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ON THE BORELIAN AND PROJECTIVE TYPES
OF LINEAR SUBSPACES

VICTOR KLEE!

1. Introduction. In the early years of Studia Mathematica, the prob-
lem was raised as to what Borelian and what projective types can be
realized by the linear subspaces of Banach spaces. Although some inter-
esting partial results were obtained, the following basic problems re-
mained open:

(Mazur and Sternbach [12]) Are there linear subspaces of arbitrarily
high borelian type ?2

(Banach and Kuratowski [2]) Are there linear subspaces which are
analytic but nonborelian ?

These questions are answered affirmatively in the present note. We
establish a general existence theorem which has the following consequence :

THEOREM A. If E is an infinite-dimensional separable Banach space, then

(i) for each ordinal B with 1 << 8, there is a dense linear subspace of E
which is borelian of additive class  but not of multiplicative class f;

(ii) for each ordinal y with 1 <y < w, there is a dense linear subspace of
E which is projective of class vy but not of any lower class.

The existence theorem appears with related material in § 2 below, while
its applications (including the proof of Theorem A) will be found in § 3.
In both sections, some unsolved problems are mentioned. Results, termi-
nology, or notation which are employed without specific reference can be
found in Day [6] or Kuratowski [11].

2. The existence theorem. Our aim is to find conditions on a subset §
of a normed linear space which will ensure that certain topological
properties carry over from S to its linear extension leS. The topological
properties will be described in terms of the following conditions on a
family & of metric spaces:
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I & includes the union of each sequence of its members;
IT & includes the cartesian product of each pair of its members;
ITIT % includes the real number space R;
IV % includes all closed subsets of its members;
V & includes all homeomorphic images of its members;
V' & includes all biunique continuous images of its members;
V" & includes all continuous images of its members.
The above assertions are to be interpreted with respect to the class of all
metric spaces, and with use of the relative topology where appropriate.
Thus (for example) more careful statements of I and V'’ would read as
follows: I If X is a sequence of subsets of a metric space such that each
X, is (under its relative topology) a member of &, then U7X is (under
its relative topology) a member of #. V" If X is a member of & and
there is a continuous map of X onto a metric space Y, then Y is a member
of &.

2.1 THEOREM. Suppose F is a family of separable metric spaces which
satisfies conditions 1-1V, S is a member of F which lies in a metric linear
space, and le S is the linear extension of S. Then each of the following sup-
plementary requirements ensures that le S shall be a member of F :

F satisfies condition V'’

F satisfies condition V' and S is linearly independent;

F satisfies condition V, and the closure of S is compact and linearly in-
dependent.

Proor. For a linear space X and a positive integer =n, let 7', be the
function on the product space E® x X™ which is defined as follows:

To((re oo s 70)y (@, oo @) = 3 ;.
1

The first step in proving 2.1 is to observe

(1) For each n, T, is a continuous linear transformation of B x X"
onto X. For each Sc X,

leS = U 7, (R x 8" .
1

Now suppose the family & satisfies I-I1I and V’’, and S is a member
of #. Then % includes each set R* x S” by II-I1I, each set T, (R™ x S™)
by V", and hence includes le § by I. Thus separability and condition IV
are unnecessary for the first part of 2.1.

We denote by L, the set of all r=(ry, ..., r,) € B* for which no r; is
zero. By a cross-section of 8™ we shall mean a set C, =S, such that if
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(@y, ..., x,) € C,, then the z;’s are all distinct, and such that whenever
Y15 - - -5 Y, are n distinet points of S, there is exactly one permutation
215 « - . 2, Of the y,’s for which (2, ..., 2,) e C,.

(2) Suppose § is a linearly independent subset of X, and for each =,
C,, is a cross-section of S*. Then

les = {obulUJ 7,(L,xC,),
1

and for each n the function 7', is biunique on L, x C,,. We next observe

(3) If S is a separable metric space, then 8™ admits a cross-section C,
which is the union of a countable family of closed sets.

Since S is isometric with a subset of the Banach space (m) of all bounded
real sequences, it suffices to produce an ¥  cross-section of the space
(m)™. For each rational number ¢ > 0 and each integer k > 0, let @;, , be the
set of all z=(a', 22, ...) € (m) such that 2?=0 for all i<k, and 2*=e.
Let Q=U, ,Q, . and write x<y provided y —x € Q. Then (m) is linearly
ordered by <, the usual lexicographic ordering. Let C, be the set of all
(x5 - .., x,) € (M) such that

o <r<... <zx,.
Clearly C, is a cross-section of (m)*. For each (n— 1)-tuple
7 = (g, -« s Tye1)
of positive rational numbers and each (n— 1)-tuple
J=Up s Jn)
of positive integers, let V, ; be the set of all (z,, ..., x,) € (m)" such that
Ty —%; € Q.  for 1s¢=<n-1.

Since each set Q. , is closed, so is each set V, ;. But of course C,, =U, ; V
so C, is an F set and (3) has been proved.

Continuing with the proof of 2.1, we observe that L, is an open subset
of R», and hence is the union of a sequence L,* of compact sets. Let C,
be as in (3) and C,* a sequence of closed subsets of S* whose union is C,,.
Assuming S to be linearly independent, we see from (2) that

le§ = {0}u U T, (L, x C,)

L n

r 3

and that always 7', is biunique on L,ix C,J. Now if & satisfies I-IV
and V', it follows by II-IV that & includes {0} and each set L, x C,J,
then by V' and I that le S is a member of %.

For the final agsertion of 2.1, assume that the closure K of § is compact
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and linearly independent, and let D, be an F_ cross-section of K», D, * a
sequence of compact sets whose union is D,,, and C,7=D, nS*. Then T,
is biunique and continuous on each of the compact sets L, x D, 7, hence
a homeomorphism on each, and thus its restriction to the set L, x C,7 is
also a homeomorphism. Thus in this case condition V is enough to ensure
that le S is a member of #. The proof of 2.1 is complete.

The proof of 2.1 can be modified to apply to conv S, the convex hull of
S, rather than le §. In place of B we employ the set of all (r,...,r,) € B*
for which each r;is 20 and 27'r;=1. And in this case, the requirements
of linear independence may be replaced by those of convex independence.
(A set S is convexly independent provided no point s € S is a convex com-
bination of points of S~ {s}; equivalently, provided each point of S is
an extreme point of conv S).

In conjunction with 2.1, we shall employ a certain embedding theorem,
2.4 below. Its proof depends on the following result, which is implicit in
a footnote of Mazur and Sternbach [12] and was first called to my atten-
tion by Albert Wilansky.

2.2 ProposITioN. If y, is a linearly independent sequence in a locally
convex Hausdorff linear space X, there are biorthogonal sequences x, in X
and f, in X* such that always

le{zy, ..., %, } =le{yy, ..., ¥,}.

Proor. Let L,=le{y,, ..., y,}. Begin by setting x,=y,, x,=y,, and
letting f, and f, be continuous linear functionals on X such that

fiz; = 6y (4,j = 1,2).

(The existence of such f; is guaranteed by local convexity.) Now having
chosen z,, ..., x, and f}, ..., f, subject to the desired conditions, let F,,
be the set of all € X such that fz=1 for 1 <¢<n. Since the functions
fi - .., [y, are linearly independent over L,, the set F,n L, is one-pointed,
while the set F,nL, ., is a flat of deficiency n in L, ,,, that is, a line in
L, .,. Thus there is a point z, ,, in the set F,n(L,,;~L,), and we then
choose f,,; € X* such that

fn+1xn+l =1 and fn+1Ln = {O} ¢
We proceed by mathematical induction to obtain the desired biorthogo-
nal sequences.

Now a sequence z, in a Hausdorff linear space X will be called a
quasi-basis for X provided the following two assertions are true:
le{x,, ,, ...} is dense in X ; whenever a, and b, are sequences in R such
that X7 a,x;= X7 b;x;, then a;=b; for all j. From 2.2 we have

(2 24
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2.3 CoROLLARY. Fach infinite-dimensional separable locally convex
Hausdorff linear space admits a quasi-basis.

Proor. The hypotheses imply the existence of a linearly independent
sequence y, whose linear extension is dense in the space. Then with x,
and f, as in 2.2, it is obvious that le{r,, z,, ...} is dense. And if
2T ax;= 27 b;x;, it follows upon application of f; that a;=b;.

It appears that existence of a quasi-basis does not imply even the
existence of nontrivial continuous linear functionals. In connection with
2.4 and 2.6 below, it would be of interest to know whether every infinite-
dimensional separable metric linear space admits a quasi-basis.

2.4 THEOREM. If X is a complete metric linear space which admits a
quasi-basis, there is in X a linearly independent arcd such that leZ is
dense in X for each infinite Z< A.

Proovr. (This result is a sharpened form of one in [9], and its proof is
similar.) With g denoting a complete invariant metric for X, we set

lz] = 0(0, x) foreach zeX.

Let ¢, be a quasi-basis for X. From the fact that lim,_, ,|fx|=0 for each
z € X, there follows the existence of positive multiples z; 0f ¢, (¢=1, 2, ...)

such that always )
Jta;] < 277 whenever t| = 1.

Of course z, is also a quasi-basis for X. Observe that if |t| <1 and m <,
then

m Zl n n ,
2t — Xty < ) ity < J) 27,
1 1 m+1 m+1

so (since X is complete) we can define a continuous map ¢ of [ -1, 1] into
X by setting

o]
ot = X' tte;, foreach te[—1,1].
1

Let J =[1/3, 2/3]. To show that ¢ is biunique (hence a homeomorphism)
on J and ¢ J is linearly independent, it suffices to show that if

k
O<t;<...<t, and Yaet) =0,
1

then a,=0. Now if
oo k
2 (Zajt:ii) z =0,
i=1 \j=1

then since z, is a quasi-basis, ' f=1ajtji = 0, whence
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k-1
—a =3 a;(t;[t,)  forall .
i=1

Of course the right side tends to zero as ¢ increases, and thus a,=0.
To complete the proof of 2.4 it suffices to show that if Y is an infinite
subset of J, £ >0, and b, is an eventually-zero sequence of real numbers,
then there is a linear combination of members of ¢Y whose distance
from the point X2'7°b,x; is less than e. Now for each t € Y, let & be the

pomnt B o= (060 ...)

of the Banach space (c,) of real sequences convergent to zero. We claim
that 1e£Y is dense in (cy). If not, (¢,) admits a nontrivial continuous
linear functional f such that f&t=0 for all t € Y, and then there are real
numbers ¢;, not all zero, such that

Dleti=0 forall tel.
1

But of course this power-series in ¢ cannot have infinitely many zeros in
J unless the coefficients c; are all zero, and the contradiction shows that
le£Y is dense in (c,). Now let N be such that

D27t < ¢f2,
N

and let d € ]0, 1[ such that
ltx;| < ¢/2N

whenever 1 <4< N and || <d. Since le£Y is dense in (c,), there must be
points ¢, ..., ¢ of ¥ and numbers a,, ..., a; such that

<6 forall ¢,

and it can then be verified that

k =]
j=

The proof of 2.4 is complete.

Now the general existence theorem mentioned in the Introduction may
be stated as

2.5 COROLLARY. Suppose F and ¥ are families of metric spaces which
satisfy I-V and IV-V respectively, and X is an infinite-dimensional sepa-
rable Banach space. Then if some subset of R is a number of F ~ %, the
space X must contain a dense linear subspace which is a member of F ~%.
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Proor. (Actually it suffices that X shall be as in 2.4, or, in particular,
that X shall be an infinite-dimensional separable locally convex complete
metric linear space.) Let 4 be as in 2.4. Our hypothesis guarantees the
existence of an infinite subset S of 4 such that Se #F ~% and leS is
dense in X. It follows from 2.1 that le S is a member of #. But of course
8 is a relatively closed subset of le S, and it follows that le S ¢ ¢, for
S ¢ 9 and ¥ satisfies 1V.

Although 2.5 suffices for the applications in § 3, it seems of interest

to prove a stronger result. For that, we need a different embedding
theorem.

2.6 THEOREM. Suppose Y is an infinite subset of a separable metric
space M, and X is a complete metric linear space which admits a quasi-basis.
Then there is a homemorphism h of M into X such that lehY is dense in X
and the closure of hM is compact and linearly independent.

Proor. Let P denote the Hilbert parallelotope, here most conveniently
represented as the product space [1/3, 2/3]%. We show first how the
proof of 2.6 can be reduced to the following

(1) There are in X a linearly independent homeomorph @ of P and a
convergent, sequence u, of points of ¢ such that le{u;, u,, ...} is dense
in X.

Suppose (1) holds, let v=Ilimu,, and let v, be the sequence of those u,’s
which differ from ». By a well-known embedding theorem, there is a
homeomorphism ¢; of M into . Since @ is compact and ¢, Y is infinite,
there must exist in g, Y a sequence w, convergent to a point w € ¢, with
always w;#+w. Now it is known [10] that P (and hence ¢) is homogeneous
with respect to its countable closed subsets, and hence there is a homeo-
morphism g, of @ onto ¢ such that always g,w;=v;. The map g,g, is the
desired homeomorphism of M into X. It remains, then, to establish (1).

The points 7 of P will be represented in the form t=(7l, 72, ...) with
always 71 €[1/3, 2/3]. Now for each j and k (positive integers) let 7,
denote the point of P defined as follows:

Tjk'l: = 2/3 fOI' ’i =1= k; ‘[]-kk = —

Let W denote the set of all points of the form 7;;; then the points of W
can be arranged in a sequence converging to the point (2/3, 2/3, 2/3, . ..),
so to prove 2.6 it will suffice to define a homeomorphism % of P onto a
linearly independent subset of X such that leAW is dense in X.

Let the quasi-basis x, for X be as in 2.4, and let z;; be an enumeration
of the x;’s in a double sequence. For each point 7 € P, let
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hT =2 (TT:)JZ” .
J
Then by an elaboration of the arguments used for 2.4, it can be proved
that 2 has the desired properties. We leave the details to the reader.
As a consequence of 2.1 and 2.6 we have the following extension of 2.5,

stated in a somewhat different way.

2.7 THEOREM. Suppose F and G are families of separable metric spaces
which satisfy I-V and IV-V respectively, and X is an infinite-dimensional
separable Banach space. Then to show that F <% it suffices to show that
every dense linear subspace of X which is a member of F is also a member
of .

In particular, F =@ provided every inner-product space which is a mem-
ber of F is also a member of G.

Some of the preceding results can be extended to certain families of
nonseparable metric spaces with the aid of the following embedding
theorem.

2.8 TarEorREM. Kach metric space is homeomorphic with a closed linearly
independent subset of a (suitably chosen) normed linear space.

The result 2.8 is due independently to Blumenthal and Klee [4] and
Arens and Eells [1], the latter paper having the stronger result in that
it obtains not merely a homeomorphism but even an isometry. Actually,
closedness is not mentioned in [4] nor linear independence in [1], but it is
easily seen that the embeddings described have these properties.

For extending our results to nonseparable spaces, it would be useful to
have more information about cross-sections in such spaces. In that con-
nection, the following observation may be of interest.

2.9 ProrosiTioN. For a normed linear space X and an infinite cardinal

number w, the assertions (i) and (ii) below are equivalent and imply (iii):
(i) the product space X x X admaits a cross-section which is the union of

w closed sets;

(ii) ©n the unit sphere S of X there are w closed sets whose union includes
exactly one point from each antipodal pair;

(iii) S 4s the union of w closed sets, none of which includes two antipodal
points.

Proor. (By “unit sphere” we mean the set {x € X: |z =1}.) Let L be
the linear subspace {(#, —x): x € X} and for each x € X, let

gr = (x, —x) € L.
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Then g is a linear homeomorphism of X onto L. Now if C is a cross-
section of X x X then the set C'n L includes (for each € X ~ {0}) exactly
one of the pairs (x, —x) and (-, z), so of course the set g-1(CnL)nS
includes exactly one point from each antipodal pair in §. Thus i implies ii.

Now suppose conversely that ii holds, and let {F,:a € A} be the special
family of w closed subsets of S. Let D be the diagonal in X x X and for
each positive integer » let F, , be the linear sum

[/n, n]gF,+D .

Note that X x X is topologically and algebraically the direct sum of D
and L, the relevant decomposition being

it follows readily that each set F, , is closed and that U, ,, F, , is a cross-
section of X x X. Since Xyw=w, it follows that ii implies i.

With 2w=w, it is obvious that ii implies iii, so the proof of 2.9 is com-
plete.

A theorem of Lyusternik and Schnirelmann, and of Borsuk [5], asserts
that if X is of finite dimension n, then iii fails for w=mn. From this it
follows that if X is infinite-dimensional, then iii fails whenever w is
finite. But in proving 2.1 we have shown that iii holds with w=R, even
for the nonseparable Banach space (m). It would be of interest to study the
behavior in this respect of other important nonseparable Banach spaces.

3. Applications. Recall that the class Py X of borelian sets relative to
a metric space X is defined as the smallest class of sets which includes all
closed subsets and all open subsets of X, and includes the union and the
intersection of each of its countable subclasses. The class Py X is the
union of its additive subclasses 4,X for 1<8<, 4, X being the class of
all ¥, subsets of X, 4,X the class of Gy, sets, etc. Similarly, Py X is the
union of its multiplicative subclasses MzX for 1 <<, where M;X is
the class of G, sets, M, X the class of F, sets, etc. The entire class Py X
consitutes the projective class of order 0 relative to X, and the further
projective classes P, X (for 1<y <w) are defined as follows: P,, ., is the
class of all subsets of X which are continuous images of members of P,,X;
P,, X is the class of all subsets of X which are complements in X of
members of P,, ;X. The members of P, X are also called analytic sub-
sets of X.

We shall deal here only with separable metric spaces. In order to
facilitate application of the results of § 2, and to avoid confusion between
the relative and absolute borelian classes, it is convenient to employ the



198 VICTOR KLEE

following definition: A separable metric space will be said to be of a cer-
tain borelian or projective class if and only if it is homeomorphic with a
subset of the Hilbert parallelotope P which is of that class relative to P.
The classes 45, M;, and P, so obtained are exactly the absolute classes
relative to complete separable metric spaces. Specifically, consider a
separable metric space S and a homeomorph S’ of § which lies in a com-
plete metric space M. Then if Se A, S'€ Ay M (and similarly for M,
P,); conversely, if S’ e Ay M with g2 2, then S € 4, (and similarly for M,
and P, with arbitrary #z 1, y 2 0). From the existing theory of borelian
and projective classes (as expounded, for example, by Kuratowski in
[11]), it follows that each multiplicative class M, satisfies conditions
II-V of § 2, each additive class A4, satisfies I-V, each projective
class P,, satisfies I-V’, and each projective class P,, , satisfies I-V"". It
is known further that the real number space R contains for each g a
member of Az~ M, and a member of M,;~ A, and for each y >0 a mem-
ber of P, which is not a member of P, for any 6 <y.

Theorem A of the Introduction follows at once from the above-men-
tioned facts in conjunction with 2.5. It seems, though, that our method
sheds no light on the existence of linear subspaces which are members of
My~ Ay It has been proved by Mazur and Sternbach [12] that a G,
linear subspace of a Banach space must be closed, and by Banach and
Mazur [3] that there are linear subspaces which are F ;'s without being
Gs,’s. These papers and [2] contain further interesting examples.

The following is a consequence of 2.1.

3.1 ProrosiTiON. Suppose S is a subset of a separable Banach space.
Then if S is a member of a projective class P,,,,, so are leS and conv S.
If 8 is linearly independent (resp. convexly independent) and S € P,,, then
leS € P,, (resp. convS € P,,).

In particular, the linear extension of an analytic set is analytic, and of
a linearly independent borelian set is borelian. It would be of interest to
determine whether similar assertians are valid for the individual borelian
classes, and to avoid if possible the requirements of independence.

For another application of 2.5, we turn to the R,-dimensional spaces of
Hurewicz [7] [8], these being the infinite-dimensional separable metric
spaces which are the union of countably many finite-dimensional subsets.
(To avoid confusion, we shall refer to these spaces as topologically R,-
dimensional.) Hurewicz showed [8] that Hilbert space is not topologically
R,-dimensional, whence it follows that no Banach space is topologically
Ro-dimensional. On the other hand, a normed linear space of algebraic
dimension X, is obviously topologically ®,-dimensional.
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3.2 PROPOSITION. There exist separable inner-product spaces (even of
arbitrarily high borelian or projective type) which are topologically Ry-dimen-
sional but algebraically of uncountable dimension.

Proor. Let &, be an arbitrary class 4, for fz 2 (or P, for y21) and
let ¥ be the class M, (or P, ;). Let & be the class of all topologically
finite- or ®,-dimensional members of %#,. Then from 2.5 we conclude the
existence of a separable inner-product space which is a member of # ~ %,
Surely such a space is not algebraically of countable dimension, for it is
not a member of the class 4;.

It follows from 3.2 that there are uncountably many distinct topological
types even among the separable inner-product spaces which are topo-
logically ®,-dimensional. Thus if m denotes the number of topological
types represented by the separable normed linear spaces, we know (grant-
ing the generalized continuum hypothesis) that m =c or m=2¢. It would
be interesting to have more information on this question, and on the
corresponding problem regarding dimension types in the sense of Frechet.
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