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ON ENTIRE FUNCTIONS
ALMOST PERIODIC IN TWO DIRECTIONS

HANS TORNEHAVE

Introduction.

We shall study entire functions f(z) =f(x + iy) which are almost periodic
in every strip |#] <a and in every strip |y| <b. A non-constant function
with this property was constructed by R. Petersen [4]. This function is
limit periodic in both directions, i.e. it can be approximated uniformly
with any given accuracy by a function with a purely imaginary period in
every strip |z|<a and by a function with a real period in every strip
ly| <b. The function has two Fourier-Dirichlet series of the forms

Y'aer  and Y aeires
r r

where 7 runs through all rational numbers. It is easy to vary R. Peter-
sen’s method such that « and ' assume any given values although
a=o'=m in the actual example.

The class & of entire functions f(z) =f(x + 4y) almost periodic in every
strip |z] <a and in every strip |y| <b is obviously closed with respect to
addition, multiplication, derivation, and with respect to limit processes
which are uniform in every strip || <a and in every strip |y| <b. If we
start from a finite number of entire functions limit periodic with the
rationally independent basis numbers «;, .. ., &, in every strip [a:] <aand
limit periodic with the rationally 1ndependent basis numbers «;, ..., &,
in every strip |y| < b, we can obviously combine these by addition or mul-
tiplication such that we obtain functions with exponents

roy+ .o,
in the strips |x| <a and with exponents

P(ryog+ ... FT00)
in the strips |y| <b.
A basis 8, ..., [, is called integral if all the coefficients r, which
actually occur in the expressions for the exponents, are integers. The
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object of the present paper is to prove the existence of non-constant func-
tions of the class & with integral basis in one or in both directions.

If an integral basis consists of only one number, the function is periodic
in the corresponding direction. If it is almost periodic in every finite
strip in the other direction, it is bounded in the period strip and, hence,
everywhere, and it follows by Liouville’s theorem that it is a constant.
We have thus proved the following statement:

A finite basts of a non-constant function from 2D contains at least two
elements.

We shall construct a non-constant function of the class 2 which has an
integral basis in each direction. Each basis consists of two elements. We
shall also construct a function of the class & which is limit periodic in
every strip |x| <a and has an integral basis consisting of two numbers in
every strip |y| <b.

R. Petersen’s example was constructed from an elliptic function, the
poles of which were removed by displacements by the method first ap-
plied by C. Runge [5] in his proof of the theorem on approximation of
analytic functions by polynomials. Our construction is carried out by a
similar method, but we must start with an almost periodic, meromorphic
function and the displacements of the poles must proceed according to a
rather complicated strategy.

We shall first construct a class of sequences with almost periodic prop-
erties. These sequences will serve as the skeletons over which we shall
build a class of meromorphic function. The displacements of the poles will
be carried out in steps, which can be interpreted as operations on the
skeletons. We can therefore, finally, develop the proper displacement
strategy by a study of the skeletons.

§ 1. The sequences.

We shall first introduce a simple sequence depending on the following
numbers and functions:

1) Two real numbers g, and 8, with §,f,~! irrational.
2) A positive number d and a positive integer m.

3) A continuous mapping v(s)=(v,(s), - - -, vm(s)) of the real s-axis into
the m-dimensional complex v-space C™ such that »(s)=0 when
ls| zd.

For the points v=(v,, ..., v,,) of C™ we introduce the norm

o]l = maxo,| .
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We put 8= (8,2 + B,2)! > 0 and for every pair (p, q) of odd integers we define
(1) tpq = (pﬂl+q:32)ﬂ_2n and Spg = (Qﬂl —T’.Bz)ﬁ—ln .

LemmA 1. The pairs (t,,, p,) for which |s,,| <d can be arranged as a
sequence (t,, s,) where v runs through the odd integers, the sequence t, is
increasing, and t_,= —1, 8 = —s,.

v

Proor. From (1) follows

(2) q = Ppy Bat+ BT A8y,
(3) tpg = POy I+ BB Basp,

For a fixed value of p at most pg,*n—1d +1 values of s,, in the interval
|8pql <d will give ¢ as an odd integer in (2). Hence (3) yields only a
bounded number of values ¢,, with |s,,|<d in every interval of unit
length. This proves the first part of the lemma, and the second part is a

trivial consequence of the fact that {_, = —t,,ands_, _,= —s,,.

DernitioN 1. Corresponding to the previously given numbers and func-
tions fy, Ps, d, m, and v(s) we define the function

v(s,,) whent =t,,

P(t) = @By, Be; v3 1) = { 0 when t + t,, for all (p, q) .

The pairs .
(top ©(spg))  with syl < d

arranged as a sequence (t,, v (s,)) according to lemma 1 is called the
(B1; Bas; d, v)-sequence.

The function ¢ does not depend on d. If, on the other hand, the value
of d is changed such that the last condition in 3) remains satisfied, some
pairs with 0 as the last member will be added to the (8,, f,; d, v)-sequence
or removed from it.

DEFINITION 2. Let 5 denote a positive number. A real number s called
translation number corresponding to n for the (8y, Ba; d, v)-sequence if

sutpllq)(tﬂ)-w(t)ll =7

We observe that the set of differences t,,,,—¢, ,, is a subgroup of the

additive group of real numbers. Hence, Kronecker’s theorem implies
that every translation number corresponding to an # < max,|jv(s)|| has the

form ¢ t

P2g2 ‘P11”

LemMA. 2. Let 7 be a positive number and let 6 > 0 be chosen such that
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lo(s)—v(sp)ll S n  when [s—8g| < 6.

If hq, hy are two integers satisfying the condition

(4) [2hg By — 2k By| < B0,
then
(5) T = (2hy 1+ 2hyBy) 21

s a translation number corresponding to n for the (81, Bs; d, v)-sequence.
Proor. From (1) follows

bpgtT = tpian, gron, >
which implies that the mapping ¢ - ¢+ v maps the set of all ¢,, onto it-
self. According to (1) we obtain
(6) g = 8p+2h1, q+2h2-8pq = (2}&2/31”2}01/32)/3—1”

so that we get the estimate
lol =90,
which proves the lemma.

Lemma 3. Let n; be a positive number. With the notations of lemma 2
there exists a positive number A such that every simultaneous solution t, of
the inequalities

(7 BTl = 4 (mod2x),  |By7y| < 4 (mod2n)
differs at most 5, from one of the numbers v which satisfy the conditions (4)
and (5).

Proor. We choose A =min(}4, 38n,). For 7, satisfying (7) we can find
integers k,, k, and real numbers 4,, 4, satisfying |4,], |4, = 4 such that
{8) Bity = 2w+ A, Bery = 2hym+A4,.

These relations yield the following estimate for the difference (6)
lo] = B1Bedy—Prdsl < 24 6.
From (8) follows further
lta—7l = |71 — B2(B2 T —Brdy + B 11— Bods)l

= f2|p1 A1+ B2de] < 2714 =y,
which proves the lemma.

DeriNiTION 3. Let (8, v(s,)) be a (By, By d, v)-sequence and let « be a
positive number. The set of pairs (t,+i' «~1m, v(s,)), where (v,v') runs
through all pairs of odd integers, is called a skeleton of the first kind with the
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basis (By, Ba; ), where y is an arbitrary rational multiple of x. The transla-
tion numbers of the (B, Ba; d, v)-sequence will also be called translation
numbers of the skeleton.

The skeletons of the first kind will be used for the construction of func-
tions f(z)eZ limit periodic in the strips |z|<a and with (8, f,) as an
integral basis in the strips |y| <b. The functions with integral basis in
both kinds of strips are constructed by means of double sequences.
These depend on the following numbers and functions:

1) Two pairs (B, B,) and (8;, B,) of real numbers with 8,8,~! and §; 8,
irrational.

2) Two positive d, d’ and a positive integer m.

3) A continuous mapping (s, 8')=(4(s, §'), - . ., V,u(s, s')) of the real
(s, 8')-plane into C™ such that v(s, s')=0 outside the rectangle
lsl<d, |s'| <d'. ‘

We put f= (8,24 5,2} >0, f' = (B2 + 8,5} > 0 and

the = (PP1+9Bs)B 2, Spq = (AB1— PP 'm

tyg = WB+TBIB P, sy = (@ Bi—P BB
where (p, g) and (p’, ¢') run through all pairs of odd integers. According
to lemma 1, the numbers ({54 8,0); (g Sp q) where |s,,|<d and
18,, ¢1 <d' can be arranged as sequences (t,, s,), (., v) where » and »" run
through all odd mtegers, the sequences t, and t, are increasing, and
t,=—t,s ,=—8,t ,=—t,8 ,=—s

v O— V'

DEeFINITION 4. Corresponding to B, By, B> o @, d', m, and v(s, s') we
define the function

] (S, Syy)  Whemt+it’ =t +it, .
w(t+zt')={ pe Spq ra T Wpq

when t+it’ * t, +it, . for all (p,q), (0',q) .
The pairs (t,+it., v(s,, s,) are called the (B, s, B, Pz; d, &', v)-sequence.
1t is also called a skeleton of the second kind with the basis (B, Bs, B1» Ba)-
The numbers © and 1t’ where v and t’ are real are called translation numbers

of the (B, By Bis Pz; d, d', v)-sequence corresponding to the positive number
n of

and

supllp(t + v +at") — @t +t)| < 7
it
s?tf,;ngo(tw(t'+r’))—<p(t+it')u <.

The two kinds of translation numbers are quite analogous and we shall,
therefore, work only with the real translation numbers.
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LeMMA 4. Let n; be a positive number. There exists a positive number A
such that every simultaneous solution v, of the inequalities (7) differs at
most 1, from one of the real translation numbers introduced in definition 4.

The proof is copied from the proofs of the lemmas 2 and 3, the only
difference being that ¢ is chosen such that ||v(s, s') — v(sy, 8')|| <7 for all &’
when |s—sy| < 4.

We shall occasionally speak of a skeleton (z,,, v,,) or (t,+if,, v,(s,))
without stating whether it is of the first or the second kind. From the
proof of lemma 1 follows:

LemmA 5. To every skeleton (z,,, v,,.) corresponds a positive integer N
depending only on the basis and d (and d' for the second kind) such that
every closed unit square of the complex plane contains at most N of the
numbers z,,.

§ 2. The meromorphic functions.

We shall use the skeletons introduced in § 1 for the construction of
certain meromorphic functions of a complex variable

DerFiNiTION 5. With a vector v=(v,, ..., v,) of C™ we associate the
singular polynomial

P(v;z) = 0,273+ 0,274+ ... +o,z7™ 2,

With a skeleton (z,,,v,,) where v,,e0™ we associate the meromorphic
Junction
(9) F(z) =2 P(vvv'; z_zvv')

v, v

where (v, v') runs through all pairs of odd numbers.

To justify this definition we must prove that the development (9)
converges. Let g be a positive number and let z be a complex number
such that |z —2z,,|=p for every (v,»'). We have then

\P(,,52=2,,)| < (l2—2,,+ ... +[z—2,[™""*) max||

vy’

S (I+o+... +o ™)z -2, | -max|o].

Only the factor |z—z,,|~3 depends on the indices. We shall prove that
2'|z—2,,|™3 converges uniformly in z. For a fixed z we divide the com-
plex plane into unit squares by lines parallel to the real and imaginary
axes such that z is on a vertex. The points z,,, in the interior of a square
which does not have z as a vertex are moved to the vertex nearest z.
The points z,, on an edge which does not have z as an endpoint are
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moved to the endpoint nearest z. The points z,,. in the squares and on
the edges adjoining z are moved to within the distance ¢ from z. This
process will not make the absolute value of any term of the series smaller
and, according to lemma 5 the absolute value of the sum of the resulting
series is at most

4No3+8N 3 h-3+4N 3 (2+k2) % < 4N(0-3+6)

h=1 k=1

where the last estimate is rather crude. For the function F(z) we get the
estimate
(10) [F(z)] = 4N(e?+6)(1+o7 + ... +07™+) max o]

TeEOREM 1. If 2,y =a+1b, the function F(z) introduced in definition 5
18 almost periodic in each of the strips |x| < a—o, |y| £ b— o for every positive
value of . If the skeleton is of the first kind as introduced in definition 3,
the function F(z) will have the period 20—zt and the basis (B, B,) as integral
basis in the strip |y| <b—p. If the skeleton is of the second kind as intro-
duced in definition 4, the function F(z) will have (8,, B,) as integral basis in
the strip |x| S a—p and (B, ;) as integral basis in the strip |y| <b—p.

Proor. From the structure of the skeletons follows immediately that
F(z) is regular in each of the strips |z|<a, |y| <b, and that F(z) has the
period 2«-1ni if the skeleton is of the first kind. It will be convenient for
the proof to add a number of zero terms to the series (9) such that terms
corresponding to every ¢,, (definitions 1, 4) are included. The skeleton
may then be written (£,,+1t,, ©,(s,,)). We can then write

F(z) = Z’P(vv,(qu), z—t,,—ity) .
Ps 97
Let 7 be a positive number. We choose ¢ as in the lemmas 2 or 4. If
hy, by, 7, and o are defined as in the proof of lemma 2, we have

F(z + T) = Z 'P(vv’(‘gpq)a z2-—- (tpq_ T) - it:v’)
P g

=2 ,P (0:ASpg)s 2 tpshy, gon,— i)
P97

o,/
= 2 P(vv’(sp+2h1, q+2h2)’ o tpq - 'Ltv’)
D gV

= Z’P(v,,(qu+ 0), 2—ty,—ity) .
D9

Since the polynomial P is linear in v, it follows that

F(z+1:)—F(z) = 2 P(vv’(qu")‘o')—vv'('gpq)’ z_tpq—it;') .
P9,
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We can estimate this function by means of (10). Since the number of
poles in a unit square is at most 2N (viz. N from F(z) and N from F(z + 7),
we get the estimate

|F(z+ 1)~ F2)]
< 8N (p=*+6)(1+o 1+ . .. +¢ ) max|[v, (s +0) — v,(s)]

when |y| <b—o. But we have chosen § such that

max|[v, (s + o) — v,(s)]| < 7.

8,

If £ > 0 is given and we take
7 =16"1N"1(03+6)"1 (1 4071+ ... +o ™) 1l¢,

it follows that 7 is a translation number of F(z) corresponding to ie¢ in
the strip |y| < b—op.

Since F'(z) is analytic and bounded in the strip |y| < b — o, the derivative
F’(2) is bounded in the strip |y|<b—p, and it follows that F(z) is uni-
formly continuous in this strip. This implies that there exists a number
1’ >0 such that every real number 7, which differs at most 5’ from the
translation number 7 chosen above, is a translation number of F(z) cor-
responding to e. According to lemma 3 this implies that every solution
7, of the inequalities (7) is a translation number for F(z) corresponding
to ¢ in the strip |y| £b—p. It is proved in the classical theory of almost
periodic functions that this property is characteristic for almost periodic
functions with (8,, B,) as integral basis (see e.g. [1], pp. 111-125). The
results concerning the strips |z| <a for skeletons of the second kind is
proved in the same way.

§ 3. Displacement of the poles.

We shall now use the displacement of the poles, first applied by
C. Runge [5]. We need a certain uniformity and our basic lemma is
therefore more elaborate than in the original theory. The same uniformity
was quite essential, but trivial, in the case treated by R. Petersen.

LeMMA 6. Let £,> 0, a complex number =, and a positive integer m be
given. To these numbers correspond a positive integer my and a complex
matriz Ay ={A4}, p=1, ..., m; py=1, ..., my with the following prop-
erty: Let v=(vy, ..., v,,) be a complex vector. Then (definition 5)

|P(v;2) — P(Apv;2—7)| £ [loflege—7|7®
when |z— 1| Z 27.
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Proor. By means of the elementary development
ad 1
(1—z)-2-» =2(: (’u;_’_—;y) 2, |zl <1
r—
we obtain easily
- 1
7=y (/;1:1 > (=) #(z—1) 2™, lz—1| > |7].
m=p

This series converges uniformly when [z—<t|=2|t|]. Hence, we can
choose m, such that

v [t - - _
(11) ) ( ) (—t) 7 #z—7) ™" < mle
[l1=%1+1 lu+1 !
when
z—1| 2 2|7, w=1 ...,m.
We define
0 when u;, < u
Af = 1
m (/;1.:"1 ) (= 7)™ when u, = p

and we introduce the m-dimensional basis vectors
el = (1,0,...,0),...,em = (0,...,0,1).
The inequality (11) is then equivalent to the following:
|[P(e*;2) — P(An e z2—1) < m™'ey|z—1[.
Since P(v; 2) is linear in », this implies
|P(v;2) — P(Ay v;2—7)] £ m7eyfz—772 3 |v,| < [[olleylz~72,

which proves the lemma.

DEeFINITION 6. Let (2,,, v,,) be a skeleton while v is a complex number

and Ap.={Al}, p=1,....,m; u*=1,...,m* is a complex matriz.

The set of pairs (z,,+ T, Apsv,,) will be called the (t; Aj..)-displacement of
(2,, v,,) and the function

F(T; Am*; Z) = 2 P(AZ*”WG z— (zvv'+ 1"))
will be called the (v; A.)-displacement of the function
F(Z) = ZP(vvv’; z_zvv') .

The straight segment with endpoints z,,, and z,,.+ v is called essential for the
(T, Aps)-desplacement if v,,+ 0.



ON ENTIRE FUNCTIONS ALMOST PERIODIC IN TWO DIRECTIONS 169

LeMMA 7. Let £>0, o> 0, a complex number t, and a skeleton (z,,., v,,
be given. With the notations of definition 6 we can choose m* and Al « such

that |F(t; A™y;2)— F(2)] < &

when z has distance 2o from every straight segment essential for the
(T, Aps)-displacement.

Proor. We shall first assume that |7|<}o. If we take Aj.=Ap
introduced in lemma 6, we get

[F(z) — F(z; AR5 2) < eysupllo,, || X' 2 — (2, + 7)| 7

when z has distance =27 from every z,,,+ 7 with »,,+0. The sum on
the right was estimated in the remark following definition 5. It follows
that

[F(z) = F(7; A5 2)| £ 4e; sup|o,, || N(e=®+6)
which proves the lemma.
In the general case we choose a positive integer A such that 7;=h-17
satisfies the condition |7;|<3p. From the special case of the lemma

follows that we can choose the matrices Aﬁ;r 5%=0,1, ... h—1;my=m,
such that
[F(O; At .o ARt 2) — F(o A ... A5 2)| < efh;
=1, ...,h—1.

If we replace z by z— x7,, the index 0 is replaced by »7, and the index 7,
by (x+1)t;. If we add these inequalities, we find that the matrix
mr = Apit oo A%
satisfies the condition of the lemma.
In the following we shall use the “injection matrices”
Epe={EW}; p=1,...,m; p*¥=1,...,m* m*¥zm,

where

B - 1 when p*=u
“ 0 when u* +pu.

The mapping v*=E],v is the “natura
space vy, =...=v,«=0 of ™",

3

mapping of C™ onto the sub-

THEOREM 2. Let (t,+iv' a1z, v(s,)) be a skeleton of the first kind, let
F(2) be the corresponding function (definition 5), and let >0, 9>0 be
given. There exists a skeleton (t,+ 31’ xx, v*(s,)) with the corresponding
Junction F*(2) such that

Math. Scand. 6. 12
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|[F*(z) - F(z)] = ¢
tn each of the strips x| £t,—p and |y| Sx1a—p.
Proor. Let Fi(z), I=0, + 2 be the functions corresponding to the skele-

tons (f,+4(3v" +0)a1m, v(s,)). According to lemma 7 with v=2ix-1n
there exist matrices A7, and ~A4.. such that

|FY(—7;"Ape; 2) = FX(2)| < de5  |[F%(7; "R 2) - F ()| < e
when 2 has distance = p from every segment with endpoints
t, + (3 £ 2)a"1lmw .

We can choose the two matrices with the same number of columns since
multiplication on the left by an injection matrix will have no influence
on the corresponding functions. But the function

F*z) = F(z) + (FX(—7; " Ap.; 2) = F(2)) + (F (13 Y Apa; 2) = F(2)
corresponds obviously to the skeleton
(t + 3’ (X”lﬂ, (Em# + Ama + +Am‘) 'D(S,,))

and that proves the lemma.

§ 4. The strategy.

In this section we shall consider a skeleton of the first or second kind
which can be written on any of the two forms

(12) (t,+it,, v,, or  (tgtity, ©u(s,,)) -

We shall put ¢, +it;=a+1b such that the corresponding function is
regular in each of the strips |z|<a, |y|<b. We shall also use another
skeleton

(13) ¢ +ity, w,)  or  (ta+it, U(s,,))

which differs from (12) only by the choice of the vector function. The
function u shall belong to the same space C™ as v. We shall further use
the integers A,, b, and the numbers 7 and ¢ such that (1), (5) and (6) are
satisfied, but we shall not assume that 7 is a particularly fine transla-
tion number. Let G(z) be the function corresponding to the skeleton (13).

LeMmA 8. Let e> 0, o> 0 be given. Let ALy be the matrix which according
to lemma 7 corresponds to ¢, o, T, and the skeleton (13). The function

G(z; Aps; 2) — G(2)
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will then correspond to the skeleton
(tpgtity, Apary(s,,—0)—Epau(s,,)) .
Proor. The function G(t; Ajns; z) corresponds to the skeleton
(tpg+ T+t Amsti(s,0)) = (Lpiony,grony +itis Aty (s,,)) -
If we write (p — 2h,, ¢ — 2h,) instead of (p, ¢), this turns into
(tpg+itys Amst(Sy ony g ony) = (tpg+ity, Amstt,(s,,—0))

which proves the lemma.

Theorem 2 may be considered as the “periodic case” of the following
theorem.

THEOREM 3. 1o the skeleton (12), o >0, & >0, and a, > a corresponds a new
vector function v} (s) such that the function F*(z) corresponding to the skeleton
(tpq+ity, ©)(s,,)) is regular in each of the strips |z| <ay, |y| <b, and satis-
[fies the condition

(14) |F*(z)—F(2)] < ¢
in each of the strips
(15) lz| = a—o, lyl < b—o.

Proor. The condition that F*(z) is regular when |x| <a, will be satis-
fied if ©¥(s)=0 when |s|=d, where d, is a sufficiently small positive
number. It will suffice to prove that we can determine v (s) correspond-
ing to d;=%d such that the condition (14) is satisfied in the strips (15).

We shall use the following standard operation on the skeleton: We
choose 7=t,, , —t,, and the corresponding 0=0,,,,—5,,. We choose
a vector function u,.(s) of the same dimension m as v,(s) and we choose
a matrix A.. We replace » by the new vector function

(16) E(v,(8) —u,(5)) + Aleu(s—0) .

From lemma 7 and lemma 8 follows that the matriz A« can be chosen
such that the standard operation changes the corresponding function arbi-
trarily little in the strips (15), if no straight segment essential for the
(7, Alny)-displacement enters the strip |z| <a.

To prove the theorem we must find a particular strategy for the appli-
cation of standard operations to the skeleton (12) such that the vector
function after a finite number of steps becomes 0 when |s| = d.

For positive numbers r, >7,>0 we introduce a continuous function
@y,r,(8) Which is 0 when s<r, and 1 when s2r,. We shall always choose

uv’(s) = (prlrg(s) vv’(s) or uv’(s) = (prl 72(—8) vv'(s) .

12*
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We choose an integer N such that the finite sequence s, .. ., sy contains
an element s, satisfying 0<s, <3}d and an element s,  satisfying
0>s, = —3d. We shall say that a term s, is trivial if v,(s)=0 when
|s| 2 s,/. Among the non-trivial terms of the finite sequence we choose
the one s,. with the greatest absolute value.

To fix the ideas, we shall assume that s,.>0. If no s, satisfies the
inequalities 2d < |s,| < s,s, We define r, = 2d, otherwise », =s,.. If 5.2 2d,
we choose s, =s,,. Otherwise we choose s, as the first term of the series
81, 83, ... which is = 2d (its index may be >N). We shall not fix the
value of 7, yet, but we shall require that 0 <r, <7, and that no s, of the
finite sequence satisfies r, < |s,| <7,. If we choose

l‘v'(s) = (prl'rz(s) vv’(s) ’

the vector u,.(s,) will be 0 when [y| =N and when 0<» =<y, except when
v=vy. We choose v={, —1{,, hence 6=s, —s,. We can then be certain
that no segment essential for a (v, An+)-displacement can reach the strip
|| <a. To finish the proof we must determine the interval where the last
term in (16) is + 0. The function wu (s) is 0 outside the interval r,<s<d.

Hence .
u,(s—og) =0 outside r,+o <8 <d+o.

From 0<s, <4d and 3d <s, <d follows that —d<o< +3d. We fix the

= g

value of r, such that 7,= 4d. Then
u,(s—o) = 0  outside —2d<s< .

The process has thus replaced the vector function by a new function

which is 0 when s2 s, . Afterwards we use the symmetric standard ope-

ration for the sequence s_;, ..., s_y. Since the last term in (16) is 0

when |s| = 4d, this will give us a vector function which is 0 when [s| Z s, .
If 5,. <0, we take r, = —s,. or %d, s, =s,« or < —3d,

uv'('s) = (pnrz(_s) vv’(s) ’

and rv=t,  —t,. The proof will be the same. In the case where r,= id,
the proof is finished with the first step. Otherwise, one more of the terms
8y, - - -, Sy will be trivial, and after a finite number of steps we get r, = §d,
and the proof will then be finished with the following step.

§ 5. The limit process.

We consider a skeleton with the corresponding function Fy(z) which is
regular in each of the strips |z|<a, and |y| <b,. We choose a positive
number g < min (a,, b,) and a convergent series
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where each ¢, is positive and ¢ is so small that the inequality

(17) [Fo(25) — Fo(21)] > 2e

is satisfied for some values of z; and z, in the union of the strips || <a,—p
and |y| <b,—p. Finally, we choose two increasing sequences

Ay < @y < ...—> 00 and by <b < ... >00.

According to theorem 2 and theorem 3 we can find a sequence of skeletons
with the same basis as the first skeleton such that the sequence

F(z), Fy(z), ... of corresponding functions satisfies the following condi-
tions:

1) F,(z) is regular in each of the strips |z|<a, and |y| <b,,.
2) |[Fp(z) = F,(2)| S ¢, when || <a,_,—¢ and when |y|<b,_, —p.

The last condition implies that the sequence Fy(z), Fy,(z), ... converges
uniformly in each of the strips |x|<ay_;—p and |y| £by_; —p. The limit
function f(z) is regular in each of these strips, hence, in the whole z-plane
since ay_;—p — oo and by_; —p — co. It is not constant since the condi-
tion (17) implies that |f(2,) —f(2;)] > 0. If the skeleton is of the first kind,
the function f(z) will be limit periodic in the imaginary direction with the
o from the skeleton as basis number, and it will be almost periodic in
the real direction with the numbers , and §, from the skeleton as an
integral basis. If the skeleton is of the second kind, the function f(z) will
be almost periodic in both directions and have the basis numbers of the
skeleton as entire bases. This completes the construction.

§ 6. Some variants of the method.

The preceding construction has a number of variants and we shall
mention a few of them.

If we use the simple skeleton (it,, v(s,)) and displacements in the direc-
tion of the y-axis, we obtain an entire function almost periodic with entire
basis in every strip a <x<b where ab>0, but with different Fourier-
Dirichlet series when x < 0 and when x> 0. If we start from the skeleton
(a+it,, v(s,)), we can use displacements in the direction of the y-axis
alternating with small displacements in the direction of the z-axis such that
a — 0. If we choose the standard operations such that we always get a
fine approximation on the y-axis, we can get an entire function almost
periodic on every vertical line but not in every finite vertical strip.
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These examples are analogous to examples given by R. Petersen in the
limit periodic case. R. Petersen’s results [3] concerning the existence of
entire functions with a given everywhere dense set of vertical strips as
maximal strips for limit periodicity can then be parallelled for functions
with integral basis.

If we return to the main construction, but use displacements in one
direction alternating with small displacements in the other direction, we
can obtain functions almost periodic in every finite strip in one direction
and almost periodic on every line in the other direction, but with an
infinity of maximal strips of almost periodicity in this direction. We can
also use a skeleton where the pairs (p, ¢) run through all pairs of integers.
We can then obtain an entire function almost periodic in every horizontal
strip and with two maximal strips of almost periodicity in the imaginary
direction.

R. Petersens original example can be varied such that the resulting
function becomes almost periodic in 3 directions, but it is not known if
almost periodicity in more than 3 directions can occur for entire functions.

It is an unsolved problem whether or not the class £ contains functions
of finite order. It is also an open question whether or not functions of &
with a finite basis may have an analytic spatial extension (for the defini-
tion of this notion, see e.g. [2]).

BIBLIOGRAPHY

[

. H.Bohr, Zur Theorie der fastperiodischen Funktionen II, Acta math. 46 (1925), 101-214.

2. B. Jessen and H. Tornehave, Mean motions and zeros of almost periodic functions, Acta
math. 77 (1945), 137-279.

3. R. Petersen, Uber eine Klasse analytischer Funktionen von spezieller fastperiodischer
Struktur, Acta math. 67 (1936), 81-122.

4. R. Petersen, Eine doppelt-fastperiodische ganze tranzendente Funktion, Mat. Fys. Medd.
Dan. Vid. Selsk. 15, no. 8 (1938).

5. C. Runge, Zur Theorie der eindeutigen analytischen Funktionen, Acta math. 6 (1884),

229-244,

UNIVERSITY OF COPENHAGEN, DENMARK



