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AN INTEGRAL FORMULA

BENT FUGLEDE

1. Introduction. The present note is concerned with a formula for the
mean value of the integrals of a function over all k-dimensional linear
varieties passing through the origin in Euclidean »n-dimensional space R®
(k=1,2, ...,n—1). This mean value refers to a certain invariant mea-
sure u on the space 4* of all such varieties. The space A* becomes a
metric space (in particular a topological space) when the distance [«, f]
between two varieties « and f from A* is defined as the Fréchet distance!
0(£2,, £2;) between the unit spheres (2, and £ in x and §:

(1) [x, f] = max{o(2,, 25), 0(24 L2,)},
where .
0(2,, 2;) = sup inf |x—y].

z€Qy Y
It is known from integral geometry that there is a unique invariant
normalized measure x>0 on this topological space A¥. (The invariance
refers to the group G'=0(n) of all rotations about the origin 0eR™.
Normalization means that the total mass u(4*) equals 1.) This measure
4 is known explicitly; it has a known density? relative to a suitable para-
metrization of 4% For the purpose of the present note, the explicit
determination of u is unnecessary. The mere existence and uniqueness
of such a measure will suffice, and they will follow from a known theorem
on invariant integration in homogeneous spaces.
The integral formula in question may be stated as follows:

() \ Fo) du@) = 2% (o fio) do
" pn

Ak
Here f=f(x) is an arbitrary Baire function on R® with values
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1 Cf. e. g. N. Bourbaki [2, Chap. 9, exerc. 7, p. 29]. Actually, g(£2,, .ng) =Q(.Qﬁ, 2,
since there always exists an involutory orthogonal transformation in R™ which inter-
changes « and fi. The supremum and infimum may, of course, be replaced by maximum
and minimum, respectively, on account of the compactness of £, and .Qﬂ.

2 Cf. W. Blaschke [1]. The first determination of g is due to G. Herglotz [6]. For a
general exposition of integral geometry, see L. A. Santal6 [10].
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0= flx) £ +o0.

The corresponding function ¥ = F(x) is defined on A* as follows:

®) P(e) = { @) dota) .

x

where ¢ denotes k-dimensional Lebesgue measure in a€4*. Moreover,
dz refers to n-dimensional Lebesgue measure, and |z| denotes the Euclid-
ean length of the vector x (=the distance between the origin 0 and the
point z). Finally, w, denotes the surface of the unit sphere in R™,

m=1,2,...:
2 im

T rigm)’

W

2. Invariant integration in homogeneous spaces. This subject is treated
systematically in Weil [11, § 9]. For the sake of convenience we bring
here the very simple arguments by which the question of invariant
integration in a homogeneous space I'=G[H, where @ is a compact group
and H a closed subgroup of @, is reduced to the well-known special case
of invariant integration in a compact group (Haar measure). The
homogeneous space I'= G/H is defined as the space of all left cosets y =gH
of G modulo H (ge@), the topology on I" being the finest topology such
that the canonical mapping ¢ of G onto I"is continuous (cf. N. Bourbaki
[2, Chap. 3, p. 18]). The canonical mapping ¢ is defined by ¢(g)=gH.
It is an open mapping, i.e. carries open subsets of (' into open subsets
of I' (cf. N. Bourbaki [2, Chap. 3, Prop. 14, p. 18]). The group G acts on
the homogeneous space I" as a transitive transformation group as follows:
If ge@ and y =g, H, then gy =gg,H. Since G was supposed to be compact,
the continuous image I'=¢((@) is likewise compact.

Now let 1 denote Haar measure on the compact group &, normalized
so that A(G)=1, and define x as the image of 1 under the continuous
mapping ¢ of G onto I" (N. Bourbaki [3, § 6, n° 1; in particular Remark 1]).

Explicitly,
WE) = Mg (B))
for any Borel set E<I'. Or, on integral form,

(#) {101 dutn = {ram ang)
G

r

for any Baire function f on I" with values 0 < f(y) < + oo (N. Bourbaki [3,
Prop. 2, p. 74]). Observe that, since ¢ is open, a set £ <1I is a Borel
subset of I" if (and only if) p—1(%) is a Borel subset of ¢; and similarly a
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function f on I"is a Baire function on I' if (and only if) f(gH) determines
a Baire function of g on G.

It is immediately verified that u is normalized and invariant under G.
Conversely, if 4 denotes any normalized, G-invariant measure on I, then
u satisfies (4) and hence coincides with the above measure p. In fact, the
invariance of x4 may be expressed as follows:

Sf(y) du(y) = Sf(gy) du(y)

for any ge @ and any function f of the type specified above. Integrating
with respect to di(g), and applying Fubini’s theorem, we obtain

V1) dutr) = {auen { ron a0 -

r r Q

Each yelI has the form y =kH for some ke@, and hence

V10 aig) = sy drtg) = \ 91 daig)
G G G

in view of the right invariance of Haar measure on G (applied to the
Baire function f(gH) of ge@). Thus y does not enter, and since u is
normalized, we are led to the equation (4), q.e.d.

3. Interpretation of A* as a homogeneous space. From now on we
take for G the orthogonal group O(n), the elements of which are all
orthogonal matrices of order n, viewed also as rotations about the origin
0in R*. In particular, G acts on A as a transitive transformation group
in the obvious way. The usual topology on G/ =0(n) can be defined by
various well-known metrics, for example by taking for the distance be-
tween ¢g,€G and g,eG the “operator norm” of the matrix difference
91— 92"

(5) g1 —gll = max|g; & —g,8] .
EeQ

(We denote by Q the unit sphere in R*, Q={¢cR"||¢é|= 1}.) It is well
known that @ is compact (cf. e.g. C. Chevalley [4, Theorem 1, p. 4]). For
fixed xeR", the mapping ¢ - gx of G into R™ is clearly continuous,
and hence the scalar product {gz, y) is a continuous function of ge@ for
fixed « and y in R".

Next, let x,eA* denote a fixed k-dimensional subspace of B®, and
denote by H the subgroup of @ consisting of all rotations ge ¢ which leave
&g invariant (not necessarily point-wise):
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gxg = g for geH.

This amounts to the requirement that (g, y) =0 for every pair (x, y) with
zeny and y L «,. Hence H is closed. Consider now the homogeneous
space I'=G/H, and define a correspondence y between I" and A% as fol-
lows. All representatives gey of a given left coset yel’ carry the given
subspace «, into one and the same subspace a=gx,cA*. Writing
«=y(y), we have obtained a one-to-one mapping of I" onto A*. Composing
this mapping p with the canonical mapping ¢ of ¢ onto I', we obtain the
following mapping y=wo@p of G onto A*:

209) = gxg -

This mapping x is continuous because it is a contraction with respect to
the metrics (1) and (5) on 4% and G:

(6) [o1, %] = [l91— 9ol -
In fact, let xe2, , and put é=g,7'», y=g,&. Then £eQ, yel,, and

[—y| = 91 —92&] = llg1—9all -

Hence o(2,,, 2,,) < llg1—9.ll, and (6) follows by symmetry. The con-
tinuity of y implies that of ¢ (cf. N. Bourbaki [2, Chap. I, Théoréme 1,
p. 53]). Being a one-to-one continuous mapping of the compact space I’
onto A%, y is a homeomorphism of I" onto 4*. Moreover, the actions of
G on I and on A4* correspond to each other by the mapping y: If gy, =y,,
then g, = x, (with the notation &; =y(y;), &, =1y(p,)). For the purpose of
the present note we may, consequently, identify I” with A4%.

4. Proof of the integral formula (2). By application of the results of
§ 2 to the homogeneous space I'=G/H described in § 3 (and identified
with A¥), we obtain
) {F o) dto) =  Figng anig)

Ak

for any Baire function F on 4% with values 0 < F(x) < +cc. Now let F be
defined as in (4) in terms of a given Baire function f on R” (with
0<f(x)< +o0). Then we have

Fgao) = \ £w) do) = {1g) do@) .
gxo *0

According to Fubini’s theorem, this represents a Baire function of ge@,
and hence F is itself a Baire function on 4% (cf. § 2). Moreover,
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®) V£ ditg) = § ({1600 d2(9)) dota)
G o G

For x+ 0, the inner integral on the right is simply the usual mean value
of f over the sphere 2 < R™ of centre 0 and passing through the point z.
It is, in fact, well known (and may be verified by arguments similar to
those employed in § 3, cf. e.g. C. Chevalley [4, p. 32-33]) that 2, may be
identified with the homogeneous space G/G,, where G'=0(n) as before,
and G, consists of all ge@ which leave the point x fixed: gr=x. The
invariant integral on X is, however, the usual mean value, and hence
we obtain from (4):

y 1
\#g) ax0) = —(1(219) dwo @),
& "o

where o is the usual surface measure on the unit sphere {2 < R*. Inserting
this result on the right of (8), and performing the integration over «, by
use of polar coordinates (observing that only [z|=r enters), we obtain in
view of (7) the desired identity (2):

8[8
S

3

| F2) duta)

Ak

rk-1dy S 7(r8) dor (&)

8‘8
e

3

Ot § Ot @

S rk=n f(r€) -1 dr doo(&)
Q2

|| f(w) dx .

SIE
=

3

Ners

n

5. Applications. Replacing the origin 0 by an arbitrary point xeR?",
we obtain for the mean value of the integrals of the function f over all
k-dimensional linear varieties passing through z the expression

2k oyl 1) dy = 2% Ulo)
W, w

nR.n n

where U/, is the potential of order k of the “mass distribution” with
density f. In the sequel we assume that (1+ |2|)*~" f(z) has a finite inte-
gral over R™. If the integrals of f over (almost) all k-dim. linear varieties
in R™ are known, then so is, therefore, the potential UJ; of f of order k.
For even k, one obtains f itself (apart from a constant factor) from U7
by applying the Laplace operator A successively k/2 times. This follows
from the well-known identity due to M. Riesz [9, Chap. I, § 2]:



212 BENT FUGLEDE

AUL = -k (n-k)UL., (2<k<n),
together with Poisson’s formula

AUL = n=2)w,-f (> 2),

valid in the classical sense provided f is sufficiently smooth. In the case
where k is odd, one may determine U in the above way. Next, Uf is
the potential of order 1 of UY (multiplied by a certain constant, cf.
M. Riesz [9, loc. cit.]; we assume here »>2). Finally f is obtained by
application of Poisson’s formula.

Thus the integral formula (2) gives rise to a solution of the problem
of determining a function on R” when its integrals over all k-dim. linear
varieties in B” are given. The first solution of this problem was given by
J. Radon [8]. The role of this and related problems in the theory of
partial differential equations is described in the book of F. John [7].

A different type of applications of formula (2) arose in the author’s
study of “‘exceptional systems’ of surfaces (cf. [5, Chap. 2, § 3]).
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