.

By Corollary A.2, if q = eπiτ (τ ∈ H) is an algebraic number, then any
two numbers in the set {

θ2(τ ), θ3(τ ), θ4(τ )
}

are algebraically independent over Q. On the other hand, the three numbers
θ2(τ ), θ3(τ ), and θ4(τ ) are algebraically dependent over Q for any τ ∈ H,
since the following identity holds:

θ4
3 (τ ) = θ4

2 (τ )+ θ4
4 (τ ).



RESULTS FOR THE VALUES OF THE JACOBI THETA-CONSTANT θ3(τ ) 251

We are interested in the algebraic independence (or dependence) problem
on the values of the Jacobi theta-constant θ3(τ ) at different points. In this
direction, recently, the first-named author has proven the following result.

Theorem B ([3, Theorem 1.1]). Let m ≥ 1 be an integer and τ ∈ H such
that q = eπiτ is an algebraic number. Then, the two numbers θ3(2mτ) and
θ3(τ ) are algebraically independent overQ as well as the two numbers θ3(nτ)

and θ3(τ ) for n = 3, 5, 6, 7, 9, 10, 11, 12.

We state the outline of the proof of Theorem B briefly. The first basic tool
in proving such algebraic independence results are integer polynomials in two
variablesX, Y , which vanish identically at certain pointsX = X0 and Y = Y0

given by rational functions of theta-constants. For instance, in the case of n =
2m (m ≥ 1), there exists a homogeneous polynomialTn(t1, t2, t3) ∈ Z[t1, t2, t3]
of total degree λ such that

Tn
(
θ2

3 (nτ), (θ3(τ )+ θ4(τ ))
2, θ3(τ )θ4(τ )

) = 0, (1)

with λ = degt1 Tn(t1, t2, t3) = 2m−2 form ≥ 2 and λ = 1 whenm = 1 (see [3,
Lemma 3.1]). The first polynomials T2, T4, and T8 are given by

T2 = 2t1 − t2 + 2t3, T4 = 4t1 − t2, T8 = (8t1 − t2)
2 − 8t3(t2 − 2t3).

Thus, putting Pn(X, Y ) := Tn(X, (1 + Y )2, Y ), we have the following:

Theorem C ([3, Lemma 3.1]). For every integer m ≥ 1, let n = 2m. Then
there exists a polynomial Pn(X, Y ) ∈ Z[X, Y ] such that

Pn

(
θ2

3 (nτ)

θ2
3 (τ )

,
θ4(τ )

θ3(τ )

)
= 0

holds for any τ ∈ H, where degX P2(X, Y ) = 1, and degX Pn(X, Y ) = 2m−2

for m ≥ 2.

The second tool is an algebraic independence criterion (cf. [4, Lemma
3.1]), from which the algebraic independence of θ3(nτ) and θ3(τ ) overQ can
be obtained by proving that the resultant

ResX

(
Pn(X, Y ),

∂

∂Y
Pn(X, Y )

)
∈ Z[Y ] (2)

does not vanish identically (see [3, Theorem 4.1]). This is true for n = 2 and
4, since P2 and P4 are given by P2 = 2X− Y 2 − 1 and P4 = 4X− (1 + Y )2,
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respectively. Furthermore, for the case of n = 2m (m ≥ 3), we can show the
identities

Pn(X, 0) = (
2mX − 1

)2m−2

,

∂Pn

∂Y
(X, 0) = −2m−1

(
2mX − 1

)2m−2−1 + Un(X),

where Un(X) ∈ Z[X] with Un(1/2m) �= 0 (see the proof of [3, Theorem 1.1]).
Hence, for Y = 0 the polynomials Pn(X, Y ) and ∂Pn(X, Y )/∂Y have no
common root. Therefore the resultant (2) does not vanish identically, which
gives the desired result. This fact will be used again in this paper for proving our
Theorem 1.1 below. The algorithm to compute the polynomialsP2m recursively
is given by [3, Lemma 3.1]:

P2 = 2X − Y 2 − 1,

P4 = 4X − (1 + Y )2,

P8 = 64X2 − 16(1 + Y )2X + (1 − Y )4,

P16 = 65536X4 − 16384(1 + Y )2X3

+ 512(3Y 4 + 4Y 3 + 18Y 2 + 4Y + 3)X2

− 64(1 + Y )2(Y 4 + 28Y 3 + 6Y 2 + 28Y + 1)X + (1 − Y )8.

Similarly, for odd integers n ≥ 3, the algebraic independence of θ3(nτ) and
θ3(τ ) over Q can also be deduced from the nonvanishing of the resultant (2)
with the following polynomial Pn(X, Y ), which is given by Yu. V. Nester-
enko [8].

Theorem D ([8, Theorem 1, Corollary 4]). For any odd integer n ≥ 3
there exists a polynomial Pn(X, Y ) ∈ Z[X, Y ] with degX Pn(X, Y ) = ψ(n),
degY Pn ≤ (n− 1)ψ(n)/n, such that

Pn

(
n2 θ

4
3 (nτ)

θ4
3 (τ )

, 16
θ4

2 (τ )

θ4
3 (τ )

)
= 0

holds for any τ ∈ H, where ψ(n) is defined by

ψ(n) := n
∏
p|n

(
1 + 1

p

)
. (3)

The constitution method for Pn(X, Y ) is described in [8], but it is not easy
to compute the explicit forms. That is similar to the method for obtaining
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the modular polynomial �n(X, Y ) ∈ Z[X, Y ] of order n, which satisfies the
identity

�n(j (nτ), j (τ )) = 0,

for an integer n ≥ 1, and the modular function

j (τ ) := 1728
Q3(q2)

Q3(q2)− R2(q2)
= 256

(λ2 − λ+ 1)3

λ2(λ− 1)2
, λ := λ(τ) = θ4

2 (τ )

θ4
3 (τ )

(cf. [5, Chapter 5]). The first polynomials P3 and P5 are given by

P3 = 9 − (28 − 16Y + Y 2)X + 30X2 − 12X3 +X4,

P5 = 25 − (126 − 832Y + 308Y 2 − 32Y 3 + Y 4)X

+ (255 + 1920Y − 120Y 2)X2

+ (−260 + 320Y − 20Y 2)X3 + 135X4 − 30X5 +X6,

and the polynomials P7, P9, and P11 are listed in the appendix of [3]. The
polynomialsP3 andP5 are already given in [8],P7,P9, andP11 are the results of
computer-assisted computations of the first-named author. The non-vanishing
of the resultants (2) for odd integers n = 3, 5, 7, 9, 11 is based on these direct
computations of Pn(X, Y ).

In this paper we give some more precise information of Pn(X, Y ) and gen-
eralize Theorem B by Theorem 1.2 without computing the explicit form of
Pn(X, Y ). Our starting point is Theorem 1.1.

Theorem 1.1. Let n ≥ 2 be an integer and τ ∈ H. Then the numbers θ2(τ )

and θ3(nτ)are algebraic over the fieldsQ
(
θ3(nτ), θ3(τ )

)
andQ

(
θ2(τ ), θ3(τ )

)
,

respectively.

Theorem 1.1 implies that the fields Q
(
θ3(nτ), θ3(τ )

)
and Q

(
θ2(τ ), θ3(τ )

)
have the same algebraic closure in C. Hence by Corollary A.2 we obtain the
following Theorem 1.2.

Theorem 1.2. Letn ≥ 2 be an integer and j ∈ {2, 3, 4}. Then for any τ ∈ H
at least three of the numbers eπiτ , θ3(τ ), θ3(nτ), Dθj (τ ) are algebraically
independent over Q.

Corollary 1.3. Let n ≥ 2 be an integer and τ ∈ H such that q = eπiτ

(0 < |q| < 1) is an algebraic number. Then the three numbers

θ3(τ ), θ3(nτ), Dθ3(τ )
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are algebraically independent over Q. This implies that so are the three sums

∞∑
k=1

qk
2
,

∞∑
k=1

qnk
2
,

∞∑
k=1

k2qk
2
.

This corollary generalizes Theorem B as follows: Let n ≥ 2 be an integer
and τ ∈ H such that q = eπiτ is an algebraic number. Then the two numbers
θ3(nτ) and θ3(τ ) are algebraically independent over Q.

As an application of Theorem 1.1, an algebraic dependence result is also
presented. The next theorem asserts that we can not extend the above inde-
pendence result to many more values.

Theorem 1.4. Let �,m, n ≥ 1 be integers and τ ∈ H. Then the three
numbers θ3(�τ ), θ3(mτ), and θ3(nτ) are algebraically dependent over Q.

Example 1.5. Let τ ∈ H. From the polynomials P2 and P3 above, we
obtain the polynomial

P(X, Y,Z) := 27X8 − 18X4Y 4 − 64X2Y 4Z2 + 64X2Y 2Z4 − 8X2Z6 − Z8,

which vanishes for

X = θ3(3τ), Y = θ3(2τ), Z = θ3(τ ).

Theorem 1.1 is founded again on the existence of the integer polynomials in
two variables, which vanish identically at certain rational functions of the theta-
constants. In order to handle the specific properties of these polynomials, it is
necessary to computePn(0, Y ) for the polynomialsPn(X, Y ) from Theorem D.
Then it will turn out that Pn(0, Y ) is a nonvanishing constant polynomial (see
Proposition 2.2). This fact plays an important role in the proof of Theorem 1.1
with even integers which are not a power of two. To avoid the complexity, we
devote Section 4 to the proof of Proposition 2.2.

It should be noted that our argument is not based on applying the algebraic
independence criterion used in [3].

2. Lemmas

In this section, we prepare some lemmas to prove our theorem. In what follows,
we distinguish two cases based on the parity of n.
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2.1. The case where n is odd

Let n ≥ 3 be a fixed odd integer and τ ∈ H. From Theorem D we know that
there exists a nonzero polynomial Pn(X, Y ) ∈ Z[X, Y ] with degX Pn = ψ(n)

such that Pn(X0, Y0) vanishes for

X0 := h3(τ ) = n2 θ
4
3 (nτ)

θ4
3 (τ )

, Y0 := 16λ(τ) = 16
θ4

2 (τ )

θ4
3 (τ )

.

Lemma 2.1. For any complex number α, the polynomial Pn(α, Y ) does not
vanish identically.

Proof. Suppose on the contrary that there exists an α ∈ C such that
Pn(α, Y ) = 0. Then there exists a polynomial Rn(X, Y ) ∈ C[X, Y ] satisfying

Pn(X, Y ) = (X − α)Rn(X, Y ). (4)

In accordance with formula (5) in [8], we define

xν(τ ) := u2 θ
4
3

(
uτ+2v
w

)
θ4

3 (τ )
(ν = 1, 2, . . . , ψ(n))

for any τ ∈ H, where the nonnegative integers u, v, w are given by [8,
Lemma 1]. These integers depend on n and ν and satisfy the three conditions

(u, v,w) = 1, uw = n, 0 ≤ v < w. (5)

Substituting Y = 16λ(τ) into (4), we have by [8, Corollary 1]

ψ(n)∏
ν=1

(
X − xν(τ )

) = Pn
(
X, 16λ(τ)

) = (X − α)Rn
(
X, 16λ(τ)

)
, (6)

and hence, by substitutingX = α into (6), we see that the holomorphic function

ψ(n)∏
ν=1

(
α − xν(τ )

) = 0

is identically zero on H. This implies that there exist integers u, v, and w
with (5) such that

θ3
(
uτ+2v
w

)
θ3(τ )

=: β ∈ C (7)

is a constant function on H, where

θ3(τ ) = 1 + 2
∞∑
ν=1

(
eπiτ/w

)wν2

(8)
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and

θ3

(
uτ + 2v

w

)
= 1 + 2

∞∑
ν=1

ξvν
2

w

(
eπiτ/w

)uν2

, ξw := e2πi/w. (9)

Therefore, by (7), (8), (9) and applying uw = n in (5), we have β = 1,
u = w = √

n > 1, ξvw = 1. Since ξw �= 1, we conclude from ξvw = 1 and
0 ≤ v < w in (5) that v = 0. Finally, we deduce that (u, v,w) = (u, 0, u) =
u > 1, which contradicts the arithmetic condition (u, v,w) = 1 in (5). This
completes the proof of Lemma 2.1.

Proposition 2.2. Let n ≥ 3 be an odd integer andψ(n) be defined as in (3).
Then we have ∏

θ3

(
uτ + 2v

w

)
= θ

ψ(n)

3 (τ ), (10)

where the product is taken over allψ(n) triples u, v,w of nonnegative integers
satisfying the conditions (5).

We devote Section 4 to a proof of Proposition 2.2.
Throughout this paper, by degQ we denote the total degree of an integer

polynomial Q in one or two variables. Note that in particular deg 0 = −∞.
Moreover for the sake of brevity, for any j ∈ {2, 3, 4}, the notation θj is used
instead of θj (τ ).

Lemma 2.3. Let m ≥ 3 be an odd integer. Then there is a polynomial
Qm(X, Y ) ∈ Z[X, Y ] such that

Qm

(
θ4

3 (mτ)

θ4
3

,
θ4

2

θ4
3

)
= 0 (11)

holds for any τ ∈ H, where degQm(X, Y ) = ψ(m) and degQm(0, Y ) = 0.

Proof. The assertion (11) follows immediately from [8, Theorem 1]. For
the statement on the total degree of Qm(X, Y ), we have by [8, Corollary 4]

Qm(X, Y ) = m2ψ(m)Xψ(m) +
ψ(m)∑
ν=1

Rν(Y )X
ψ(m)−ν, (12)

where for each ν with 1 ≤ ν ≤ ψ(m),

deg
(
Rν(Y )X

ψ(m)−ν) ≤ ν ·
(

1 − 1

m

)
+ (
ψ(m)− ν

)
< ψ(m).

Thus, the total degree of Qm(X, Y ) equals to ψ(m).
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Finally we prove that Qm(0, Y ) is a nonzero constant. In Nesterenko’s
paper [8, pp. 154, lines 21–24], the polynomial Rψ(m)(Y ) in (12) is chosen
such that the function in τ , defined by

∏
u2 θ

4
3

(
uτ+2v
w

)
θ4

3 (τ )
− Rψ(m)(16λ(τ)),

is identically zero, where the product is taken over all ψ(m) triples u, v,w of
nonnegative integers satisfying the conditions in (5). Hence, by Proposition 2.2,
the polynomial Rψ(m)(Y ) is given by the constant

Rψ(m)(Y ) =
∏

u2 θ
4
3

(
uτ+2v
w

)
θ4

3 (τ )
=

∏
u2.

Then by (12) we haveQm(0, Y ) = Rψ(m)(Y ), and hence the lemma is proved.

Example 2.4. We know from Theorem D and the explicit form of P3 in
Section 1 that

Q3(X, Y ) = 9 − (252 − 2304Y + 2304Y 2)X+ 2430X2 − 8748X3 + 6561X4

with degQ3(X, Y ) = 4 and Q3(0, Y ) = 9.

2.2. The case where n is even

Lemma 2.5. Let n = 2αm be an integer with α ≥ 1 and an odd integerm ≥ 3.
Then there exists a polynomial Qn(X, Y ) ∈ Z[X, Y ] such that

Qn

(
θ4

3 (nτ)

θ4
3

,
θ4

2

θ4
3

)
= 0 (13)

for any τ ∈ H. Furthermore, the polynomial Qn(X, Y ) is of the form

Qn(X, Y ) = c2αY 2αψ(m) +
2αψ(m)−1∑
j=0

Rn,j (X)Y
j (14)

with
Qn(0, Y ) = c2αY 2αψ(m), (15)

where degRn,j (X) ≤ 2αψ(m) − j (0 ≤ j < 2αψ(m)), and c equals to the
nonzero integer Pm(0, Y ), which exists by Lemma 2.3.
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Proof. Throughout this proof any capital character with subscript(s) de-
fines an integer polynomial. We prove the lemma by induction with respect
to α. First we treat the case α = 1. Let m ≥ 3 be an odd integer and

Qm(X, Y ) =
∑
ν,μ

aν,μX
νYμ (16)

be as in Lemma 2.3, where degQm(X, Y ) = ψ(m). Then we have

0 = Qm

(
θ4

3 (2mτ)

θ4
3 (2τ)

,
θ4

2 (2τ)

θ4
3 (2τ)

)
=

∑
ν,μ

aν,μ

(
θ4

3 (2mτ)

θ4
3 (2τ)

)ν(
θ4

2 (2τ)

θ4
3 (2τ)

)μ
(17)

for any τ ∈ H. Multiplying this identity with (1 + θ2
4 /θ

2
3 )

2ψ(m), we obtain

0 =
(

1 + θ2
4

θ2
3

)2ψ(m) ∑
ν,μ

aν,μθ
4ν
3 (2mτ) · θ4μ

2 (2τ) · θ−4(ν+μ)
3 (2τ)

=
(

1 + θ2
4

θ2
3

)2ψ(m) ∑
ν,μ

aν,μθ
4ν
3 (2mτ) ·

(
θ2

3 − θ2
4

2

)2μ

·
(
θ2

3 + θ2
4

2

)−2(ν+μ)

=
∑
ν,μ

22νaν,μ

(
θ3(2mτ)

θ3

)4ν

·
(

1 − θ2
4

θ2
3

)2μ

·
(

1 + θ2
4

θ2
3

)2(ψ(m)−ν−μ)
,

(18)
where we used the identities

2θ2
2 (2τ) = θ2

3 (τ )− θ2
4 (τ ), 2θ2

3 (2τ) = θ2
3 (τ )+ θ2

4 (τ ).

Let n = 2m and define

Bn(X, Y ) :=
∑
ν,μ

22νaν,μX
4ν

(
1 − Y 2

)2μ(
1 + Y 2

)2(ψ(m)−ν−μ)
. (19)

Then by (18)

Bn

(
θ3(nτ)

θ3
,
θ4

θ3

)
= 0. (20)

Furthermore, since Qm(0, Y ) is a nonzero constant by Lemma 2.3, we can
apply (16) to get

c := Qm(0, Y ) = Qm(0, 1) =
∑
μ≥0

a0,μ,
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and hence by (19) there exists An,j (X) for each j with 0 ≤ j < 2ψ(m) such
that

Bn(X, Y ) =
(∑
μ≥0

a0,μ

)
Y 4ψ(m) +

2ψ(m)−1∑
j=0

An,j (X
4)Y 2j

= cY 4ψ(m) +
2ψ(m)−1∑
j=0

An,j (X
4)Y 2j ,

(21)

where degBn(X, Y ) = 4ψ(m) follows again from (19). We rewrite Bn(X, Y )
by

Bn(X, Y ) =
∑
j≥0

Cn,j (X
4)Y 2j

=
∑
j≥0

j≡0 (mod 2)

Cn,j (X
4)Y 2j +

∑
j≥1

j≡1 (mod 2)

Cn,j (X
4)Y 2j

=: Dn(X
4, Y 4)+ Y 2En(X

4, Y 4).

Define

Q̃n(X, Y ) := D2
n(X, Y )− YE2

n(X, Y ),

Qn(X, Y ) := Q̃n(X, 1 − Y ).

Note that

Q̃n(X
4, Y 4) = D2

n(X
4, Y 4)− Y 4E2

n(X
4, Y 4)

= Bn(X, Y )Bn(X, iY ).
(22)

Substituting X = θ3(nτ)/θ3 and Y = θ4/θ3 into this identity, we have by (20)

Q̃n

(
θ4

3 (nτ)

θ4
3

,
θ4

4

θ4
3

)
= 0.

Since θ4
4 /θ

4
3 = 1 − θ4

2 /θ
4
3 , it is clear that

Qn

(
θ4

3 (nτ)

θ4
3

,
θ4

2

θ4
3

)
= 0.
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Furthermore, by (22) together with (21)

Q̃n(X
4, Y 4) =

(
cY 4ψ(m) +

2ψ(m)−1∑
j=0

An,j (X
4)Y 2j

)

×
(
cY 4ψ(m) +

2ψ(m)−1∑
j=0

(−1)jAn,j (X
4)Y 2j

)

= c2Y 8ψ(m) +
2ψ(m)−1∑
j=0

Sn,j (X
4)Y 4j ,

where for each j with 0 ≤ j < 2ψ(m) we have

deg Q̃n(X
4, Y 4) = 2 degBn(X, Y ) = 8ψ(m) ≥ deg

(
Sn,j (X

4)Y 4j
)

= 4 deg Sn,j (X)+ 4j,

which implies
deg Sn,j (X) ≤ 2ψ(m)− j.

Hence we get

Q̃n(X, Y ) = c2Y 2ψ(m) +
2ψ(m)−1∑
j=0

Sn,j (X)Y
j ,

and so

Qn(X, Y ) = Q̃n(X, 1 − Y ) = c2Y 2ψ(m) +
2ψ(m)−1∑
j=0

Rn,j (X)Y
j ,

where degRn,j (X) ≤ 2ψ(m)−j , for 0 ≤ j < 2ψ(m). It remains to prove (15)
in the case of α = 1. From Lemma 2.3 we get

c = Pm(0, Y ) =
∑
μ≥0

a0,μY
μ,

so that a0,0 = c and a0,μ = 0 for μ �= 0. Then, by (16) we obtain

Bn(0, Y ) =
∑
μ≥0

a0,μ(1 − Y 2)
2μ
(1 + Y 2)

2(ψ(m)−μ) = c(1 + Y 2)
2ψ(m)

.

By (22), we have

Q̃n(0, Y
4) = c2(1 + Y 2)

2ψ(m)
(1 − Y 2)

2ψ(m) = c2(1 − Y 4)
2ψ(m)

,
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and therefore
Q̃n(0, Y ) = c2(1 − Y )2ψ(m),

which gives
Qn(0, Y ) = c2Y 2ψ(m)

by the above definition of Qn(X, Y ). Hence the proof of Lemma 2.3 with
α = 1 is completed.

Next, let the lemma be true for some fixed α ≥ 1 with n = 2αm. In the
preceding part of the proof we replace m by n and the polynomial Pm(X, Y )
by the polynomial

Qn(X, Y ) =
∑
ν,μ

bν,μX
νYμ

satisfying (13) to (15). In particular,

degQn(X, Y ) = 2αψ(m) (23)

and

b0,μ =
{
c2α , if μ = 2αψ(m),

0, otherwise.
(24)

Replacing τ by 2τ we thus obtain instead of (17)

0 = Qn

(
θ4

3 (2nτ)

θ4
3 (2τ)

,
θ4

2 (2τ)

θ4
3 (2τ)

)
=

∑
ν,μ

bν,μ

(
θ4

3 (2nτ)

θ4
3 (2τ)

)ν(
θ4

2 (2τ)

θ4
3 (2τ)

)μ
.

By the method described above for the case α = 1, we obtain again polyno-
mials B2n(X, Y ), Q̃2n(X, Y ), and Q2n(X, Y ) such that

Q̃2n(X
4, Y 4) := B2n(X, Y )B2n(X, iY ),

Q2n(X, Y ) := Q̃2n(X, 1 − Y )

and, step by step,

0 = Q̃2n

(
θ4

3 (2nτ)

θ4
3

,
θ4

4

θ4
3

)
,

0 = Q2n

(
θ4

3 (2nτ)

θ4
3

,
θ4

2

θ4
3

)
.

This proves (13) for n replaced by 2n = 2α+1m. Next, we consider (14). We
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have by (23) and (24) instead of (21)

B2n(X, Y ) =
∑
ν,μ

22νbν,μX
4ν(1 − Y 2)

2μ
(1 + Y 2)

2(2αψ(m)−ν−μ)

=
(∑
μ≥0

b0,μ

)
Y 2α+2ψ(m) +

2α+2ψ(m)−1∑
j=0

A2n,j (X
4)Y 2j

= c2αY 2α+2ψ(m) +
2α+2ψ(m)−1∑

j=0

A2n,j (X
4)Y 2j ,

where degB2n(X, Y ) = 2α+2ψ(m). Then, by the same arguments as in the
case of α = 1, we obtain (14) with α replaced by α+ 1. Finally, we show (15)
for α + 1. With the above formula for B2n(X, Y ) we obtain

B2n(0, Y ) =
∑
μ≥0

b0,μ(1 − Y 2)
2μ
(1 + Y 2)

2(2αψ(m)−μ)

= b0,2αψ(m)(1 − Y 2)
2α+1ψ(m)

= c2α (1 − Y 2)
2α+1ψ(m)

,

where we used (24). Thus, using the same arguments as in the case α = 1, we
obtain

Q̃2n(0, Y
4) = c2α+1

(1 − Y 4)
2α+1ψ(m)

,

hence
Q2n(0, Y ) = c2α+1

Y 2α+1ψ(m).

This completes the proof of the lemma.

Example 2.6. With the polynomial from Example 2.4, we obtain for n = 6

B6(X, Y ) = 9Y 16 + 72Y 14 + (−1008X4 + 252)Y 12 + (30816X4 + 504)Y 10

+ (38880X8 − 15120X4 + 630)Y 8

+ (155520X8 − 93888X4 + 504)Y 6

+ (−559872X12 + 233280X8 − 15120X4 + 252)Y 4

+ (−1119744X12 + 155520X8 + 30816X4 + 72)Y 2

+ 1679616X16 − 559872X12 + 38880X8 − 1008X4 + 9
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and

Q6(X, Y ) = 81Y 8 + 18144XY 7 + (1715904X2 − 5344704X)Y 6

+ (88459776X3 + 907448832X2 + 58392576X)Y 5

+ (2670589440X4 − 11804341248X3 + 1470721536X2

− 180486144X)Y 4

+ (46921752576X5 − 92553560064X4

+ 34882265088X3 − 4756340736X2 + 212336640X)Y 3

+ (444063596544X6 − 148021198848X5 + 96423395328X4

− 23254843392X3 + 2378170368X2 − 84934656X)Y 2

+ (1880739938304X7 − 1044855521280X6 + 162533081088X5

− 7739670528X4)Y

+ 2821109907456X8 − 3761479876608X7 + 1044855521280X6

− 108355387392X5 + 3869835264X4.

3. Proofs of Theorems 1.1, 1.2, and 1.4

Proof of Theorem 1.1. Let n ≥ 2 be an integer and τ ∈ H. We first show
the algebraicity of θ2 over the field

F := Q(θ3, θ3(nτ)).

Let n ≥ 3 be an odd integer. Applying Lemma 2.1 with α = h3(τ ) =
n2θ4

3 (nτ)/θ
4
3 , we obtain the nonzero polynomial

fn(Y ) := Pn

(
n2 θ

4
3 (nτ)

θ4
3

, 16
Y

θ4
3

)
∈ F [Y ]

satisfying fn(θ4
2 ) = Pn(h3(τ ), 16λ(τ)) = 0. This implies that the number θ2

is algebraic over F . Next we put n = 2αm (α ≥ 1) with an odd number
m ≥ 3. Then by Lemma 2.5 there exists a polynomial Qn(X, Y ) ∈ Z[X, Y ]
satisfying (13) and (14), namely, the number Y = θ4

2 is a zero of a nonzero
polynomial gn(Y ) ∈ F(Y ) defined by

gn(Y ) := Qn

(
θ4

3 (nτ)

θ4
3

,
Y

θ4
3

)

= c2α
(
Y

θ4
3

)2αψ(m)

+
2αψ(m)−1∑
j=0

Rn,j

(
θ4

3 (nτ)

θ4
3

)(
Y

θ4
3

)j
,

which yields the algebraicity of θ2 over F . Finally we treat the case of n = 2α

(α ≥ 1). Let Pn(X, Y ) ∈ Z[X, Y ] be the polynomial given in Theorem C.
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Then Y = θ4/θ3 is a zero of the polynomial

hn(Y ) := Pn

(
θ2

3 (nτ)

θ2
3

, Y

)
∈ F [X].

We check that hn(Y ) is nonzero. This holds for the cases α = 1 and 2 from
the explicit forms of P2 and P4 given in Section 1. For α ≥ 3 we see this by
considering the Taylor expansion

hn(Y ) = Pn

(
θ2

3 (nτ)

θ2
3

, 0

)
+ ∂

∂Y
Pn

(
θ2

3 (nτ)

θ2
3

, 0

)
Y +O(Y 2)

and the fact that the polynomialsPn(X, 0) and ∂Pn(X, 0)/∂Y have no common
root as pointed out in Section 1. Hence the number θ4/θ3 is algebraic over F ,
and so is θ2 because of the relation θ4

3 = θ4
2 +θ4

4 . Thus, in any case, the number
θ2 is algebraic over F .

Next we prove that θ3(nτ) is algebraic over the field E := Q(θ2, θ3).
Let n = 2αm be an integer with α ≥ 0 and an odd integer m ≥ 3. Then,
by Lemma 2.3 and Lemma 2.5, there exists a nonzero integer polynomial
Qn(X, Y ) such that

Qn

(
θ4

3 (nτ)

θ4
3

,
θ4

2

θ4
3

)
= 0

andQn(0, Y ) = c2αY 2αψ(m), where c := Qm(0, Y ) is a nonzero integer. Define

fn(X) := Qn

(
X4

θ4
3

,
θ4

2

θ4
3

)
∈ E[X].

It is clear that fn
(
θ3(nτ)

) = 0. Furthermore the polynomial fn(X) is nonzero,
since

fn(0) = Qn

(
0, θ4

2 /θ
4
3

) = c2α (θ4
2 /θ

4
3 )

2αψ(m) �= 0.

Hence the assertion holds. For the case of n = 2m (m ≥ 1), we consider the
polynomial

gn(X) := Tn
(
X2, (θ3 + θ4)

2, θ3θ4
) ∈ E(θ4)[X],

where the polynomial Tn(t1, t2, t3) ∈ Z[t1, t2, t3] is given in (1) and it has the
form

Tn(t1, t2, t3) = ant
λ
1 +

∑
ν=(ν1,ν2,ν3)∈N3

ν1+ν2+ν3=λ
ν1<λ

aνt
ν1
1 t

ν2
2 t

ν3
3 , an �= 0,
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with λ = 2m−2 for m ≥ 2 and λ = 1 when m = 1. Hence gn(X) is nonzero
and gn

(
θ3(nτ)

) = 0. This implies that the number θ3(nτ) is algebraic over
E(θ4). Since θ4 is algebraic over E, we have the conclusion. The proof of
Theorem 1.1 is completed.

Proof of Theorem 1.2. Theorem 1.2 follows from Theorem 1.1 applied
twice and from Corollary A.2 by establishing the inequality

3 ≤ trans. degQ
(
eπiτ , θ2(τ ), θ3(τ ),Dθj (τ )

)
/Q

= trans. degQ
(
eπiτ , θ2(τ ), θ3(τ ), θ3(nτ),Dθj (τ )

)
/Q

= trans. degQ
(
eπiτ , θ3(τ ), θ3(nτ),Dθj (τ )

)
/Q.

Thus Theorem 1.2 is proved.

Proof of Theorem 1.4. Let �,m, n ≥ 1 be integers and τ ∈ H. Then by
Theorem 1.1 the field

K := E
(
θ3(�τ ), θ3(mτ), θ3(nτ)

)
is an algebraic extension of E := Q(θ2, θ3), and hence

trans. degK/Q = trans. degE/Q ≤ 2.

Therefore the three numbers θ3(�τ ), θ3(mτ), and θ3(nτ) are algebraically
dependent over Q.

4. Proof of Proposition 2.2

For the sake of brevity, we put θ3(τ ) = θ3(q) (q = eπiτ , τ ∈ H). Then
equation (10) is equivalent to

∏
u,w

w−1∏
v=0

(u,v,w)=1

θ3(ζ
v
wq

u/w) = θ
ψ(n)

3 (q), (25)

where ζw := e2πi/w is a primitivewth root of unity and the left product is taken
over u and w with uw = n. In what follows, we prepare some lemmas for the
proof of (25).

Lemma 4.1. Let p be an odd prime. Then

p−1∏
k=0

θ3(ζ
k
p q) = θ

p+1
3 (qp)

θ3(qp
2
)
. (26)
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Proof. Define

F(q) :=
∞∏
�=1

(1 − q�)

for q ∈ C with |q| < 1. Then we have

p−1∏
k=0

F(ζ kp q) =
∞∏
�=1

p−1∏
k=0

(
1 − (ζ kp q)

�)

=
( ∞∏
�=1
p|�

p−1∏
k=0

(
1 − (ζ kp q)

�))( ∞∏
�=1
p��

p−1∏
k=0

(
1 − (ζ kp q)

�))

=
∞∏
�=1
p|�

(1 − q�)
p

∞∏
�=1
p��

(1 − qp�)

=
∞∏
�=1

(1 − qp�)
p

∞∏
�=1
p��

(1 − qp�),

and hence

F
(
qp

2) p−1∏
k=0

F(ζ kp q) =
∞∏
�=1

(1 − qp
2�)

∞∏
�=1

(1 − qp�)
p

∞∏
�=1
p��

(1 − qp�)

=
∞∏
�=1

(1 − qp�)
p+1

(27)

= F(qp)
p+1
. (28)

On the other hand, using Jacobi’s triple product expression for θ3(q), we
have

θ3(q) =
∞∏
�=1

(1 − q2�)(1 + q2�−1)
2 = F(q2)

5

F(q)2F(q4)
2 , (29)

where we used the equalities

∞∏
�=1

(1 + q2�−1) =
∞∏
�=1

1 + q�

1 + q2�
=

∞∏
�=1

(1 − q2�)
2

(1 − q�)(1 − q4�)
.
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Therefore we obtain by (27) and (29)

θ3
(
qp

2) p−1∏
k=0

θ3(ζ
k
p q) = F(q2p2

)
5

F(qp
2
)

2
F(q4p2

)
2

p−1∏
k=0

F(ζ 2k
p q

2)
5

F(ζ kp q)
2
F(ζ 4k

p q
4)

2

= F(q2p2
)

5

F(qp
2
)

2
F(q4p2

)
2

p−1∏
k=0

F(ζ kp q
2)

5

F(ζ kp q)
2
F(ζ kp q

4)
2

=
(

F(q2p)
5

F(qp)2F(q4p)
2

)p+1

= θ
p+1
3 (qp),

which proves the lemma.

Lemma 4.2. Let p be an odd prime. For any integer j ≥ 0, we have

pj−1∏
k=0

θ3(ζ
k
pj
q) = θ

bj+1

3 (qp
j

)

θ
bj
3 (q

pj+1
)
, (30)

where bn (n ≥ 0) are nonnegative integers defined by

bn := pn − 1

p − 1
.

Proof. The assertion is trivial for j = 0, and Lemma 4.1 is the case of
j = 1. Suppose that (30) holds for j ≥ 1. Then, for each v = 0, 1, . . . , p− 1,
we replace q by ζ v

pj+1q in (30):

pj−1∏
k=0

θ3(ζ
k
pj
ζ vpj+1q) = θ

bj+1

3

(
ζ vp q

pj
)

θ
bj
3

(
qp

j+1
) ,

where ζ k
pj
ζ v
pj+1 = ζ

pk+v
pj+1 . Taking the product of the both sides above for v from

v = 0 to p − 1, we get

p−1∏
v=0

pj−1∏
k=0

θ3
(
ζ
pk+v
pj+1 q

) =
∏p−1
v=0 θ

bj+1

3

(
ζ vp q

pj
)

θ
pbj
3

(
qp

j+1
) . (31)

Since the integers pk + v (0 ≤ k < pj , 0 ≤ v ≤ p − 1) are distinct,

p−1∏
v=0

pj−1∏
k=0

θ3
(
ζ
pk+v
pj+1 q

) =
pj+1−1∏
k=0

θ3
(
ζ k
pj+1q

)
. (32)
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Furthermore, replacing q by qp
j

in (26), we have

p−1∏
v=0

θ3
(
ζ vp q

pj
) = θ

p+1
3

(
qp

j+1)
θ3

(
qp

j+2
) . (33)

Applying the results (32) and (33) to (31), we obtain

pj+1−1∏
k=0

θ3(ζ
k
pj+1q) =

(
θ
p+1
3

(
qp

j+1)
θ3

(
qp

j+2
)

)bj+1 1

θ
pbj
3

(
qp

j+1
)

= θ
(p+1)bj+1−pbj
3

(
qp

j+1)
θ
bj+1

3

(
qp

j+2
) = θ

bj+2

3

(
qp

j+1)
θ
bj+1

3

(
qp

j+2
) .

This implies that the equality (30) also holds for j + 1, and hence Lemma 4.2
is proved.

Lemma 4.3. The equality (25) holds for any power of an odd prime n = p�

(� ≥ 1), namely,

�∏
j=0

pj−1∏
v=0

(p�−j ,v,pj )=1

θ3
(
ζ vpj q

p�−2j ) = θ
ψ(p�)

3 (q). (34)

Proof. If n = p� (� ≥ 1) is a power of an odd prime, then the product
on the left hand side in (25) is taken over all triples u = p�−j , v, w = pj

satisfying the conditions

(p�−j , v, pj ) = 1, 0 ≤ v < pj , 0 ≤ j ≤ �,

and hence the product is given by the left hand side in (34).
In what follows, we show the equality in (34). Let j ≥ 0 be a fixed integer.

We first replace q by qp
�−2j

in (30):

pj−1∏
v=0

θ3
(
ζ vpj q

p�−2j ) = θ
bj+1

3

(
(qp

�−2j
)
pj )

θ
bj
3

(
(qp

�−2j
)
pj+1) = θ

bj+1

3

(
qp

�−j )
θ
bj
3

(
qp

�−j+1
) , (35)

and then we replace j by j − 1 and q by qp
�−2j

in (30):

pj−1−1∏
v=0

θ3
(
ζ vpj−1q

p�−2j ) = θ
bj
3

(
(qp

�−2j
)
pj−1)

θ
bj−1

3

(
(qp

�−2j
)
pj ) = θ

bj
3

(
qp

�−j−1)
θ
bj−1

3

(
qp

�−j ) . (36)
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Since the condition (p�−j , v, pj ) = 1 is equivalent to either j = 0, 1 or p � v
when j �= 0, 1, we have by (35) and (36)

�∏
j=0

pj−1∏
v=0

(p�−j ,v,pj )=1

θ3
(
ζ vpj q

p�−2j )

= θ3
(
qp

�)(�−1∏
j=1

pj−1∏
v=0
p�v

θ3
(
ζ vpj q

p�−2j )) p�−1∏
v=0

θ3
(
ζ vp�q

p−�)

= θ3
(
qp

�)(�−1∏
j=1

∏pj−1
v=0 θ3

(
ζ v
pj
qp

�−2j )
∏pj−1−1
v=0 θ3

(
ζ v
pj−1qp

�−2j
)
) p�−1∏

v=0

θ3
(
ζ vp�q

p−�)

=
∏�
j=0

∏pj−1
v=0 θ3

(
ζ v
pj
qp

�−2j )
∏�−1
j=1

∏pj−1−1
v=0 θ3

(
ζ v
pj−1qp

�−2j
)

=
( �∏
j=0

θ
bj+1

3

(
qp

�−j )
θ
bj
3

(
qp

�−j+1
)
)(�−1∏

j=1

θ
bj−1

3

(
qp

�−j )
θ
bj
3

(
qp

�−j−1
)
)

= θ
b�+1−b�−1
3 (q) = θ

ψ(p�)

3 (q),

where we used the following equalities for the second equality above:

pj−1∏
v=0
p�v

θ3
(
ζ vpj q

�−2j
) =

∏pj−1
v=0 θ3

(
ζ v
pj
q�−2j

)
∏pj−1−1
v=0 θ3

(
ζ
pv

pj
q�−2j

) =
∏pj−1
v=0 θ3

(
ζ v
pj
q�−2j

)
∏pj−1−1
v=0 θ3

(
ζ v
pj−1q�−2j

) .
(37)

Thus the proof of Lemma 4.3 is completed.

Proof of Proposition 2.2. We prove (25) by induction on the number of
distinct prime factors of an odd integer n. If the integer n has only one prime
factor, namely, n is a power of some odd prime, then the assertion follows
immediately from Lemma 4.3. Suppose that (25) holds for an odd integer
m ≥ 3 having s(≥ 1) distinct prime factors:

∏
u,w

w−1∏
v=0

(u,v,w)=1

θ3(ζ
v
wq

u/w) = θ
ψ(m)

3 (q), (38)

where the product is taken over u and w with uw = m.
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Let � ≥ 1 be an integer and p be an odd prime number not dividing m.
In what follows, under the induction hypothesis (38), we prove that (25) also
holds for an integer n = mp� having s + 1 distinct prime factors. If n = mp�

(� ≥ 1), then the product on the left hand side in (25) is taken over all triples
u′ = up�−j , v′ = v, w′ = wpj satisfying the conditions

(u′, v′, w′) = (up�−j , v, wpj ) = 1,

uw = m, 0 ≤ v < wpj , 0 ≤ j ≤ �.

Hence the product in (25) is given by

�∏
j=0

∏
u,w

wpj−1∏
v=0

(up�−j ,v,wpj )=1

θ3
(
ζ vwpj q

u
w
p�−2j )

, (39)

where the product is taken over u and w with uw = m. Since m = uw is not
divided by p, we have the equivalent conditions

(up�−j , v, wpj ) = 1 ⇐⇒
{
(u, v,w) = 1, if j = 0, �,

(u, v,w) = 1 and p � v, otherwise,

and hence the product (39) is divided into three parts as follows:

(∏
u,w

w−1∏
v=0

(u,v,w)=1

θ3
(
ζ vwq

u
w
p�

))(�−1∏
j=1

∏
u,w

pjw−1∏
v=0

(u,v,w)=1
p�v

θ3
(
ζ vpjwq

u
w
p�−2j ))

×
(∏
u,w

p�w−1∏
v=0

(u,v,w)=1

θ3
(
ζ vwp�q

u
w
p−�))

,

where, similarly as in (37), we have

pjw−1∏
v=0

(u,v,w)=1
p�v

θ3
(
ζ vpjwq

u
w
p�−2j ) =

pjw−1∏
v=0

(u,v,w)=1

θ3
(
ζ v
pjw
q

u
w
p�−2j )

pj−1w−1∏
v=0

(u,v,w)=1

θ3
(
ζ v
pj−1w

q
u
w
p�−2j ) .
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Therefore the product (39) is rewritten again as

�∏
j=0

∏
u,w

wpj−1∏
v=0

(up�−j ,v,wpj )=1

θ3
(
ζ vwpj q

u
w
p�−2j ) =

�∏
j=0

∏
u,w

pjw−1∏
v=0

(u,v,w)=1

θ3
(
ζ v
pjw
q

u
w
p�−2j )

�−1∏
j=1

∏
u,w

pj−1w−1∏
v=0

(u,v,w)=1

θ3
(
ζ v
pj−1w

q
u
w
p�−2j ) .

(40)
Now we simplify the products on the right hand side above. Let j ≥ 0 be a

fixed integer. For each k = 0, 1, . . . , pj −1, we replace q by ζ k
pj
qp

�−2j
in (38):

∏
u,w

w−1∏
v=0

(u,v,w)=1

θ3
(
ζ
pj v+uk
pjw

q
u
w
p�−2j ) = θ

ψ(m)

3

(
ζ k
pj
qp

�−2j )
.

We take the product on both sides above for k from 0 to pj − 1 and obtain

pj−1∏
k=0

∏
u,w

w−1∏
v=0

(u,v,w)=1

θ3
(
ζ
pj v+uk
pjw

q
u
w
p�−2j ) =

pj−1∏
k=0

θ
ψ(m)

3

(
ζ k
pj
qp

�−2j )
. (41)

Then the left hand side in (41) is expressed by

pj−1∏
k=0

∏
u,w

w−1∏
v=0

(u,v,w)=1

θ3
(
ζ
pj v+uk
pjw

q
u
w
p�−2j ) =

∏
u,w

pjw−1∏
v=0

(u,v,w)=1

θ3
(
ζ vpjwq

u
w
p�−2j )

. (42)

On the other hand, by (35), the right hand side in (41) is expressed by

pj−1∏
k=0

θ
ψ(m)

3

(
ζ k
pj
qp

�−2j ) =
(
θ
bj+1

3

(
qp

�−j )
θ
bj
3

(
qp

�−j+1
)
)ψ(m)

. (43)

Thus, by (42) and (43), we rewrite (41) as follows:

∏
u,w

pjw−1∏
v=0

(u,v,w)=1

θ3
(
ζ vpjwq

u
w
p�−2j ) =

(
θ
bj+1

3

(
qp

�−j )
θ
bj
3

(
qp

�−j+1
)
)ψ(m)

.

Taking the product on both sides for j from 0 to �, we have

�∏
j=0

(∏
u,w

pjw−1∏
v=0

(u,v,w)=1

θ3
(
ζ vpjwq

u
w
p�−2j )) = θ

b�+1ψ(m)

3 (q). (44)
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Similarly, by replacing q by ζ k
pj−1q

p�−2j
in (38) and proceeding by the same

arguments as above, we get

�−1∏
j=1

(∏
u,w

pjw−1∏
v=0

(u,v,w)=1

θ3
(
ζ vpjwq

u
w
p�−2j )) = θ

b�−1ψ(m)

3 (q). (45)

Therefore, applying the consequences (44) and (45) to (40), we have

∏
u,w

�∏
j=0

wpj−1∏
v=0

(up�−j ,v,wpj )=1

θ3
(
ζ vwpj q

u
w
p�−2j ) = θ

(b�+1−b�−1)ψ(m)

3 (q) = θ
ψ(n)

3 (q).

The proof of Proposition 2.2 is completed.
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