AN INTEGRAL FORMULA

BENT FUGLEDE

1. Introduction. The present note is concerned with a formula for the mean value of the integrals of a function over all k-dimensional linear varieties passing through the origin in Euclidean n-dimensional space R^n $(k=1, 2, \ldots, n-1)$. This mean value refers to a certain invariant measure μ on the space A^k of all such varieties. The space A^k becomes a metric space (in particular a topological space) when the distance $[\alpha, \beta]$ between two varieties α and β from A^k is defined as the Fréchet distance $\sigma(\Omega_{\alpha}, \Omega_{\beta})$ between the unit spheres Ω_{α} and Ω_{β} in α and β :

(1)
$$[\alpha, \beta] = \max \left\{ \varrho(\Omega_{\alpha}, \Omega_{\beta}), \ \varrho(\Omega_{\beta}, \Omega_{\alpha}) \right\},$$
 where
$$\varrho(\Omega_{\alpha}, \Omega_{\beta}) = \sup_{x \in \Omega_{\alpha}} \inf_{y \in \Omega_{\beta}} |x - y| .$$

It is known from integral geometry that there is a unique invariant normalized measure $\mu \geq 0$ on this topological space A^k . (The invariance refers to the group G = O(n) of all rotations about the origin $0 \in \mathbb{R}^n$. Normalization means that the total mass $\mu(A^k)$ equals 1.) This measure μ is known explicitly; it has a known density² relative to a suitable parametrization of A^k . For the purpose of the present note, the explicit determination of μ is unnecessary. The mere existence and uniqueness of such a measure will suffice, and they will follow from a known theorem on invariant integration in homogeneous spaces.

The integral formula in question may be stated as follows:

(2)
$$\int_{4k} F(\alpha) d\mu(\alpha) = \frac{\omega_k}{\omega_n} \int_{p_n} |x|^{k-n} f(x) dx.$$

Here f=f(x) is an arbitrary Baire function on \mathbb{R}^n with values

Received August 24, 1958.

¹ Cf. e. g. N. Bourbaki [2, Chap. 9, exerc. 7, p. 29]. Actually, $\varrho(\Omega_{\alpha}, \Omega_{\beta}) = \varrho(\Omega_{\beta}, \Omega_{\alpha})$ since there always exists an involutory orthogonal transformation in R^n which interchanges α and β . The supremum and infimum may, of course, be replaced by maximum and minimum, respectively, on account of the compactness of Ω_{α} and Ω_{β} .

² Cf. W. Blaschke [1]. The first determination of μ is due to G. Herglotz [6]. For a general exposition of integral geometry, see L. A. Santaló [10].

$$0 \le f(x) \le +\infty.$$

The corresponding function $F = F(\alpha)$ is defined on A^k as follows:

(3)
$$F(\alpha) = \int_{\alpha} f(x) d\sigma(x) ,$$

where σ denotes k-dimensional Lebesgue measure in $\alpha \in A^k$. Moreover, dx refers to n-dimensional Lebesgue measure, and |x| denotes the Euclidean length of the vector x (= the distance between the origin 0 and the point x). Finally, ω_m denotes the surface of the unit sphere in R^m , $m=1, 2, \ldots$:

 $\omega_m = \frac{2\pi^{\frac{1}{2}m}}{\Gamma(\frac{1}{2}m)}.$

2. Invariant integration in homogeneous spaces. This subject is treated systematically in Weil [11, § 9]. For the sake of convenience we bring here the very simple arguments by which the question of invariant integration in a homogeneous space $\Gamma = G/H$, where G is a compact group and H a closed subgroup of G, is reduced to the well-known special case of invariant integration in a compact group (Haar measure). The homogeneous space $\Gamma = G/H$ is defined as the space of all left cosets $\gamma = gH$ of G modulo H ($g \in G$), the topology on Γ being the finest topology such that the canonical mapping φ of G onto Γ is continuous (cf. N. Bourbaki [2, Chap. 3, p. 18]). The canonical mapping φ is defined by $\varphi(g) = gH$. It is an open mapping, i.e. carries open subsets of G into open subsets of Γ (cf. N. Bourbaki [2, Chap. 3, Prop. 14, p. 18]). The group G acts on the homogeneous space Γ as a transitive transformation group as follows: If $g \in G$ and $\gamma = g_1H$, then $g\gamma = gg_1H$. Since G was supposed to be compact, the continuous image $\Gamma = \varphi(G)$ is likewise compact.

Now let λ denote Haar measure on the compact group G, normalized so that $\lambda(G) = 1$, and define μ as the image of λ under the continuous mapping φ of G onto Γ (N. Bourbaki [3, § 6, n° 1; in particular Remark 1]). Explicitly,

 $\mu(E) = \lambda(\varphi^{-1}(E))$

for any Borel set $E \subseteq \Gamma$. Or, on integral form,

(4)
$$\int_{\Gamma} f(\gamma) \ d\mu(\gamma) = \int_{G} f(gH) \ d\lambda(g)$$

for any Baire function f on Γ with values $0 \le f(\gamma) \le +\infty$ (N. Bourbaki [3, Prop. 2, p. 74]). Observe that, since φ is open, a set $E \subset \Gamma$ is a Borel subset of Γ if (and only if) $\varphi^{-1}(E)$ is a Borel subset of G; and similarly a

function f on Γ is a Baire function on Γ if (and only if) f(gH) determines a Baire function of g on G.

It is immediately verified that μ is normalized and invariant under G. Conversely, if μ denotes any normalized, G-invariant measure on Γ , then μ satisfies (4) and hence coincides with the above measure μ . In fact, the invariance of μ may be expressed as follows:

$$\int_{\Gamma} f(\gamma) \ d\mu(\gamma) = \int_{\Gamma} f(g\gamma) \ d\mu(\gamma)$$

for any $g \in G$ and any function f of the type specified above. Integrating with respect to $d\lambda(g)$, and applying Fubini's theorem, we obtain

$$\int_{\Gamma} f(\gamma) \; d\mu(\gamma) \; = \; \int_{\Gamma} d\mu(\gamma) \int_{G} f(g\gamma) \; d\lambda(g) \; .$$

Each $\gamma \in \Gamma$ has the form $\gamma = kH$ for some $k \in G$, and hence

$$\int_{G} f(g\gamma) \ d\lambda(g) = \int_{G} f(gkH) \ d\lambda(g) = \int_{G} f(gH) \ d\lambda(g)$$

in view of the *right* invariance of Haar measure on G (applied to the Baire function f(gH) of $g \in G$). Thus γ does not enter, and since μ is normalized, we are led to the equation (4), q.e.d.

3. Interpretation of A^k as a homogeneous space. From now on we take for G the orthogonal group O(n), the elements of which are all orthogonal matrices of order n, viewed also as rotations about the origin 0 in R^n . In particular, G acts on A^k as a transitive transformation group in the obvious way. The usual topology on G = O(n) can be defined by various well-known metrics, for example by taking for the distance between $g_1 \in G$ and $g_2 \in G$ the "operator norm" of the matrix difference $g_1 - g_2$:

(5)
$$||g_1 - g_2|| = \max_{\xi \in \mathcal{Q}} |g_1 \xi - g_2 \xi|.$$

(We denote by Ω the unit sphere in R^n , $\Omega = \{\xi \in R^n \mid |\xi| = 1\}$.) It is well known that G is compact (cf. e.g. C. Chevalley [4, Theorem 1, p. 4]). For fixed $x \in R^n$, the mapping $g \to gx$ of G into R^n is clearly continuous, and hence the scalar product $\langle gx, y \rangle$ is a continuous function of $g \in G$ for fixed x and y in R^n .

Next, let $\alpha_0 \in A^k$ denote a fixed k-dimensional subspace of R^n , and denote by H the subgroup of G consisting of all rotations $g \in G$ which leave α_0 invariant (not necessarily point-wise):

$$g\alpha_0 = \alpha_0$$
 for $g \in H$.

This amounts to the requirement that $\langle gx,y\rangle=0$ for every pair (x,y) with $x\in\alpha_0$ and $y\perp\alpha_0$. Hence H is closed. Consider now the homogeneous space $\Gamma=G/H$, and define a correspondence ψ between Γ and A^k as follows. All representatives $g\in\gamma$ of a given left coset $\gamma\in\Gamma$ carry the given subspace α_0 into one and the same subspace $\alpha=g\alpha_0\in A^k$. Writing $\alpha=\psi(\gamma)$, we have obtained a one-to-one mapping of Γ onto A^k . Composing this mapping ψ with the canonical mapping φ of G onto Γ , we obtain the following mapping $\chi=\psi\circ\varphi$ of G onto A^k :

$$\chi(g) = g\alpha_0.$$

This mapping χ is continuous because it is a contraction with respect to the metrics (1) and (5) on A^k and G:

$$[\alpha_1, \, \alpha_2] \leq \|g_1 - g_2\| \ .$$

In fact, let $x \in \Omega_{\alpha_1}$, and put $\xi = g_1^{-1}x$, $y = g_2\xi$. Then $\xi \in \Omega$, $y \in \Omega_{\alpha_2}$, and

$$|x-y| = |g_1\xi - g_2\xi| \le ||g_1 - g_2||$$
.

Hence $\varrho(\Omega_{\alpha_1},\Omega_{\alpha_2}) \leq ||g_1-g_2||$, and (6) follows by symmetry. The continuity of χ implies that of ψ (cf. N. Bourbaki [2, Chap. I, Théorème 1, p. 53]). Being a one-to-one continuous mapping of the compact space Γ onto A^k , ψ is a homeomorphism of Γ onto A^k . Moreover, the actions of G on Γ and on A^k correspond to each other by the mapping ψ : If $g\gamma_1=\gamma_2$, then $g\alpha_1=\alpha_2$ (with the notation $\alpha_1=\psi(\gamma_1),\ \alpha_2=\psi(\gamma_2)$). For the purpose of the present note we may, consequently, identify Γ with A^k .

4. Proof of the integral formula (2). By application of the results of § 2 to the homogeneous space $\Gamma = G/H$ described in § 3 (and identified with A^k), we obtain

(7)
$$\int_{Ak} F(\alpha) \ d\mu(\alpha) = \int_{C} F(g\alpha_0) \ d\lambda(g)$$

for any Baire function F on A^k with values $0 \le F(\alpha) \le +\infty$. Now let F be defined as in (4) in terms of a given Baire function f on \mathbb{R}^n (with $0 \le f(x) \le +\infty$). Then we have

$$F(g\alpha_0) = \int_{g\alpha_0} f(y) \, d\sigma(y) = \int_{\alpha_0} f(gx) \, d\sigma(x) .$$

According to Fubini's theorem, this represents a Baire function of $g \in G$, and hence F is itself a Baire function on A^k (cf. § 2). Moreover,

(8)
$$\int_{G} F(g\alpha_{0}) d\lambda(g) = \int_{\alpha_{0}} \left(\int_{G} f(gx) d\lambda(g) \right) d\sigma(x) .$$

For $x \neq 0$, the inner integral on the right is simply the usual mean value of f over the sphere $\Sigma_x \subset R^n$ of centre 0 and passing through the point x. It is, in fact, well known (and may be verified by arguments similar to those employed in § 3, cf. e.g. C. Chevalley [4, p. 32–33]) that Σ_x may be identified with the homogeneous space G/G_x , where G=O(n) as before, and G_x consists of all $g \in G$ which leave the point x fixed: gx = x. The invariant integral on Σ_x is, however, the usual mean value, and hence we obtain from (4):

$$\int_{G} f(gx) \, d\lambda(g) = \frac{1}{\omega_{n}} \int_{\Omega} f(|x|\xi) \, d\omega(\xi) ,$$

where ω is the usual surface measure on the unit sphere $\Omega \subset \mathbb{R}^n$. Inserting this result on the right of (8), and performing the integration over α_0 by use of polar coordinates (observing that only |x|=r enters), we obtain in view of (7) the desired identity (2):

$$\begin{split} \int_{A^k} F(\alpha) \ d\mu(\alpha) &= \frac{\omega_k}{\omega_n} \int_0^\infty r^{k-1} dr \int_{\Omega} f(r\xi) \ d\omega(\xi) \\ &= \frac{\omega_k}{\omega_n} \int_0^\infty \int_{\Omega} r^{k-n} f(r\xi) \ r^{n-1} \ dr \ d\omega(\xi) \\ &= \frac{\omega_k}{\omega_n} \int_{\Omega} |x|^{k-n} f(x) \ dx \ . \end{split}$$

5. Applications. Replacing the origin 0 by an arbitrary point $x \in \mathbb{R}^n$, we obtain for the mean value of the integrals of the function f over all k-dimensional linear varieties passing through x the expression

$$\frac{\omega_k}{\omega_n} \int_{\mathbb{R}^n} |x-y|^{k-n} f(y) \ dy = \frac{\omega_k}{\omega_n} U_k^f(x) ,$$

where U_k^f is the potential of order k of the "mass distribution" with density f. In the sequel we assume that $(1+|x|)^{k-n}f(x)$ has a finite integral over R^n . If the integrals of f over (almost) all k-dim. linear varieties in R^n are known, then so is, therefore, the potential U_k^f of f of order k. For even k, one obtains f itself (apart from a constant factor) from U_k^f by applying the Laplace operator Δ successively k/2 times. This follows from the well-known identity due to M. Riesz [9, Chap. I, § 2]:

$$\Delta U_k^f = (2-k)(n-k)U_{k-2}^f \qquad (2 < k < n),$$

together with Poisson's formula

$$\Delta U_2^f = (n-2)\omega_n \cdot f \qquad (n > 2) ,$$

valid in the classical sense provided f is sufficiently smooth. In the case where k is odd, one may determine U_1^f in the above way. Next, U_2^f is the potential of order 1 of U_1^f (multiplied by a certain constant, cf. M. Riesz [9, loc. cit.]; we assume here n > 2). Finally f is obtained by application of Poisson's formula.

Thus the integral formula (2) gives rise to a solution of the problem of determining a function on R^n when its integrals over all k-dim. linear varieties in R^n are given. The first solution of this problem was given by J. Radon [8]. The role of this and related problems in the theory of partial differential equations is described in the book of F. John [7].

A different type of applications of formula (2) arose in the author's study of "exceptional systems" of surfaces (cf. [5, Chap. 2, § 3]).

REFERENCES

- 1. W. Blaschke, Integralgeometrie (Actual. sci. et ind. 252), Paris, 1935.
- N. Bourbaki, Topologie générale (Les structures fondamentales de l'analyse, Livre III), Paris, 1940–1953.
- N. Bourbaki, Intégration des mesures (Les structures fondamentales de l'analyse, VI, Chap.5), Paris, 1956.
- 4. C. Chevalley, Theory of Lie groups. Princeton, 1946.
- 5. B. Fuglede, Extremal length and functional completion, Acta math. 98 (1957), 171-219.
- G. Herglotz, Geometrische Wahrscheinlichkeiten, Unpublished lectures in Göttingen, 1933.
- 7. F. John, Plane waves and spherical means, New York, 1955.
- 8. J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. 69 (1917), 262–277.
- 9. M. Riesz, Intégrales de Riemann-Liouville et potentiels, Acta Szeged. 9 (1938), 1-42.
- 10. L. A. Santaló, Introduction to integral geometry (Actual. sci. et ind. 1198), Paris, 1953.
- A. Weil, L'intégration dans les groupes topologiques et ces applications, (Actual. sci. et ind. 869) Paris. 1940.

UNIVERSITY OF COPENHAGEN, DENMARK AND

UNIVERSITY OF LUND, SWEDEN