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ON THE HOMOTOPY STRUCTURE OF COVERINGS

ANTON JENSEN

1. Introduction. The purpose of this paper is to develop a theory of
coverings of topological spaces, which in some respects is very similar to
the ordinary homotopy theory of spaces. The results obtained may be
useful in the theory of critical points. The basic definition is:

DrrmNiTiON 1. Let a={4,: ve S} and g={B,: v e .4} be coverings
of the topological spaces X and Y, where .# denotes an arbitrary index
set. Then « and g are called .#-homotopic if there exist functions

fi X7, g: Y ->X, F.: XxI->X, Q. YxI->Y,
where I as usual denotes the unit interval, such that

1° fl4,, g9|B,, F|4,x1I and G|B,xI are continuous functions for
each » € .4 with images in B,, 4,, A, and B,, respectively, and

2° F(x> 0)=gf(m)’ G(y7 0) =fg(y)> F(x’ 1)=x? G(?/, 1):?/'

This definition gives an equivalence relation between coverings with
the same index set .#. Of course two coverings will generally be called
homotopic if a common index set can be chosen in such a way that the
two coverings referred to the same index set .# are .#-homotopic. But it
is convenient to operate with the definition above, and throughout the
paper we shall assume that £ is a fixed index set.

If # consists of a single element, definition 1 reduces to the usual
definition of homotopy type. Now the most interesting invariants of
homotopy type of spaces can be dealt with in the following way:

To every space X is attached a semi-simplical complex S(X) and a
minimal subcomplex M(X), and it can be shown that if X and Y are
homotopic then M (X) and M(Y) are isomorphic complexes (see [2] or for
a more algebraic treatment [6]). Therefore the semi-simplicial complex
M(X) is an invariant of homotopy type of spaces, and in fact it contains
the singular homology groups, the homotopy groups and almost every
other known combinatorial invariant of the space X. In order to get
simpler invariants one can construct semi-simplicial complexes
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M™(X), n=-—1,01..., 0,

where M™(X) is obtained by identifying simplices with the same n-skele-
ton of M(X). (See [6].)

Our aim is to give an analogous treatment of coverings with index set
#, which is equivalent to the theory mentioned above when £ contains
only one element. In section 2 the necessary algebraic tool is introduced
and discussed. To a semi-simplicial complex K may be attached an index
projection p; that is a semi-simplicial map

p: K-—>Jg,

where .7 is a complete semi-simplicial barycentric subdivision of the ab-
stract simplicial complex whose simplices are the finite, non void subsets
of #. Such pairs K= (K, p) are called #-complexes, and they can be
treated just like ordinary semi-simplicial complexes. A homotopy theory
for #-complexes is carried out, and theorems about the existence of
minimal subcomplexes, which are invariants of homotopy type of .#-com-
plexes, are proved. Section 3 is concerned with the .#-complex

S(o, X) = (S(oc, X), p) ,

which is an analogue of the total singular complex S(X). The .#-complex
S(x, X) gives rise to a minimal .#-complex M(«, X) which is an invariant
of #-homotopy type of coverings with index set .#. Then .#-complexes

Mo(x, X), n=-1,012 ... c0,

are introduced and discussed. Each of the #-complexes M™(x, X) gives
rise to a semi-simplicial complex M™(x, X), and in section 4 the rela-
tions between the complexes M™(X) and M™(x, X) are discussed, and
an application of the whole theory is given.

2. f-complexes. We shall use both s.s. and c.s.s. complexes (semi-
simplicial and complete semi-simplicial complexes). If K is an s.s. or a

c¢.s.s. complex, then K,,, =0, 1, 2, ..., denotes the set of its n-simplices;
if o€ K,, then 9,0, 1=0,1, ..., n, is the ¢'th face of 0. If K is a c.s.s.
complex and ¢ € K,, then s,0,1=0, 1, ..., n, is the ¢’th degeneracy of a.

This notation follows [6]. In sections 2 and 3 only complete complexes
are used, but the definitions of #-complexes and #-maps are easily
adapted to s.s. complexes, and this is used in section 4. If K and L are
c.s.8. complexes, then K x L is the c.s.8. complex defined by:

(KxL), = K,xL,, 0o, t)=(0;0,07), slo,1)=(80,8T7).
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If 6 € K then ¢ is the smallest subcomplex of K which contains o, i.e. the
smallest subset of K which is closed under application of face and de-
generacy operators.

4, is the standard geometrical n-simplex, the points of which are
(n + 1)-tuples of real numbers

{tor bt oo s by}, 0= ES1, t
4, is topologized by the metric

n 3
o({ts ts -5 ty}s {t's s . 1)) = <2 (ti—ti')z) .

The vertices of 4, are:
o ={1,0,...,0}, v} ={0,1,...,0},...,0" = {0,0,...,1}.

There is a natural one to one correspondence between (m + 1)-tuples of
integers {ag, a4, ..., a,}, 0<a,<n, and simplicial maps ¢: 4,, >4,
given by ((v]") =1, An m-simplex of the c.s.s. complex A[n] is a sim-
plicial map ¢: 4,, - 4, which corresponds to an (m + 1)-tuple

{ag, g, ..., an},

where a,<a; if ¢ <j; the face and degeneracy operators are defined by
their effect on the representatives of the simplices { € A[xn] in the follow-
ing way:

0i{ag, @y, ooyt = {@g, ooy, Byigs o ey Q)

sag, ay, .., a,) = {ag, .. 0,05 05 05, .. )

The identity map 4,, — 4, denoted by £, is represented by {0,1, . ..,n}.
Therefore 2, = A[n]. We shall use the notations

Aln; k] = 3,2, and  A[n] = U 4d[n; %] .
k

If ¢ is an n-simplex of some c.s.s. complex then y,: A[n] — & will denote
the c.s.s. map determined by y,(£2,)=o0.
Notice that a simplex {, € 4[n],, and a simplex {, € 4[m], can be mul-
tiplied, and that the product is a function (,{;: 4, - A4,, i.e. {,{; € 4[n],.
In what follows .# is supposed to be a fixed index set.
The c.s.s. complex J is defined as follows: .#» consists of all (n+1)-
tuples {m,, m,, ..., m,}, where each m;, is a finite, non void subset of .7,
and m,<my if ¢+ <j.

10*
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ai{mo, ml, “ oy mn} = {mo, “eey mi_l, mi+1’ e e ey mn} .
Si{mo’ my, ..., mn} = {mo’ ceey My, M, My, My, -0, mn} .

An F-complex K is a pair (K, p), where K is a c.s.s. complex and p is
a c.s.5. map K -~ 4. K is augmented by putting 8,0 =po if ¢ € K.

We shall interpret the “index-projection” p of an -complex as an
operator like 9; and s;. Thus the projectionis always denoted by p. A sim-
plex o € K means a simplex o€ K. .# = (£, ¢) where ¢ is the identity map
S - #. If Kis an f-complex then K is the corresponding c.s.s. complex.

An F-map f: K- L is by definition a c.s.s. map f: K — L with the
property that p=pf.

K and L are called isomorphic if there exist two .#-maps f: K - L and
g: L — K such that fg and gf both are identity maps.

The cartesian product K x L, where K is an .#-complex and L is a c¢.s.s.
complex, is defined to be the .#-complex (K x L, pr) where 7 is the pro-
jection K x L -~ K.

K is said to satisfy the J-extension condition if given

Gy > Op_1: Opa1s -2 0ps1 € Ky EFEn+1,
and £ e # such that
(a) 0;0; = 0;_y0; for ¢ < j; 4,5 + k,

7

(b) po; = 0;&, + + k,

(c) 8:9:¢ =§,
then there exists a o0 € K, ,; such that po=¢& and 0,0=0,, i +£.

The extension condition for c.s.s. complexes is due to Kan (see [4] or
[6]). Actually S(x, X) and the associated complexes satisfy a stronger
extension condition, but the one above is sufficient for the existence of
minimal complexes.

f: K—>Landg: L~ K are called .#-homotopic if there exists an .#-map
F: KxA[1] - L such that

F(o, s50,82,) = f(0), Fl(o,8;0,82,) = g(o), oc€K,, n=01,2 ...,
K and L are called #-homotopic if there exist #-maps f: K- L and
g: L — K such that fg and gf are .#-homotopic to the identity.
The last definition is the algebraic analogue of definition 1. In order to

handle this definition one must prove the lemmas 1(I), =1, 2, 3. The
symbol A[n] denotes an .#-complex (4[n], p),

Iy = A[n]x A[1]U 4[] x A[1; 1],
T, = Aln] x 4[2] U A[n] x A[2; 0] U A[n] x 4[2; 2],
I, = A[n] x A[2] U A[n] x A[2; 1] U A[n] x 4[2; 2],
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I), T, and T’y are the corresponding subcomplexes of A[n]x A[1] and
A[n] x A[2].

Lemma 1 (I). If K satisfies the S -extension condition then each S-map
f: Iy > K can be extended to A[n] x A[1] or A[n]x A[2]. 1=1, 2, 3.

Proors. The method of the proof is first shown in the simpler case
lemma 1(1). Then the two other cases are treated simultaneously in the
same way.

Let v=({;, {;) be a non degenerate simplex of A[n]x A[1] such that
8,.0,C1="{4, and suppose that f has been extended to 0,7, ¢ £k, but not to
0,7 and 7. Then

(@) %(f(@;7)) = 41(f(@:7), i <, 4, *k,

(b) p(f(0:7)) = B:(pr), @ + k

() s,0(p7) = P,
and there exists a ¢ € K such that po=pr and 8,6=f(0;7), ¢ k. f can
then be extended to ¥ by the definition f(t)=g0.

The proof is based on successive application of this principle. First the
family of non degenerate (n+ 1)-simplices of A[n] x A[1] is ordered by a
relation <, and then it is shown that if f has been extended to

J,=TulU{E: r<1)}),
then it is possible to extend f to J, U 7,.

Proor orLEMMA 1(1). Each non degenerate (n + 1)-simplex re A[n] x A[1]
can uniquely be written as

[0‘] = (saQn? 838?—“91); 0 fSaxsn.
The ordering < is chosen as follows: [x;]<[o,] if oy > oxg.

e A[n]x A[1] if i aatl,

2.[] € [x+1] f 4=o+1and « < n,

o

: € An]xA4[1;1] if i =oa+1and x =n,
¢ Ji if i=o.

The map f|J},, can be extended to (0,[«], [x]) because

! saaa(suQn) = schn *
This proves lemma 1(1).

Proor OF LEMMA 1(2) AND LEMMA 1(3). Each non degenerate (n -+ 2)-
simplex 7 € A[n] x 4[2] can uniquely be written as
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[0" ﬂ] = (Sasﬂ'gn’ stfll«asg—ﬂgl)’ 0
The ordering chosen is:
[x1, B1] < [oxg, Bol if oy > g O oy =0y and By > pB,.
Further J;, , means I;u(U{7: 7<[x, f]}), I=2, 3.
I. 0<ax<f=<n. In this case
e A[n] x 4[2] if i+, a+], f+1,B+2,
€ [e+1,p5] if i=ua+1,
[, 14 € [o, f+1] if ¢=p+2 and f<n,
€ A[n}x4[2;2] i +=p+2 and f=1n,
¢ J2 Tl i i= Bl
e Am]xA4[2] i i+ B, f+1,
€ [, p+1] if ¢=pg+1and B <n,
€ A[n]x4(2;2] if ¢=p+1 and f=mn,
¢ I o T n if ¢=4.
Both f|J}, 5 and f|J}, 4 can be extended to (9,3,[x, 8], 9,[x, B]) because
Sﬁaﬁ(aa(sasﬂgn)) = azx(sa’gﬁgn) s
and to (5,,[x, B1, [«, B]) because

0;0,[x, B]

854105,1(8,8542,) = 8,802, .
II. 0<x=p=n. In this case
€ Aln]xA[2] i i+ apf+l,p+2,
€ [«,f+1] if ¢4=p8+2and g <n,
€ An]x4[2;2] if i=p+2 and 8 =mn,

0.,
0PIy C Amyxazin] i =g,
¢ J2 if i=p+1,
¢ S di, i i=«.
e Alm)xA[2) i i+ B p+1,
1 i ) =
2,00 ] € [x,f+1] if 4=p8+1and g <mn,

€ Ad[n]x4[2;2] i +=p+1 and B = n,
¢ Ji 4 if 1=2§8.
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f IJ[Z,,, g is treated as in case I; f IJE”M,] can immediately be extended to

(3.[x, B1, [, 1) because

8,0,(8,8542,) = 8,839, .
III. 0=x<pB=n. In this case

e A[n] x A[2] if ik x,at+l, 41, 42,
€ [x+1,5] if i=a+1,

€ [« B+1] if ¢i=p84+2and g <n,
Oilo, Bl 1 € A[n]xA4[2;2] f ¢ =p+2 and B =n,

€ A[n]lx4[2;0] if =0,

¢ I g f 7=,
Jom I m if 7=p8+1.
e A[n]x A[2] if i+ B p+1,

20,0, ] € [, p+1] %f z:=ﬁ+1 and g < n,
e A[n]lx4[2;2] f ¢=p+1and f=mn,
¢ J2 if ¢=4.

fIJE, 5 is treated as in case I; f|JZ, , can immediately be extended to
(P:1[x, B, [, B]) because

85+10p41(828592,) = 8,8,92,, .
IV. 0=a=F=<n. In this case
e A[n]x 4[2] if i+ 1, f+2,
€ [, B+1] if ¢=p+2and f<n,
€ A[n]xA4[{2;2] if i=p+2 and 8 =n,
O, Bl 3 € A[n]x4[2;1] if i=p8+1,

¢ Jo g if ¢=p8+1,
€ A[n]x4[2;0] i ¢ =,
¢ J2 4 if =«.

SIJE, g is treated as in case III; f|JE, 4 is treated as in case IL
, This proves lemma 1(2) and lemma 1(3).

TaEOREM 1. If L satisfies the .7 -extension condition, then the relation
f and g are #-homotopic

18 an equivalence relation in the family of #-maps K — L.
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Proor. (a) The reflexivity is obvious. The “deformation’ F is defined
by F(U’ C) =f(0')'

(b) The symmetry follows from lemma 1(3). There is given an .#-map
F: KxA4[1] - L, and we have to show that there exists an .#-map
G: Kx A[1] - L such that

F(o, s50,82,) = G(o, s50,4,), F(o, s50,2,) = G(o, s50,52,), gek,.
Let

@: KxA[2;1JuKx4[2;2] > L
be defined by

D(0, (3,2,)0) = F(o,532,2,) and  P(o, (0,2,)¢) = F(o, {),
gekK,, Ced[l],.

Now lemma 1(3) implies that @ can be extended to K x 4[2]. In fact, @
is defined on all (0, {) € Kx 4[2], where o0 € U{#: 7€ K,}. Suppose, @
has been extended to all (o, {) € Kx A[2], where 0 € U{z: 7€K,}, and
let o, be a non degenerate n-simplex of K. We want to extend @ to
&, x A[2]. Let A[n] be the .#-complex (4[n], px,,) and let ¢: I'; - L be

defined by
P(L1 Co) = D(%oy(C0)s o) -
@ is extendable to A[n] x 4[2], and we define
D(7, ) = p(1(x), L) for teq.
In this way @ is extended to K x 4[2] by induction, and @ is defined by
G (0, ) = D(0, (0,42:)0) -
(¢) The transitivity follows from lemma 1(2). Two #-maps
F: Kx4[1]-L and @G: Kxd4[l]->L
are given such that
F (o0, 550,82,) = G(o, s50,8,), ek, ,
and we have to show the existence of a map H: K x 4[1] — L such that
F(o, $50,92,) = H(o, §50,82,) and G(o, s30,2,) =H(o, s50,2,), oc€K,.
The map @: Kxd[2;0]uKxA4[2;2]->L
is defined by
(o, (02,)0) = F(0,) and  &(o, (0:2,)¢) = G(s,0) .
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Now 1(2) implies that @ can be extended to K x 4[2], and H is defined by
H(s,0) = @(o, (0,2,)0) .

Theorem 1 has the corollary:

TaEOREM 2. The relation: K and L are F-homotopic, is an equivalence
relation in the family of #-complexes which satisfy the S -extension condi-
tion.

The rest of section 2 is concerned with minimal subcomplexes of
J-complexes. It is an obvious generalization to .#-complexes of the
theory given in [2] and [6].

0y, 0,€ K, are called #-compatible if po,=po, and 0;0,=20,0,,
1=0,1, ..., n. Evidently the relation:

o, and ¢, are #-compatible
is an equivalence relation. The map y,: 4[n] - ¢, determines the .#-
complex -
p Aal = (A[n]7 pxm) >

and if ¢, and o, are .#-compatible then A, =4,,.
gy, 0y € K, are called #-homotopic if ¢, and ¢, are f-compatible and

there exists an #-map _
F3: Aln]xA[1] - K,

where A[n]=A4, =A,,, such that

o’
(a) ng(aign, {) = 0,0, = 0,04, £€4[1],,, 1=0,1,...,n,
(b) FZ?(Qm 80002,) = oy,
(c) F3(L2,, s50,8,) = o5 .

o1

The method applied in the proof of theorem 1 shows that if the .#-com-
plex K satisfies the #-extension condition, then the definition above
gives an equivalence relation in the families of .#-compatible simplices.

A minimal subcomplex M of an #-complex K, which satisfies the .#-ex-
tension condition, is defined by the properties:

(a) If oy, 0, € M are #-homotopic in K then ¢, =0,.
(b) If 0, e K and 9,0, M,,_;, 1=0, 1, ..., n, then there exists a sim-
plex o, € M,, such that ¢, and o, are #-homotopic in K.

The existence of minimal subcomplexes of an .#-complex which satis-
fies the .-extension condition is easily established. First one element out
of each class of .#-homotopic 0-simplices is chosen, and these simplices
constitute M,. Now suppose M,_; has been constructed; let I, be the
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family of classes of .#-homotopic n-simplices such that ¢ e y € M,, im-
plies that 0,0 e M,,_;, ¢=0, 1, ..., n. The set M, consists of one element
out of each class y e M,,; if a class contains a degenerate simplex then
this is chosen. (A class ¢ € IR,, never contains more than one degenerate
element.)

TaEOREM 3. If M is a minimal subcomplex of K and i: M — K is the
tnclusion map, then there exists an F-map h: K - M such that hi is the
tdentity and th is homotopic to the identity.

Proor. A “deformation” H: K x A[1] - K such that
H(o, 500,82y) = a0, H(o,s[0,2,)eM, o€eK,,

and H(o, {) = o if 0 € M is constructed in the following way:
If %€ K, then H(c% 0,02,)=0° and H(o% 0,8,)=1° where 1° is the
unique O-simplex of M such that ¢° and z° are homotopic; generally, if

o € ¢° then
H(o,2) = F3(57(0), ).

Assume that H(o, {) has been defined for all 6 e U {3: 7€ K,_,}, and
let o™ be a non degenerate simplex of K,~M,. Using the notation
A[n]=A4,., we have that the function

n(Cy, Lo) = H(XU"(Cl)i Cz): Liedn), Lyedl],
is defined on I}, and lemma 1(1) implies that # can be extended to
A[n]x A[1].
Now
ai”](gn’ sgaogl) e M ’
and there exists a unique 7" € M such that
0, = (2, 52%2,) and 7"
are .#-homotopic in K. The function ¢: I', - K is defined by
P l) = (6 0208) (G L) edm]xa[2],
‘P(Cv (aogz)cz) = F(Cy, &) if (81 Co) € A[n] x A[1],
‘P(‘:l, (02£2,) Cz) = (1, Ca) if ($1, C2) € A[n] x A[1] .
Lemma 1(2) implies that ¢ can be extended to A[n] x A4[2], and we define
H(T, C) = (}7(7{;7}(7), (81Q2)C)’ TE ;ﬁ7 C € A[l] .
In this way H is extended to K x A[1] by induction, and
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h(c) = H(o, s50,82;), ogekK

n
The main result of this section is:

TaEOREM 4. If M’ and M are minimal subcomplexes of two F-homo-
topic S -complexes K' and K, then M and M"" are isomorphic.

The following two lemmas are necessary for the proof of theorem 4.
Let A[n] be an arbitrary .#-complex (4[n], p) and A the subcomplex of

A[n] x A[1] x 4[1]
determined by

A = A[n]x A[1] x A[1]U A[n] x A[1]x A[1] U A[n] x A[1] x 4[1; 1] .

Lemma 2. Each #-map A — K, where K satisfies the S -extension condi-
tion, can be extended to A[n] x A[1] x A[1].

Proor. A[1]x A[1]1=0,u0,, where 6, and 6, are defined as follows:
01 = (51921, 8042y) and By = (8821, 8142,) .

Both 6, and 6, are non degenerate. The map ¢,: I', - K defined by
#1(81, §o) = f(Cv Xﬂl(cz))

can be extended to A[n] x 4[2], and f is defined on A[n] x 6, by
S 1) =9 (Cv X;,I(T)) .

The map ¢,: I'; - K defined by

(ST S f(cl’ Xeg(cz))

is then extendable to A[n] x 4[2], and f is defined on A[r] x 6, by

f@, 1) = 98y 15, (D) -

Lemma 3. If M is @ minimal subcomplex of K and f: K — K is #-homo-
topic to the identity, then f|M is an isomorphism of M onto another
manimal subcomplex f(M) of K.

Proor. We have to prove: (a) If o, 0, €M are .-compatible and
f(oy) and f(o,) are £-homotopic, then g, =0,. (b) If 0;0=£(0;), 0 € K,
0;=M,_1,1=0, 1, ..., n, then there exists a ¢ €M, such that 0,0 =0, and
f(o) and ¢ are #-homotopic.

(a) Since f is #-homotopic to the identity, there exists an .#-map

F: KxA4[1] =K
such that
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F(o,s50,2,) = flo), Flo,550,2,) =0, oc€kK,.
Now A[n]=A4,,=A4,,= Az, = s, and @: 4 - K is defined by

o, C0s 8a) = Fyo(n), &) i nedln], edl], e,

o, 0 0o = FiB(m, &) i mednl, G ed[l], Led1;1],
@0, C1, C) = F(ram), &) i nednl, e d[1; 0], &edl],
o, L1, 82) = Fxo,(m), &) it nedn], ed[1;1], {,eA[l].

Lemma 2 implies that ¢ can be extended to A[n] x A[1]x A[1], and the

function . _
Fe: An]x[1] - K

defined by
ng("b C) = @(7]: g, 'S(’]naogl)’ ne A[n]m: (e A[l]m s

shows that ¢, and o, are .#-homotopic.

(b) It follows (a) that f|M is one to one and has an inverse function g.
J(M) can be extended to a minimal subcomplex M’ of K, and the method
of proof of theorem 3 shows that g can be extended to

g: M —>M,
such that ¢ is homotopic to the inclusion map M’ — K. We have to prove
that f(M)=M’'. Suppose that f(M,,_;)=M,_;; if p € M, then (a) implies
that fg(e) and p are #-homotopic, and therefore p € f(M,), and since it is
obvious that f(My)=M,’, the proof is completed by induction.

Proor or THEOREM 4. Let f: K' - K" and ¢g: K’ - K be inverse
homotopy equivalences. If he K o MY

is the .#-map described in theorem 3, then lemma 3 implies that ghf(M’)
is a minimal subcomplex of K, and there exists an .#-map

k: K’ - ghf(M)
such that ki is the identity and ¢k is homotopic to the identity (¢ is the
inclusion map M’ - K’). Now
R(fIM): M > M"

must be one to one because otherwise M" and ghf(M’) would not be iso-
morphic. And A(f|M’) must be onto M"’ because fk(g|M"’') is .# homotopic
to the inclusion map M’" — K'* and therefore an isomorphism onto.

Theorem 4 implies that the minimal complexes are invariants of
#-homotopy type of #-complexes which satisfy the .#-extension condi-
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tion. The same holds for the derived complexes M®, n=—1,0,1, ..., oo,
defined in the following way:

An m-simplex of M™ is a class o™ of m-simplices ¢ € M such that
0y, 03 € ™ implies (1) that po, =po, and (2) if n 20, that y, and yx,, are
identical on

U{z: vedm],}

or on A[m] if n =ooc. The face and degeneracy operators are induced by the
face and degeneracy operators of M in the following way: If 0 €p™ then 0,0
and s;p are the (m —1)- and (m + 1)-simplices of M™ which contain 0,0 and
;0. The complexes M™ and M are isomorphic and will be identified.

The natural maps
of: M® MOy

IIA

S,

are all #-maps. (If o €peM?® then wi(p) is the simplex of M™ which
contains o.)

3. S(a, X) and the associated complexes. As a generalization of the
fact that definition 1 reduces to the usual definition of homotopy type
if # contains only one element, we have the following obvious theorem:

THEOREM 5. If m is a subset of . and the coverings {A,: ve 7} and
{B,: ve S} are J-homotopic, then the subspaces N{A,: vem} and
N{B,: v e m} are of the same homotopy type.

Theorem 5 implies that the usual homotopy types of the intersections
of elements of a covering are .#-homotopy invariants of the covering, but
it is easily seen that this does not yield a complete set of invariants.
Consider for example the torus and the Klein bottle; these two spaces
can both be covered by two compact cylinders (topological products of
circles and unit intervals) such that the corresponding intersections are
homotopic, although the coverings are not .#-homotopic because this
would imply that the torus and the Klein bottle were of the same homo-
topy type. Therefore it is necessary to take into consideration how the
homotopy types of the intersections are “linked” together. This is done
in the construction of S(x, X).

If £={mg, my, ..., m,}€.# we shall use the notation (&)=m,.

If X is a topological space then the total singular complex S(X) is the
c.s.8. complex defined by:

S8(X), consists of all continuous maps o”: 4, - X, the face and
degeneracy operators being determined by

0;,0" = o™¢;2,) and  s;o" = o™(s;02,) .
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If a={4,: ve S} is a covering of the topological space X and
o” € 8(X),,, we shall use the notation

(o™, = {ref: o™Md,) < 4} .

DrrFiniTION 2. If 6 ={4,: v € £} is a covering of the topological space
X then S(«, X) is the subcomplex of the .#-comples .# x 8(X) defined thus:
(£ 0) € (J x8(X)),

is an n-simplex of S(«, X) if and only if
@& < @iod,, 1=0,1,...,n.
Notice that S(x, X) is the largest subcomplex of £ x S(X) with the
property that if (£, o) € S(«, X), then (&) <{o),.

S(x, X)=.2 x 8(X) if and only if 4,=X, v e .£.
S(x, X) satisfies the following extension condition: If

S

m

Ogy ++ 3041, Opa1s ++-» Oppy € S(x, X), and &
such that

(a) 0;0;=0;_y0;fori<yj; 1,j+k,

(b) po;=20,& for ik,

(¢) <9,E>=<&,
then there exists a ¢ € S(x, X), ,; such that po=§& and 0,0 =0, for i k.

This extension condition is stronger than the .#-extension condition of
section 2, and it guarantees the existence of a minimal subcomplex
M(x, X) of S(x, X). (Theorem 4 implies that all minimal subcomplexes
are isomorphic.)

THEOREM 6. If a={A,: ve€ S} and B={B,: ve S} are S-homotopic
coverings of the topological spaces X and Y, respectively, then S(x, X) and
S(8, Y) are F-homotopic F-complexes.

Proor. Let f: X - Y, 9: Y > X, F: XxI>Xand G: Y xI - Y be
the maps of definition 1, and let ¢: 4; - I be a continuous function,
which maps (9,4;)[4,] into 0 and (2,£2,)[4,] into 1. Now let

f: S(x, X)~>S(8,9),
g: S, Y)—S(x X),
F: S(x, X)xA[1] - S(«, X),
G: S8, Y)xA[1]—>S(B, Y)
be defined by
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f(f, G) = (E:fa)’ (5, U)ES(OC, X),
_ g, o) = (&, ga) > (¢, 0)e S(ﬂ, Y) ’
F((§0),0) = (6 F(o( ),iL( ), (5 0)eS(x X), Ced],
G((E 0),2) = (& G(o( ),i2( ), (¢ 0)eS@B ¥), tedl].
It is easily verified that
F(U’ SgaO'QI) = 0, F(G’ 8381‘91) = gf_(ﬂ), o€ S(o‘a X)n ’
00, 830,2) = 0. Glo, 42,2, = fglo), o eS(B, Y),.

and

Theorem 6 shows that M(«x, X) and the derived complexes
M®(x, X)), n=-—1,0,1,...,

are invariants of .#-homotopy type of coverings, and in fact they contain
very detailed information. If, for example, {m} is a 0-simplex of .#, then
P~({m}), where p is the projection of M(x, X), is isomorphic to the
minimal c.s.s. complex of N{A4,: »em}. The “mixed” simplices of
M(x, X) tell something about the way in which the homotopy types of
the intersections are related. We shall examine M-9(x, X) and M@(«, X)
more closely.

M (o, X). 04,0, € M(x, X) are elements of the same simplex of
MY, X) if poy =po,. Therefore M—V(«, X) is isomorphic with the sub-
complex N of .# determined by

{me, My, ...,m,} e N if N{4,:rem,} + 0.

This shows that N is the c.s.s. barycentric subdivision of the usual nerve
of the covering «, and it is obvious that M-3(x, X) does not carry more
information about the covering than the nerve. If .# contains only one
element, then MD(«, X) is trivial; it tells only whether X is void or non
void, and therefore M-D(X) is usually not defined in ordinary homotopy
theory.

MO(x, X). (&, 0y), (&5, 05) =M(x, X), are elements of the same n-sim-
plex of MO(x, X) if (a) & =&,=£ and (b) (3507 %0,)[4,] and (8k070,)[4,]
are in the same arc-component of

N{A,: ve@tE), k=01,...,n.
This is true if (a) & =£&,=¢ and (b) (050,)[4,] and (95 0,)[4,] are in the

same arc-component of N {4, ve@ne)
v 0 ¢

Therefore a simplex 7€ M®(«, X), is determined by a simplex &e jn
and an arc-component, of
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N{4,: ve@ne).

This implies, which holds as well in the case of MtD(«, X), that if
7€ MO(x, X) and pz is degenerate, then 7 is degenerate. A consequence
of this is that every homology group

H,(MO(x, X), G)

vanishes if 4 1 is greater than or equal or the order of the covering «,
i.e. the maximal number of intersecting elements of «.

Like MD(x, X), M®(«, X) is isomorphic to the barycentric subdivision
of a complex, but this complex is usually not simplicial although it has
the property that all faces of a non degenerate simplex are different.

If .# contains only one element, then S(x, X) and S(X) as well as
M®(x, X) and M(X), n=—1,0,1, ..., co, are isomorphic, and it is
well known that if each continuous map of the n-sphere S*, (n=0,1, ...),
into X is homotopic to a constant map, then

ot i M®™(X) > M™(X)

n—1-

is an isomorphism onto. This is generalized to the obvious

THEOREM 7. If each continuous map
fi S*->N{4,: vem}

is homotopic in N{A,: v e m} to a constant map for all finite, non void sub-
sets m of J, then the F-map

Wyt M™(x, X) - M D(x, X)

n—

18 an isomorphism onto.

4. The c.s.s. complexes M™(a, X). In general the c.s.s. complexes
S(«, X) and M™(«, X) do not satisfy the extension condition for c.s.s.
complexes, and therefore they have no simple algebraic homotopy theory.
Nevertheless homotopy results can be obtained by using the geometric
realization of the complexes in question. (The results obtained in this
way are equivalent to those obtained by applying some algebraic homo-
topy theory, see [4].) A c.s.s. complex has two different realizations; both
are CW-complexes; the difference is that in one of the realizations there
is a one to one correspondance between the open n-cells and the n-sim-
plices of the c.s.s. complex (see [3]), and in the other there is a one to one
correspondence between the open n-cells and the non degenerate n-sim-
plices of the c.s.s. complex (see [5]). We shall use the first one, which
does not involve the degeneracy operators and can therefore also be
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applied to s.s. complexes. If K is an s.s. complex, then |K| can be de-
fined as follows (each set K, is regarded as having the discrete topology):
| K| is the quotient space

U{K,x4,: n=0,1,2,...} | R,
where the relation R corresponds to the identification of

(@;0" x) and (0", (0,2,)2), o"€K,, zecd,,,

t=0,1,...,n;, n=01....

This definition is an analogue of the one given in [5] for c.s.s. complexes,
and it is not difficult to show that this realization and that of [5] are of
the same homotopy type if K is a c.s.s. complex and not merely an s.s.
complex. Using the definition above, we shall say that an s.s. map
f: K — L is a homotopy equivalence if the induced map f: |K| - |L| is a
homotopy equivalence. This definition is consistent with those given for
complexes which satisfy an extension condition. If f: K — L is a homo-
topy equivalence then the induced homomorphisms

H,(K,Q)—~H,(L, Q)

are isomorphisms onto for all » and G.
There exists a (non unique) c.s.s. map

such that %7 is the identity and ¥ is homotopic to the identity, where ¢
denotes the inclusion map (theorem 3). In the following ¥ is regarded
as a fixed map chosen out of the possible ones.

If & is an arbitrary covering of X, then there exists a natural map

q: S(x, X) - 8(X)

iven by the projection -
& Y pro] J x8(X) - 8(X).

We shall use the following maps:
(1) py="Y(q|M(x, X)): M(x,X) > M(X).

(2) If p € M™(x, X) is a class of simplices, then {y(s): o €p} is a sub-
class of some class { € M™(X), and the induced map

is a c.s.s. map.
(3) For —1 £ 8 £ r £ oo the maps

Wy MO(x, X) > MOx, X) and  of: MOX) > MOX).

Math. Scand. 6 11
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They form a system which connects the complexes M®™(x, X) and
M®(X). It is useful to put up a diagram (where ¢ is the identity map):

o> M, X) > o> M(x, X) <> M(x, X) <> M(x, X) > M(x, X)

¥

e l € € e e e
[ o
lw: wy ‘wo )w~1
¢ ¥
el M (o, X) > g Mo, X) —>MO(x,X) —5 M (e, X)
On” S Onys O S @o i
o o W0 (-1)
@+ Y P @ L4 v i‘/’ @ Y ]
4 e L ¥ Vi
o MOX) e MOX) o MOX) o MOY(X)
Dy 1 o7 w; 4 w2y
o0 o0 ! [s°] o0
,, oM Lo w_;
| |
L= MX) e o> MX) - MX) - MX) <« M(X)
e e

€ e (4 e

The diagram is easily verified to be commutative.
If every continuous map

f: S*->N{4,: vem},
where mt is a finite subset of .#, is homotopic in
N{4,: vem}
to a constant map, then
o 0 M™(«, X) > M D(«, X)

has an inverse (theorem 7), and the diagram can be extended without
losing the commutativity.
If every continuous map

f: S~ A, velt,
is homotopic in X to a constant map, then the diagram can be extended
by adjoining a unique map
™ MeD(x, X) > M(X)

without losing the commutativity.

This follows from the fact that if oy, 0, € M™(x, X) and o) _,(0;)=
@y _4(0), then y™(oy) =y™(ay).

The following theorem has a simpler related theorem (see [1, p. 196]).
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THEOREM 8. If o has an open refinement, then

v M(x, X) - M(X)
18 a homotopy equivalence.

Proor: Consider the sequence of c.s.s. maps
M(x, X) - S(x, X) > 7 x S(X) > 8(X) -~ M(X),

where the first and second are inclusion maps, the third is the projection,
and the fourth is . The first and fourth maps are known to be homotopy
equivalences, and we only have to prove that the inclusion map

S(x, X) - S x 8(X)

is a homotopy equivalence, because this implies that the third map is a
homotopy equivalence too. (One only has to utilise what has been proved
in the special case, where « has a single non void element X and all
other elements are void.)

Since « has an open refinement, the set

= {A%: ve s},

where A is the interior of 4,, is an open covering of X.
Now the idea is to construct a homotopy

h: | x8(X)| xI - | £ x 8(X)|
such that
(a) h(z,1)e|S(x, X)| for all z € |£ xS(X)|,
(b) R(z,t) € |S(a®, X)|, 0=t=<1, if ze|S(a® X)|,
(c) Az, t) e |S(x, X)|, 0=5¢t=1,if ze|S(x, X)|,
(d) Az, 0)=x for all ze|f x S(X)|.
The existence of the map A proves theorem 8.

A4, x1I is a CW-complex with a natural cellular decomposition and a
natural Euclidean metric

o((@. 1), @, 1) = (e(x ")+ (t—t)) .

A s.s. complex X'is called a X,-complex if the simplices of 2 are ordered
sets of points of 4, x I such that the following conditions are satisfied:
(1) The order of the point sets induces the maps

0 2>,y 1=01,...,p.

2) The natural ma
) P g: |Z| > A, x1

11*
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is a homeomorphism onto and determines a simplicial decomposition of
A, xI. (g maps each vertex of 12 l into the point of A, x I which deter-
mines the vertex, and is then extended linearely to |Z I) There exists a

natural s.s. map y: 2—>8(4,x1I).

(7(0), 0 €2, is determined by the map gl la] of an ordered geometrical
simplex into 4, x I.) If X is a 2,-complex then each map

di: A, yxI—>A4,x1

di(z, 1) = ((0;2,)z, t)

determines a 2, _;-complex 0,2" and an isomorphism §;: 9,2 into 2.
With each n-simplex t=(&, ¢) € £ x S(X) is associated the continuous

rap foo A,xI—>X

defined by £ 1) = o)

given by

and the coverings
o ={f7'[4): veS} and &l = {f[4)]: ve I}
of 4, xI. The map f, determines a c.s.s. map
0.: Ix8(d,xI)—> I x8X)
by 0,(£, 0)= (& £,0).

Let X=(Z, p) be a non complete .#-complex, where X is a X, -com-
plex. Then there exist a natural #-map

x: X Ix8,xI)
given by »(o) =(p(a), y(a)), and f£-complexes
9,2 = (0,2, p8), i=0,1,...,m.

Let 7 be an n-simplex of 5 x8(X). An #-complex Z—t of the type
described above will be called a z-complex if

(@) x(0) e 8(a, 4, xI) if g(lo))<d, x{1}, ce X,

(b) (o) € 8(a, 4, xI) if 78, X), e X,

(¢) #(o) € S, A, xI) if €8x, X), 0 X,

@d) v = (2§, 0), (2}, 0), ..., (v}, 0)) € X (v} is the i’th vertex of 4,),
and 0, x(v)=1, pv="pt.

0.x determines a map

0,00 |Z]—>|F=x8(X)|,
and we define -
k, = (0,2)g7": A, xI ]I x8(X)|.

T T
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Lemma 4. There exists a system {Z_',: red x 8(X)}, where Z—', s a
7-complex and 0; X, = Z'ai,.

Let us assume lemma 4. Then, if v € (j % 8(X))ps

(@) k,(4,x (1)< |8(s2, X)),

(b) k. (4,xI)<=|8(x0 X)| if 7€ 8«0 X),

(€) k(4,xI)<=|8(x, X)| if 7e8(x, X),

(d) k, maps the “interior” of A4, x {0} homeomorphically onto the
“interior” of |7|, T eij(X),

(€) kpp=hody: A, xI | x8X)|

Now - -
h: [.ﬁxS(X)| x 1 — Ifo(X)I

is defined as follows: If xe|7|, 7€ S x S(X) and k(y, 0)==, then
h(z, t)y=Fk.(y, t). It is easily verified that 4 has the desired properties.

ProoOF oF LEMMA 4. Suppose 2_, has been constructed for each simplex
7€ .# x 8(X) of dimension less than n such that

(1) either #(¢) € S(al, A, x 1) or (pey=(pty, (e X,

(2) aiZ‘tzzﬁit’

Then the complexes Z_,, TE (j x 8(X)), can be constructed indepen-
dently. Let o be a fixed n-simplex of .# x S(X). The n+1 complexes

Eﬁia’ ©=0,1, ..., n, determine the subcomplex Y ' of 3 which corre-
sponds to .

A, xIud,x{0}.
A sequence of X ,-complexes £, =0, 1, 2, ..., is defined inductively as
follows:

Let a denote the barycenter of 4, x {1} and b the barycenter of 4, x 1.
The simplices of Z© are
(), (a), (b,0)

and
(Vo> V15 + -5 Un)y (b, 0gs 01y -5 0), (@, 0y Vg v vy Uy),
(b: a’y ’007 ’1)1, v .y ’Un) 1)
where (vy, vq, . .., v,) is any simplex of X .

Suppose E® has been defined for ¢ <m. Then E@™ is defined in the
following way. If (e E™-D then B(() denotes: (1) the barycenter of
g(1¢]) if ¢¢ 2, (2) the point of 4, x I which determines the leading vertex
of (if e X '. An n-simplex of £ is an ordered n-tuple
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(B(y), B(Ly), ---> B(,)»

where B(,)+ B(C;) if ¢ +j, and {; is a face of {; if £<j.

2/ is a subcomplex of each Z™. If { € Z™ then either (1) no face of {
is an element of 2’ or (2) there exists a face {’ of { such that ¢'e X/ and
all faces of ¢, which are elements of 2, are faces of {'. To every ¢>0
there exists an m such that { € £ implies: (1) the diameter of g(|{]) is
smaller than ¢ if no face of { is a simplex of X'; otherwise (2)

o(z, |&')) <e if =xelll.

This implies that if {D,: » € M} is a covering with an open refinement of
A, %1, and {g(|¢]): L € X,'} is a refinement of
(DSn (4, xTud,x{0}): e},
then there exists an m such that each
m@) = peM: D, <g(&)}, Ce&™
is non void.

A covering {C,: ve £} of 4, x I is defined by:

(1) C, = fITAJU ([4u x I~ 4, x {LJ] 0 f3'[4,]) if v ¢ (po),

@) C, = [0 [A,x I~ 4,x (1] if » € (po).

Another covering {D,: ve F} of A4, x I is defined by: ze D, if (1) zeC,
and (2) ve @§pl)y it e (X)), and z e g([¢]).

{D,: v € £} has an open refinement and, since 4, x I is compact, there
exists a finite set M <7 such that (1) (pod<=M and (2) {D,: » e M}
covers A, xI and has an open refinement. From the discussion above
follows that there exists an m such that m({)+ 9, { € 5™,

Now X =&m+) and p: X, —.f is defined by

p(B(Qo), BEy), -, B(Ly) = (m(Le), m(Cy), - .., m(ly)) .

Z—i, is a o-complex and

(1) either () € S(«® 4, x I) or {(pl) > {ps),

(2) a,iZU:——Zaio, 7;=O, 1, ceay, M.

Since ¢-complexes with these properties can be constructed for

gE (jx S(X)), »

the lemma follows by induction.

Exampre. Finally we shall give an example which illustrates how the
theory presented here may be used.
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Suppose the covering x ={A4,: » € #} of X has an open refinement, and
each map f: 81 - 4,, v € £, is homotopic in X to a constant map. Then
the diagram

M(x, X) ———F— M9(x, X)
(2N
Y ¢?
M(X) ————— MOX)
wy

is commutative, and the same is true of the derived diagram

H,(M(x, X), 6) ———5— H, (MO, X), )
0

P ¢(1)
H,(M(X), ) —————— H,(MYX),G).
(D)

1

Now ¢ has an inverse (theorem 8) and V&, ¢ '=a]. The homomor-
phism @7 is an invariant of the space X, and if, for some group G,
@7 does not map H,(M(X),G) into 0 then H,(M©(«, X), @) contains
an element different from 0, and this implies that the order of « is greater
than », because of the special structure of MO(x, X).

In this way information can be obtained about the possible coverings
of a space. The example given has an obvious generalization:

If x has an open refinement, ¢™ exists, @ ,, 1=1,2, ...,n—1, are
isomorphisms and

&2: H,(M(X),G) - H,(M™(X), G)

is not constant, then x has at least order m + 1.
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