AN INTEGRAL FORMULA

BENT FUGLEDE

1. Introduction. The present note is concerned with a formula for the mean value of the integrals of a function over all \(k\)-dimensional linear varieties passing through the origin in Euclidean \(n\)-dimensional space \(R^n\) \((k=1, 2, \ldots, n-1)\). This mean value refers to a certain invariant measure \(\mu\) on the space \(A^k\) of all such varieties. The space \(A^k\) becomes a metric space (in particular a topological space) when the distance \([\alpha, \beta]\) between two varieties \(\alpha\) and \(\beta\) from \(A^k\) is defined as the Fréchet distance\(^1\) \(\sigma(\Omega_\alpha, \Omega_\beta)\) between the unit spheres \(\Omega_\alpha\) and \(\Omega_\beta\) in \(\alpha\) and \(\beta\):

\[
[\alpha, \beta] = \max\{q(\Omega_\alpha, \Omega_\beta), q(\Omega_\beta, \Omega_\alpha)\},
\]

where

\[
q(\Omega_\alpha, \Omega_\beta) = \sup_{x \in \Omega_\alpha} \inf_{y \in \Omega_\beta} |x - y|.
\]

It is known from integral geometry that there is a unique invariant normalized measure \(\mu \geq 0\) on this topological space \(A^k\). (The invariance refers to the group \(G=O(n)\) of all rotations about the origin \(0 \in R^n\). Normalization means that the total mass \(\mu(A^k)\) equals 1.) This measure \(\mu\) is known explicitly; it has a known density\(^2\) relative to a suitable parametrization of \(A^k\). For the purpose of the present note, the explicit determination of \(\mu\) is unnecessary. The mere existence and uniqueness of such a measure will suffice, and they will follow from a known theorem on invariant integration in homogeneous spaces.

The integral formula in question may be stated as follows:

\[
\int_{A^k} F(\alpha) \, d\mu(\alpha) = \frac{\omega_k}{\omega_n} \int_{R^n} |x|^{k-n} f(x) \, dx.
\]

Here \(f=f(x)\) is an arbitrary Baire function on \(R^n\) with values

\(^1\) Cf. e. g. N. Bourbaki [2, Chap. 9, exerc. 7, p. 29]. Actually, \(q(\Omega_\alpha, \Omega_\beta) = q(\Omega_\beta, \Omega_\alpha)\) since there always exists an involutory orthogonal transformation in \(R^n\) which interchanges \(\alpha\) and \(\beta\). The supremum and infimum may, of course, be replaced by maximum and minimum, respectively, on account of the compactness of \(\Omega_\alpha\) and \(\Omega_\beta\).

\(^2\) Cf. W. Blaschke [1]. The first determination of \(\mu\) is due to G. Herglotz [6]. For a general exposition of integral geometry, see L. A. Santaló [10].
\[0 \leq f(x) \leq +\infty. \]

The corresponding function \(F = F(\alpha) \) is defined on \(A^k \) as follows:

\[
F(\alpha) = \int f(x) \, d\sigma(x),
\]

where \(\sigma \) denotes \(k \)-dimensional Lebesgue measure in \(x \in A^k \). Moreover, \(dx \) refers to \(n \)-dimensional Lebesgue measure, and \(|x|\) denotes the Euclidean length of the vector \(x \) (= the distance between the origin \(0 \) and the point \(x \)). Finally, \(\omega_m \) denotes the surface of the unit sphere in \(\mathbb{R}^m \), \(m = 1, 2, \ldots \):

\[
\omega_m = \frac{2\pi \cdot m!}{\Gamma(\frac{1}{2} m)}. \]

2. **Invariant integration in homogeneous spaces.** This subject is treated systematically in Weil [11, § 9]. For the sake of convenience we bring here the very simple arguments by which the question of invariant integration in a homogeneous space \(\Gamma = G/H \), where \(G \) is a compact group and \(H \) a closed subgroup of \(G \), is reduced to the well-known special case of invariant integration in a compact group (Haar measure). The homogeneous space \(\Gamma = G/H \) is defined as the space of all left cosets \(\gamma = gH \) of \(G \) modulo \(H \) (\(g \in G \)), the topology on \(\Gamma \) being the finest topology such that the canonical mapping \(\varphi \) of \(G \) onto \(\Gamma \) is continuous (cf. N. Bourbaki [2, Chap. 3, p. 18]). The canonical mapping \(\varphi \) is defined by \(\varphi(g) = gH \). It is an open mapping, i.e. carries open subsets of \(G \) into open subsets of \(\Gamma \) (cf. N. Bourbaki [2, Chap. 3, Prop. 14, p. 18]). The group \(G \) acts on the homogeneous space \(\Gamma \) as a transitive transformation group as follows: If \(g \in G \) and \(\gamma = g_1 H \), then \(g\gamma = gg_1 H \). Since \(G \) was supposed to be compact, the continuous image \(\Gamma = \varphi(G) \) is likewise compact.

Now let \(\lambda \) denote Haar measure on the compact group \(G \), normalized so that \(\lambda(G) = 1 \), and define \(\mu \) as the image of \(\lambda \) under the continuous mapping \(\varphi \) of \(G \) onto \(\Gamma \) (N. Bourbaki [3, § 6, n° 1; in particular Remark 1]). Explicitly,

\[
\mu(E) = \lambda(\varphi^{-1}(E))
\]

for any Borel set \(E \subset \Gamma \). Or, on integral form,

\[
\int_{\Gamma} f(\gamma) \, d\mu(\gamma) = \int_{\Gamma} f(gH) \, d\lambda(g)
\]

for any Baire function \(f \) on \(\Gamma \) with values \(0 \leq f(\gamma) \leq +\infty \) (N. Bourbaki [3, Prop. 2, p. 74]). Observe that, since \(\varphi \) is open, a set \(E \subset \Gamma \) is a Borel subset of \(\Gamma \) if (and only if) \(\varphi^{-1}(E) \) is a Borel subset of \(G \); and similarly a
function f on Γ is a Baire function on Γ if (and only if) $f(gH)$ determines a Baire function of g on G.

It is immediately verified that μ is normalized and invariant under G. Conversely, if μ denotes any normalized, G-invariant measure on Γ, then μ satisfies (4) and hence coincides with the above measure μ. In fact, the invariance of μ may be expressed as follows:

$$\int_{\Gamma} f(\gamma) \, d\mu(\gamma) = \int_{\Gamma} f(g\gamma) \, d\mu(\gamma)$$

for any $g \in G$ and any function f of the type specified above. Integrating with respect to $d\lambda(g)$, and applying Fubini’s theorem, we obtain

$$\int_{\Gamma} f(\gamma) \, d\mu(\gamma) = \int_{\Gamma} d\mu(\gamma) \int_{G} f(g\gamma) \, d\lambda(g).$$

Each $\gamma \in \Gamma$ has the form $\gamma = kH$ for some $k \in G$, and hence

$$\int_{G} f(g\gamma) \, d\lambda(g) = \int_{G} f(gkH) \, d\lambda(g) = \int_{G} f(gH) \, d\lambda(g)$$

in view of the right invariance of Haar measure on G (applied to the Baire function $f(gH)$ of $g \in G$). Thus γ does not enter, and since μ is normalized, we are led to the equation (4), q.e.d.

3. Interpretation of A^k as a homogeneous space. From now on we take for G the orthogonal group $O(n)$, the elements of which are all orthogonal matrices of order n, viewed also as rotations about the origin 0 in \mathbb{R}^n. In particular, G acts on A^k as a transitive transformation group in the obvious way. The usual topology on $G = O(n)$ can be defined by various well-known metrics, for example by taking for the distance between $g_1 \in G$ and $g_2 \in G$ the “operator norm” of the matrix difference $g_1 - g_2$:

$$(5) \quad ||g_1 - g_2|| = \max_{\xi \in \Omega} |g_1 \xi - g_2 \xi|.$$

(We denote by Ω the unit sphere in \mathbb{R}^n, $\Omega = \{\xi \in \mathbb{R}^n | ||\xi|| = 1\}$.) It is well known that G is compact (cf. e.g. C. Chevalley [4, Theorem 1, p. 4]). For fixed $x \in \mathbb{R}^n$, the mapping $g \rightarrow gx$ of G into \mathbb{R}^n is clearly continuous, and hence the scalar product $\langle gx, y \rangle$ is a continuous function of $g \in G$ for fixed x and y in \mathbb{R}^n.

Next, let $\alpha_0 \in A^k$ denote a fixed k-dimensional subspace of \mathbb{R}^n, and denote by H the subgroup of G consisting of all rotations $g \in G$ which leave α_0 invariant (not necessarily point-wise):
\(g_{\alpha_0} = \alpha_0 \) for \(g \in H \).

This amounts to the requirement that \(\langle gx, y \rangle = 0 \) for every pair \((x, y)\) with \(x \in \alpha_0\) and \(y \perp \alpha_0\). Hence \(H \) is closed. Consider now the homogeneous space \(\Gamma = G/H \), and define a correspondence \(\psi \) between \(\Gamma \) and \(A^k \) as follows. All representatives \(g \in \gamma \) of a given left coset \(\gamma \in \Gamma \) carry the given subspace \(\alpha_0 \) into one and the same subspace \(\alpha = g_{\alpha_0} \in A^k \). Writing \(\alpha = \psi(\gamma) \), we have obtained a one-to-one mapping of \(\Gamma \) onto \(A^k \). Composing this mapping \(\psi \) with the canonical mapping \(\varphi \) of \(G \) onto \(\Gamma \), we obtain the following mapping \(\chi = \psi \circ \varphi \) of \(G \) onto \(A^k \):

\[\chi(g) = g_{\alpha_0} \, . \]

This mapping \(\chi \) is continuous because it is a contraction with respect to the metrics (1) and (5) on \(A^k \) and \(G \):

\[[\alpha_1, \alpha_2] \leq ||g_1 - g_2|| \, . \]

(6)

In fact, let \(x \in \Omega_{\alpha_1} \), and put \(\xi = g_1^{-1}x \), \(y = g_2 \xi \). Then \(\xi \in \Omega \), \(y \in \Omega_{\alpha_2} \), and

\[|x - y| = |g_1 \xi - g_2 \xi| \leq ||g_1 - g_2|| \, . \]

Hence \(\rho(\Omega_{\alpha_1}, \Omega_{\alpha_2}) \leq ||g_1 - g_2|| \), and (6) follows by symmetry. The continuity of \(\chi \) implies that of \(\psi \) (cf. N. Bourbaki [2, Chap. I, Théorème 1, p. 53]). Being a one-to-one continuous mapping of the compact space \(\Gamma \) onto \(A^k \), \(\psi \) is a homeomorphism of \(\Gamma \) onto \(A^k \). Moreover, the actions of \(G \) on \(\Gamma \) and on \(A^k \) correspond to each other by the mapping \(\psi \): If \(\gamma_1 = \gamma_2 \), then \(g_{\alpha_1} = \alpha_2 \) (with the notation \(\alpha_1 = \psi(\gamma_1) \), \(\alpha_2 = \psi(\gamma_2) \)). For the purpose of the present note we may, consequently, identify \(\Gamma \) with \(A^k \).

4. Proof of the integral formula (2). By application of the results of § 2 to the homogeneous space \(\Gamma = G/H \) described in § 3 (and identified with \(A^k \)), we obtain

\[\int_{A^k} F(x) \, d\mu(x) = \int_{\Gamma} F(g_{\alpha_0}) \, d\lambda(g) \]

(7)

for any Baire function \(F \) on \(A^k \) with values \(0 \leq F(\alpha) \leq +\infty \). Now let \(F \) be defined as in (4) in terms of a given Baire function \(f \) on \(R^n \) (with \(0 \leq f(x) \leq +\infty \)). Then we have

\[F(g_{\alpha_0}) = \int_{y \in \alpha_0} f(y) \, d\sigma(y) = \int_{x \in \alpha_0} f(gx) \, d\sigma(x) \, . \]

According to Fubini’s theorem, this represents a Baire function of \(g \in G \), and hence \(F \) is itself a Baire function on \(A^k \) (cf. § 2). Moreover,
AN INTEGRAL FORMULA

\(\int_G F(gx_0) \, d\lambda(g) = \int_{\alpha_0} \left(\int_G f(gx) \, d\lambda(g) \right) \, d\sigma(x). \)

For \(x \neq 0 \), the inner integral on the right is simply the usual mean value of \(f \) over the sphere \(\Sigma_x \subseteq \mathbb{R}^n \) of centre 0 and passing through the point \(x \). It is, in fact, well known (and may be verified by arguments similar to those employed in \S 3, cf. e.g. C. Chevalley [4, p. 32–33]) that \(\Sigma_x \) may be identified with the homogeneous space \(G/G_x \), where \(G = O(n) \) as before, and \(G_x \) consists of all \(g \in G \) which leave the point \(x \) fixed: \(gx = x \). The invariant integral on \(\Sigma_x \) is, however, the usual mean value, and hence we obtain from (4):

\[\int_{G} f(gx) \, d\lambda(g) = \frac{\omega}{\omega_n} \int_{\Omega} f(|x| \xi) \, d\omega(\xi), \]

where \(\omega \) is the usual surface measure on the unit sphere \(\Omega \subseteq \mathbb{R}^n \). Inserting this result on the right of (8), and performing the integration over \(\alpha_0 \) by use of polar coordinates (observing that only \(|x| = r \) enters), we obtain in view of (7) the desired identity (2):

\[\int_{A^k} F(x) \, d\mu(x) = \frac{\omega_k}{\omega_n} \int_0^\infty \int_{\Omega} f(r\xi) \, d\omega(\xi) \int_0^r r^{k-1} \, dr \]

\[= \frac{\omega_k}{\omega_n} \int_0^\infty \int_{\Omega} f(r\xi) \, \xi^{n-1} \, dr \, d\omega(\xi) \]

\[= \frac{\omega_k}{\omega_n} \int_{\mathbb{R}^n} |x|^{k-n} f(x) \, dx. \]

5. Applications. Replacing the origin 0 by an arbitrary point \(x \in \mathbb{R}^n \), we obtain for the mean value of the integrals of the function \(f \) over all \(k \)-dimensional linear varieties passing through \(x \) the expression

\[\frac{\omega_k}{\omega_n} \int_{\mathbb{R}^n} |x - y|^{k-n} f(y) \, dy = \frac{\omega_k}{\omega_n} U^f_k(x), \]

where \(U^f_k \) is the potential of order \(k \) of the "mass distribution" with density \(f \). In the sequel we assume that \((1 + |x|)^{k-n} f(x)\) has a finite integral over \(\mathbb{R}^n \). If the integrals of \(f \) over (almost) all \(k \)-dim. linear varieties in \(\mathbb{R}^n \) are known, then so is, therefore, the potential \(U^f_k \) of \(f \) of order \(k \). For even \(k \), one obtains \(f \) itself (apart from a constant factor) from \(U^f_k \) by applying the Laplace operator \(\Delta \) successively \(k/2 \) times. This follows from the well-known identity due to M. Riesz [9, Chap. I, \S 2]:
\[\Delta U_k^f = (2-k)(n-k)U_{k-2}^f \quad (2 < k < n), \]

together with Poisson’s formula
\[\Delta U_2^f = (n-2)\omega_n \cdot f \quad (n > 2), \]
valid in the classical sense provided \(f \) is sufficiently smooth. In the case where \(k \) is odd, one may determine \(U_1^f \) in the above way. Next, \(U_2^f \) is the potential of order 1 of \(U_1^f \) (multiplied by a certain constant, cf. M. Riesz [9, loc. cit.]; we assume here \(n > 2 \)). Finally \(f \) is obtained by application of Poisson’s formula.

Thus the integral formula (2) gives rise to a solution of the problem of determining a function on \(R^n \) when its integrals over all \(k \)-dim. linear varieties in \(R^n \) are given. The first solution of this problem was given by J. Radon [8]. The role of this and related problems in the theory of partial differential equations is described in the book of F. John [7].

A different type of applications of formula (2) arose in the author’s study of “exceptional systems” of surfaces (cf. [5, Chap. 2, § 3]).

REFERENCES

UNIVERSITY OF COPENHAGEN, DENMARK

AND

UNIVERSITY OF LUND, SWEDEN