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TWO REMARKS ON THE BASIC THEOREMS
OF INFORMATION THEORY

LENNART CARLESON

1. In a recent paper by A. J. Khinchin [1], Shannon’s basic theorems
on information theory have been given their first thorough mathematical
treatment. In his paper, Khinchin critizises the definitions of the con-
cept of channel capacity given earlier and shows that the converses of
Shannon’s encoding theorems are not obvious—in Khinchin’s paper no
such converses are given. The purpose of this note is to show that, al-
though the critizism is justified, the definition given by Khinchin is ac-
tually equivalent to the standard definition; this result will then imme-
diately give the desired converses!. First, however, we shall in section 2
outline the basic concepts and show that the Shannon-McMillan theorem
holds for any denumerable probability field with finite entropy.

2. Let py, Pay - - +» P> - -- be the probabilities belonging to a given
denumerable probability field F. The entropy of F is defined by (loga-

rithms are taken to the base 2)
o]

H(F) = - 23 p,logp,

1

and is assumed to be finite. Let z={x,}>,, be a stationary stochastic
process, where x, assumes e.g. only the values 1, 2, ..., with probabili-
ties p;, Py, - ... Let u(x) be the probability distribution on the product
space £ corresponding to this process and denote by C, the cylindric
subset of 2 determined by a given set of valuesof 2, ..., ,. The entropy
of the multivariate distribution of the C,’s is given by

Hn = - 021 .u(On) log:u(on) ’

and it is easy to see that lim (H,/n)=H exists. For our purposes it is im-
portant that even nee
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1 After this paper was submitted, the author became aware that this result was proved
(1958) in I.P. Zaregradski, Eine Bemerkung iber die Durchlasskapazitit eines stationdren
Kanals mit endlichem Geddchinis, Arbeiten zur Informationstheorie II, Berlin 1958. The
present proof, based on the relation (2.1) below, is however considerably simpler.
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(2.1) lim(H,,,—H, = H
n—> 00

exists (cf. Shannon [2, Theorem 5)).
To prove this (and more), we write

u(Cy)
H ,—H = lo
=My =2 log s

1O = | 4@ duta)
Q2

where
©1(C,)

#(Cpiy) ’

The functions g,(xr) are non-negative and it was shown in [1] that
lim g, (T-"xz)=g(x) exists almost everywhere, T being the shift transfor-

7 —> 00
mation. With obvious modifications, this proof applies also in our de-

numerable case. If we can show that g(z) is summable and

gn(x) = log wly) =1, n=0,1,....

»

(2.2) lim | g,(2) du(e) = | 9(@) du(e)
n—> 00 Q 0
the proof of (2.1) is complete, since
1 n—1
H =lim =" =lm - %' Sg,(x) du(z) .
n—>o N n->o00 M ,_o S

This now follows from the following argument (Hilfssatz 7.3 in [1]).
Let K, , denote the subsets of 2 where

E,, . 28=2g,(r) <2, k=1,2 ...
E,,: 0=2g,x) <2 kE=0.

A

Let Z, denote the set with x,,,=»; we shall assume, as we may, that
u(Z,)=p, is a non-increasing sequence. For zeZ,, C,,,=C,nZ, and if
also belongs to E, , we have

(2.3) u(Cun Z,) < 2% u(C,).
Hence
> a@aw =3 | @ due
k=K ok k2 K g,inz,
< 3 264 u(Cun B, 4N 7))
k= K
v=1
Cn

= 2 + 23 =X +2X.

logy < 2k~1  Jogy = gk—1
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In the first sum we use the inequality (2.3) and find

DYES ) 2~2"‘1.2k+127 w(C,) =3 921 gki1

k=K Cp kz K

For X, we have the estimate

o= Y2 X w(Z)

kz K logv = 21
= p, D 2
logy = 28-1  F < 1+loglogy
=8 3 oplogr.

logy = 2K-1

Since 27" p,=1 and p, decreases it follows that »p, <1 whence

(o]

b 1
2 plogy < 3'p,log — < oo.
1 P

1

v

The estimates of X, and 2, depend only on K and we conclude that

\ 0u@ du@) < o),

L 5
lgnl > 2

where £(A) - 0, A > . By standard theorems on Lebesgue integrals,
the statement (2.2) follows.—We finally remark that the McMillan theo-
rem for our case now follows as in [1].

3. We shall now consider transmission of information in that we intro-
duce a second stationary process y = {y,,}, called the output. We suppose
that x, as well as y,, can only assume 4 resp. B different values. We fur-
thermore assume that y depends on z in the following way. Let Z be an
arbitrary cylindric set in the y-space, corresponding to given values of
certain y;, k<¢=<1l. The conditional probability »,(Z) is then assumed to
depend only on x;, k—m <j <1, where m is a fixed integer (the ‘“memory”
of the “channel” defined by »,)'. The joint process (z, y) is also stationary.
We denote the corresponding entropies by H(x), H(y) and H(z, y), respec-
tively. The fundamental concept in the theory is the capacity C of the
channel,

(3.1) C = sup h(p, v,) ,
where *
(3.2) h(p,v,) = H(x)+H(y)—H(z, y) .

1 In [1], this is assumed only for Z :{y | y;= b}. However, in the proof, e.g. on p.64,
the above more general assumption is used.
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In Khinchin’s paper it is pointed out that in taking the upper bound we
must restrict ourselves to ergodic u’s, that is, to sources for which every
translation invariant set E of z’s, £ =TE, has probability 0 or 1. We
shall here prove that this restriction is not necessary since the upper
bound C is the same whether or not we make the restriction:

THEOREM. Let £¢> 0 be given, let v, be a fixed channel, and let y be an
arbitrary (not necessarily ergodic) stationary distribution on the space of x.
Then there exists an ergodic u* such that

h(/l,*, vz) 2 h(.u’ ’Vz)—é‘
where h is defined in (3.2).
Proor. We choose XN so large that
|H,(2)—H, ,(2)-H()| <6, =nzN,

holds for z=z, y, and (z, y).

For all cylindric sets I'y, determined by a set of values of z,, x,;, ...,
Z,.n_1, we define
(3.3) u(Iy) = A=)u(ly) + 6d-¥,  0<«x < 1;

for unions E of disjoint I'y’s, u*(E) is defined additively. This definition
is obviously consistent, u*(E)=u*(TE), whenever these numbers are
defined, and u*(2)=1. Let I'y,, be a continuation of I'y by z,,, and
define I'y and I'y_; by
Iyy=Tyz,y =2,y =2y, o,y.

We extend the definition of u* by defining (u*(I"y_;) > 0)

wIy) |
*(F N— 1)

for unions of disjoint I'y,,’s, u* is defined as above. Obviously,

u*(I'yiq) = p*(L'y)--

4
2 1 (Iyy) = p*(I'y)
TN+y=1
and Ty
N ’
mﬂ{;;“ (I'ni1) = p*( N-—l) *(FN ) = p*(I'y),

in agreement with our previous definition. By induction, u*(I",) is defined
in a consistent way for all » and is then extended to the Borel sets of Q.
The resulting process, x* = {x}; }, is clearly stationary. Furthermore, if £/

denotes the vector
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x x * X .
& = @iy Tiv-psv> - - o Tigv—nenN—2)s =0, £1, ...,

& ={&}} constitutes, by the construction, a stationary Markov process
with AN-1 different states. Since « >0, all transition probabilities are
positive. Hence the &*-process is ergodic (cf. e.g. Doob, Stockastic pro-
cesses, p. 460). If F is a translation invariant set of z*’s, the relation
E,=TN-1E, shows that the corresponding set of £*’s is invariant and so
u*(B,)=0 or 1. The x*-process is thus ergodic.

We shall now estimate the entropies corresponding to this input z*.
We first observe that {x)} has the entropy

H(x*) = Hy(x*) — Hy_y(z*) .
Actually, if n> N, it follows from a general formula ([1, p. 31]) that
H,(x*)—H,_,(x*) = Hy(x*)—Hy_,(x*),

and the left-hand side tends to H(x*). On the other hand, Hy(z*) and
H o _(x*) differ for small « arbitrarily little from H y(x) resp. H y_;(x), and
so, by the choice of W,

[H@x*)—H(x)| < 20 for o < «q.

It is easy to see that the joint process (x*, y*), where y* is the output
corresponding to z*, is a Markov process of order N +m—1. As above,
we conclude that

]H(x: ?/)—H(x*: y*)! < 267 & < &y

In order to prove a corresponding inequality for y* we first assume
a=0. In this case £* need not be ergodie, but let it consist of the closed
ergodic subchains C,, C,, ..., C; and let * be constructed as above as
the vector-form (of length N —1>m, where N was defined above) of
the y*-process. We want to estimate the conditional probability
P.. . (¥ in terms of ¥, n—p<i<n. This probability is obtained

My My =My
by considering (1) the probability g, that #_, was obtained from a &) _;
in the chain C,, (2) the transition probabilities of C, and (3) the condi-
tional probabilities v, (7). Since the chains C, are ergodic, the prob-
n-1n

ability distribution of &) _, in C, will depend arbitrarily little on the given
M N - - - Mn_p, Where p can be kept fixed as n — co. Hence, g, is the only
quantity in the above argument which may depend on the remote past
of n*. We have two possibilities. (a) 75,15 - - - %ns P fixed, 7 — oo,
will determine a definite subchain C, with arbitrarily high probability,
if p is large enough, in which case the desired estimate has been obtained.
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{b) The output corresponding to a certain number of chains C, has the
same distribution; in this case, the individual determination of the ¢,’s
corresponding to these chains is irrelevant in order to get the conditional
probability of %), and the estimate is obtained also in this case. We have
thus proved:

* * ’
(3.4) Py Uin) = P,,;_w,,,,,;_l(fln) <o
if p=p(d’), except for a set of given }’s, 1 <4<n—1, of probability <4'.
—The same estimate now obviously also holds as soon as « < «,, since the
transition probabilities change arbitrarily little and a transition from C,
to C,, v+u, during the last p steps has arbitrarily small probability.
Finally,

Hn(n*)—Hn—l(n*) = ) N P(’?T, o 7];—1) Hﬂ;,,,,,,,;_l(ﬂ:) H

*
Ny

where, in the sum, H denotes the conditional entropies of n*. If we use
the estimate (3.4), when it is valid, and the fact that H is uniformly
bounded, we see that, as n — oo,

’(Hn(n*)_Hn—l(n*)) - (Hp~1(?7*)—Hp—z(77*))l < %6’ x < &g,

which at last yields
|Hy*)—H(@y)| < 26, & < ay.

If 6=14%¢ we find for & <oy
h(:u*’ vw) 2 h(”’ 'Vw)—-—E .

Since z* is ergodic, this proves the theorem.
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