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CONVEX IDEALS IN ORDERED GROUP ALGEBRAS
AND THE UNIQUENESS OF THE HAAR MEASURE

K. E. AUBERT

Typical ordered rings are given by ordered rings of real-valued func-
tions with pointwise operations and pointwise ordering. When the multi-
plication is no longer pointwise but a convolution product

fro@) =\ 1@y )9y

with respect to the Haar measure dy on a locally compact abelian group
G, we have (at least) two natural ways to define the order. The order
which fits best with the Fourier transformation is, of course, the order
which is induced by the pointwise order of the Fourier transforms thus
making the Fourier transformation into an order preserving mapping.
This is obtained by taking finite sums of functions of the form fxf* as
positive. This ordering is, for instance, well known from spectral theory.
On the other hand the family of real-valued integrable functions on @
also forms an ordered ring L' with respect to convolution, pointwise
addition and pointwise ordering (almost everywhere). This pointwise
ordering of convolution algebras is also pertinent in various contexts.
Integration theory is, in fact, based on this ordering; and an invariant
Radon measure (i.e. the Haar measure) on G gives rise to an order pre-
serving ring homomorphism of L' onto the reals which has a closed
regular convex maximal ideal of codimension one as kernel. The unique-
ness of the Haar measure already gives us some information with respect
to the occurrence of such maximal ideals in Lg!, namely, that there is
exactly one of them which contains the set

T = {f_fa}aeG,feLRl
where f, denotes the translate defined by

fa(x) = f(aa:) .

The main purpose of the present note is to show that this result can be
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improved. In fact the uniqueness of the maximal ideal given as the
kernel of the Haar measure can still be proved after having removed both
the condition that it shall contain 7' and the condition that it shall be
of codimension one. The removal of the former condition is a trivial
matter by looking at the expression of the Fourier transform in terms of
characters. Corollary 2 of Theorem 1 gives perhaps the most suggestive
formulation of what corresponds to the simultaneous removal of the two
conditions in question. Looking at the Haar measure from the point of
view of its kernel this result may thus be considered as a sort of sharpen-
ing supplement to the uniqueness of the Haar measure. We also give a
couple of other simple facts which are related to the scarcity of convex
ideals in Lg!, in particular that Lg! can never be embedded with preserva-
tion of algebraic and order structure in a direct product of linearly ordered
rings.

Let us first fix our notations. As already remarked, Lz! is the ordered
group algebra of all real-valued integrable functions on G under the
ordering f>g whenever f(x) = g(x) a.e. on G. L;! shall denote the usual
group algebra of all complex-valued integrable functions on ¢. We recall
that an ideal a in a (commutative) ring R is called regular whenever R/a
has an identity. The ideal a= Lz! is said to be convex if f, g € a and
fS<h=g implies h € a; a is absolutely convex if |g| < |f| with g € Ly! and
feaimplies g € a, 4 convex ideal a is absolutely convex if and only if
J € aimplies |f| € a. Or otherwise expressed, a is absolutely convex if and
only if f € a implies

feg=|flnlglea forall gelLgz!.
(Relevant material on convex ideals can be found in [2] Chapter 5').
By the term closure we shall always mean the topological closure in Lt
or Lg! induced by the usual L'-norm. As to Fourier analysis we use the
usual notations. @ is the character group or dual L group of G, f is the

Fourier transform of f and f* is defined by f*(z) =f(z1).
We give the following two immediate lemmas for ready reference.

LemmA 1. Any regular maximal ideal mp in Lg! is of the form monLg!
where Mg ts a regular maximal ideal in Lg'; in particular my, is closed.
Proor. If e is an identity modulo mg, i.e.
f=exf(modmyg) forall felp!,
it follows that e is also an indentity in L' modulo the ideal mg+imy

1 We wish to thank Professors Gillman and Jerison for allowing us to see the manuscript
of their forthcoming book [2].
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consisting of all functions f+1ig with f, g € mz. Thus mz+imy being a
regular ideal in L.! is contained in a maximal regular ideal my in Lyt
which clearly satisfies

mp = My N Lgl.
The fact that my, is closed in Ly! follows from this equation together with
the well-known fact that m,, is closed in L.

Lemma 2. The closure of an absolutely convex set is itself absolutely convex.

Proor. This is an immediate consequence of the fact that the mapping

(f,9) =fog9=IfInlgl

of L' x Lyt into Lyt is continuous in the L'-norm and that the absolutely
convex sets ¢} are just the sets which have the ideal property that
foge@ whenever fe @ and g e Lg.

THEOREM 1. The only regular and convex maximal ideal in Lg! is the
maximal ideal mg? consisting of all functions tn Lg! with zero integral. Lz}
does not contain any proper absolutely convex ideal which is either closed or
regqular,

Proor. First, my? is convex since f=g with f, g € mz® implies f=g.
Suppose next that my, is a regular convex maximal ideal in Lj! different
from mg°. Let by Lemma 1, m; be a regular maximal ideal in L' such
that

: mp = me N Lgt,
and let « € G be the corresponding character. Since « is different from
the identity character it is possible to find a compact neighborhood K of
the identity in ¢ such that

¢ KK-1.
Let f be a continuous positive non-zero function on @ with support con-
tained in K. Then f*f* will be a non-zero continuous function with sup-
port contained in K K1, i.e. such that

Fafr@) = 0.
g=1ff=If*
having f* f * as Fourier transform will according to the Fourier inversion

theorem be a positive non-zero function belonging to m since g(x)=0.
Since ¢ is at the same time real-valued we have

The function

geLglnmy, and hence gemgp.

Being translation invariant mp will also contain a positive function %
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which is >&>0 on a neighborhood of the identity element e € G. Now
nh also belongs to my for any positive integer » and we can choose for
any sufficiently small neighborhood V of e a function A, such that

O<hp=mh on V
for a suitable » and such that the A, ’s constitute an approximate identity
1
for Lz, ie. lim, (hyxf) = f forany felLg'.

Since my, is supposed to be convex we have hy;, € my and because my, is
closed by Lemma 1 we get

f=1lim,(hp*f)emp forany felLg!

contradicting that my, is proper.

For the latter half of the theorem let a be an absolutely convex ideal
in Lz! which is closed in the L'-norm. If a#0 we have a function f=+0
such that f € a and hence also |f| € a. By regularization, i.e. by taking a
suitable convolution product we can assume that f is continuous and by
the translation invariance of a we have a function g € a such that
g>e&> 0 on a suitable neighborhood of the origin. By the same reasoning
as above we get a=Lgz!, hence Lz! contains no proper closed absolutely
convex ideal (#0). Since by Lemma 2 the closure of an absolutely convex
regular ideal is again absolutely convex and regular (counting here Lz!
as regular) this shows in particular that any absolutely convex regular
ideal =+ 0 is dense in Lg!. Such an ideal can therefore not be proper since
a proper regular ideal is contained in a maximal regular ideal and such a
maximal regular ideal is closed according to Lemma 1. This completes
the proof of the theorem.

CoroLLARY 1. Any regular maximal ideal in Lz! which is convex has
codimension 1.

In fact mg? is according to Theorem 1 the only regular maximal ideal
in Lgz! which is convex and it has codimension one being the kernel of
the Haar measure.

A more striking formulation of the same fact is the following

COROLLARY 2. Let p be an order-preserving ring homomorphism of Lzt
onto an ordered field F. Then the field F is isomorphic to the field of real
numbers and p is the Haar measure of Q.

The last part of the theorem can be interpreted similarly. That there
are no proper regular and absolutely convex ideals in Lg! gives for in-
stance the following
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CorOLLARY 3. No mon-trivial lattice ordered ring with an identity can
occur as the homomorphic image of Lg! if the homomorphism also preserves
the lattice operations.

We shall now derive a stronger result than Theorem 1 which will
determine the necessary and sufficient condition that an intersection
of regular maximal ideals in Ly! be convex. The expected condition is of
course that the intersection in question is contained in mz°. But for the
convenience of the proof of this we shall first give a lemma which expresses
this condition in terms of the Stone topology in the space N, of maximal
regular ideals of the complex algebra L. The Stone topology is what is
called the hull-kernel topology in [3], p. 56. The Gelfand topology is
the topology in M, which transferred to the characters gives the usual
topology in i. We note further that by Lemma 1 we can associate to
each my in the family My of maximal regular ideals in L' an

e € MW such that mp = meNLg!.
In this connection we need not care about the uniqueness of this mapping
mg — M. If we associate to each mz® in the family
{TIIR(i)}ieI = g;RR(D < WER
just one my® such that
me® = mPn Lt  foreach iel

we get what we shall call a corresponding family of complex regular
maximal ideals and which we shall denote M, D. We note, however,
that for the ideal mz® we have trivially a unique choice; namely, m°
since Mm% =mg?+tmg?.

Lemma 3. Let MD be a non-void subfamily of My. Then the necessary
and sufficient condition that the ideal

a =M mo
el
be convex is that we can find to MyD a corresponding family MD such
that m° belongs to the closure of M in the Stone topology of M.

Proor. The sufficiency is obvious since the condition implies
N me® s me’
el
and by taking the intersection with Lp! on both sides of this inclusion
we get a =mz® which shows the convexity of a since any subset of mpz?

Math. Scand. 6. 13
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is convex. Assume conversely that the condition of the theorem is not
satisfied. Thus since the closure of I, in the Stone topology does not
contain my® and the Stone topology is coarser than the Gelfand topology,
it follows that m.° is also not contained in the closure of M in the
Gelfand topology. Denoting by «; the character corresponding to m®
we can therefore find a neighborhood K of the origin in G such that

o; ¢ KK-1  forall iel.

We can further pick a positive continuous non-zero function § on @ with
support in K, i.e. such that

-~

gx;) =0 forall iel.

Considering the non-zero positive function f having §*g§* as Fourier
transform we get in exactly the same way as before — using an approxi-
mate identity — that a must be non-convex since it is proper.

THEOREM 2. An ideal a in Ll which is equal to the intersection of a
non-void family of regular maximal ideals in Lyg! is convex if and only if it
1s contained in the ideal mg® consisting of functions with zero integral.

Proor. This is an immediate consequence of Lemma 3. If acmy?, ais

convex. Conversely if a g m;® we have
el

by the beginning of the proof of Lemma 3. This means that m° does
not belong to the closure of the set % in the Stone topology and a is
not convex according to Lemma 3.

Comparing Lemma 3 and Theorem 2 we see that the condition that m°
shall belong to the Stone closure of M P is equivalent to the correspond-

ing real assertion that mgz?® shall belong to the Stone closure of M P in
M.

Remarks. The above results are in striking contrast to analogous
results concerning rings of functions where the multiplication is point-
wise. Let C(X) (resp. C*(X)) denote the ordered ring of continuous
(resp. continuous and bounded) real-valued functions on the topological
space X with pointwise operations and pointwise ordering. Here convex
maximal ideals occur in abundance. In fact any prime ideal in these
rings is absolutely convex (Theorem 5.5 in [2]). But we do not have

CX)mxR



CONVEX IDEALS 1IN ORDERED GROUP ALGEBRAS ... 187

for all convex maximal ideals m < C(X). In fact every maximal (convex)
ideal in C(X) is of codimension 1 if and only if C(X) does not contain any
unbounded function ([2, Theorem 5.8]).

The following result is also directly related to the scarcity of convex
ideals in Lg!.

THEOREM 3. The ordered group algebra Lg! of a locally compact abelian
group G can never (i.e. for any G+ {e}) be embedded as an ordered ring in a
direct product of totally ordered rings.

Proor. This follows from a general embedding theorem proved in [1].
But since the argument needed is very simple we can repeat it here.
Suppose we had an embedding
(1) Lg' = JI B

iel

where each ring E; is totally ordered. Then the set pr,~1(0)=p, consist-
ing of the elements in L;! which has i’th coordinate equal to zero in the
given embedding is a convex ideal in Lz!; and since the embedding by
definition is one-one we have the ‘“‘semi-simplicity”
(2) n p; = {0}

tel
Since Lpl/p, is order-isomorphic with a subring of R; and hence totally
ordered it is obvious that p; must have the following primeness property
with respect to the operation fo g=|f|nlg|:

If fogeyp, then either fep,orgeyp,.

Using this together with the multiplicative ideal property of p, (with
respect to convolution) it further follows that for positive f, g, £ € Lyt
such that fng € p; we also have

fnlgxh)eyp,;.
By (2) this carries over to the ideal {0} such that the implication
(3) fng=0 = fn(gxh) =0

occurs as a consequence of the embeddability assumption (1). It is, how-
ever, easy to see that (3) is not satisfied in Lg!. In fact let K, and K, be
two disjoint compact neighborhoods of two distinct points a,, a, € G and
let y; and y, be the characteristic functions of K, and K,. Then y;ny,=0,
but

210 (xz*h) + 0

if £ is for instance chosen to be a positive continuous function with com-

13*
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pact support and which is non-zero at the point a,a,~1. This completes
the proof of the theorem.
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