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IDENTITIES INVOLVING THE PARTITION
FUNCTIONS ¢(n) AND go(n)

0. KOLBERG

1. In a previous paper [1] I have, among other results, proved the
following three identities involving p(n), the number of unrestricted par-
titions of n:
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Let ¢(n) denote the number of partitions of » into unequal parts (or,
equivalently, the number of partitions into odd parts), and let g,(n) denote
the number of partitions of n into odd and unequal parts (which is also
the number of self-conjugate partitions). Thus
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 g(n)ar = J] (1+am),
n=0 n=1
2 qom)a = [] (1+a21).
n=0 n=1

Tables of g(n) and ¢,(n) up to n=400 have been computed by Watson [2].
Especially, we notice that g4(2)=0.
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The purpose of the present paper is to prove the six identities

0 2
(1.4) q(5n) xﬂz (Bn+2)an = <2q(5n+ l)x”> ,

n=0

(1.5) Zj q(5n)x”§;§ q(bn+4)x™ = S’ q(bn+ l)oc"i—oj q(bn+3)am™ ,

n=0 n=0
fe ] o0 [oe] 0]
(1.6) X g(dn+2)am 3 q(5n+3)ar = 3 q(dn+1)ar Y q(5n+4)z" ,
n=0 n=0 n=0 n=0
oo 2
(1.7) 3 qo(5n+1) x”Zqo 5n+T7)x <2 (5n+4) xn) R
n=0 =0 n=0
(1.8) ) o)™ X qo(5n+T)a = X qo(5n+3)an > qy(5n+4)an
n=0 n=0 n=0 n=0
(1.9) 2 qo(dn+1)am 3 q(5n+3)a” = 2, go(5n) ™ 3 qo(5n + 4)z™
n=0 n=0 n=0
2. We use the notation
- [T -,
n=1
Then we have
(2.1) 2 pn)ar = ()t
n=0
(2.2) 2 gz = p(@*)p(x)!
n=0
(2.3) 2 Qo(m)a™ = p(—z)pa?)t.
n=0
Putting
(o o)
P, = T p(5n + §) P, s=20,1,2,3,4,
n=0
we get
(2.4) 2 p(m)an = Py+Py+Py+Py+ Py,
n=0

where the power series has been divided into five parts, each part con-
sisting of terms whose exponents are congruent (mod5), the residue class
being indicated by the index. The same procedure is used in the equa-
tions (2.5)-(2.8), (2.10) and (2.11) below. Let

Math, Scand. 6. 6



82 0. KOLBERG

(2.5) 2 an)an = Qo+ Q1+ Qy+Q5+Q,,
n=0

(2.6) 2 q(n)a™ = Ry+ R +R,+ R+ R,
n=0

(2.7) 2 pn)x? = Sy+8;+8,+8;+ 8, .
n=0

From Euler’s identity

(P(%) = f (—l)nx%n(3n+1)

n=—00

it follows that the power series expansion of @(x) contains no terms with
exponents congruent to 3 or 4 (mod5). Hence we can write

(2.8) ) = go+91+95 -

Between these quantities there is a well-known relation, viz. (see [3,
p. 102] and [1, p. 84])

(2.9) 9092 = —9.* .
Further, we put

(2.10) p(x?) = ag+as,+a,,

(2.11) @(—x) = by+b,+0b,.

We also need the identities

(2.12) p(x2)2p(x)1 = 2 Zin 4D
n=0
2.13 2L = 3 gt
' '
Nn=-—00

which follow from Jacobi’s formula

(1 —22n)(1 4 y22n-1)(1 4 y—1e2n-1) = 2’ yrant,
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3. In this section we shall prove the identities (1.4)—(1.6). From (2.2)
we get, using (2.1), (2.4), (2.5) and (2.10),

Qo+ Q1+ Qe+ Q3+ Qs = (ag+ay+ay)(Po+ P+ Py+ P+ Py,

and hence
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(3.1) Qo = a9 Py+ayPy+a Py,
(3.2) @ = agPi+a,Py+a,P,,
(3.3) @ = agPy+ay,Py+a, Py,
(3.4) Qs = ayPy+ay Pi+a Py,
(3.5) Q4 = ayPy+a,Py+a Py .
Further, by (2.2), (2.5), (2.10) and (2.12)

(@g+ a4+ a)(Qo+ @1+ Qo+ Q3+ Q) = é.z gin(n+l)

This power series contains no terms with exponents congruent to 2 or 4
(mod 5), and therefore we have

(3.6) g Qe+ a,Qp+a,Q; = 0,
(3.7) yQy+ayQy+a,Qp = 0

The identities (1.1)~(1.3) can now be written

(3.8) 3P, P,— 2P Ps— P2 =0,
(3.9) P,P,+ P,P,—2P2 =0,
(3.10) P,P,+ PyP,—2P;2 =0

Finally, by (2.8)-(2.10) we get
(3.11) Aty = —ay2.

Now the identities (1.4)—(1.6) can be deduced from the system (3.1)-
(3.11) by elimination of the quantities a, and P,. We proceed as follows:
From (3.1)—(3.3) we find, using (3.11)

(3.12) QuQs— Q% = a2 (PyPy—Py?) + a,2(PyPy—Pg?) + a2(PP3—P,?) +
+ ag@y (P2 + PyPy—2P  P,) + aya4(P3%+PyPy—2P,P,).
Inserting the expressions (3.1) and (3.3)—(3.5), we get from (3.6) and (3.7)
(3.13) a2 Py+2agay Py— a2 Py = — a’Py—2a,a,P, ,
(3.14) a2P;+2a,a,P3—a,2Py = —aPy—2a4a,P, .
Multiplication of (3.13) and (3.14) yields
(8.15) 0 = —a2P,P, + a,>(5P,P,—3P,P;—P?) — a2P,P; +
+2ay@y (P Py— Py Py— Py?) + 20,0,(PyPy— Py Py —Pg?) .

6*
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Further we multiply (3.13) and (3.14) by P, and P, respectively, and
add. Thus we obtain
0 = a®(PyPy+ P3Py) — 20, Py Py + a*(P,Py+PyP,) +

+ 200y (P> + Py Py) + 2aya,(Py®+ Py Py)

which by (3.9) and (3.10) reduces to

(3.16) 0 = a®Py® — a® PPy + a2 Py + ayay(Py®+ Py Pg) +
+ aya, (P + Py Py) .

Adding the equations (3.12), (3.15) and (3.16), we get
QoQs— @12 = 2a,2(3P, P, —2P,P,—P?).

Hence, by (3.8)

(3.17) Qo@Q: = Q1%
which proves (1.4).
From (3.1), (3.2), (3.4) and (3.5) we find

(3.18) @QyQy— @15 = ag?(PoPy— P Py) + a2 (2P, P3— P, Py— Py?) +
+ a2 (PyPy— Py Py) + ayay(PoPy—Pi?) + ay0,(PyPy— P2 .

We multiply the equations (3.13) and (3.14) by P, and P, respectively
and subtract. Thus we obtain

(3.19) 0 = a2 (P2~ PyPy) + a2(P?—PyP;) + a?(PyPy—PyPy) +
+ 200y (PPy— Py Py)

Multiplying (3.19) by 2 and adding it to (3.18) we get, using (3.8) and
(3.10)
(3.20)  QyQy—@1@; = a2(P?—PPy) + a?(PPy—PyPy) +

+ g0y (Py Py~ P1?) + ayay(PyPy— Py Py) .
Similarly we find
(3.21)  @yQ3—@Q1Qy = a>(PyPy—PyP3) + a2 (P2~ P, Py) +

+ ayay(Py Py— Py P;) + aza,(PyPy—Py?) .
From (3.20) and (3.21) follows

@y (@ Qs — @1 @3) + 240,71 (@5~ @1 Q)
= a2 (PyPy— Py%) + 2a,2(PyP3— P, P,) + a(P,P3—P,?) +
+ agay(Py2+ Py Py— 2P P)) + aya,(P*+ Py P, —2P,P,)
= Qon_le )
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by (3.12) and (3.8). Hence

(3.22) @y (Qo@s— @1@3) + 2,4(Q2Q5—01Qy) = 0.
If we multiply this equation by ¢, and replace @,@Q, by @,%, we get

(agQo—a4Q1)(Qo@s— @:19Q5) = 0.
Obviously, a,@y—a,¢;+0. Hence

(3-23) Q0Q4 = Q1Q3 ’
and consequently, by (3.22) (or by (3.17))
(3.24) @203 = Q1@ .

Thus the identities (1.5) and (1.6) are proved.

4. Tt remains to prove (1.7)-(1.9). From (2.3) we get, using (2.6), (2.7)
and (2.11)

Ry+ R+ By+ Ry + Ry = (by+by4b,)(Sg+ 8+ 8, +83+8,) ,

and hence

(4.1) Ry = bySy+b;8,+b,8;,
(4.2) Ry = byS;+b,80+b,8,,
(4.3) Ry = bySy+018;+b,8,,
(4.4) Ry = byS5+b,8,+b,8,,
(4.5) R, = bySy+b,83+b,8, .

Further, by (2.3), (2.6), (2.11) and (2.13)
(bo+by+b5)(Ry+ Ry + Ry + Ry + Ry = 3 .

From this we conclude
(4.6) boRy+ b, By +b,RBy = 0,
(4.7) boRy+ by Ry+b, Ry = 0

Replacing x by 22 in (3.8)—(3.10), we obtain

(4.8) 38,8, — 25,8, — 82 =0,
(4.9) SoS,+ 8,8,—28,2 =0,
(4.10) 8,8, + S,8;—28,2 = 0

Finally, by (2.8), (2.9) and (2.11)
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(4.11) boby = —b,2.

It is easily seen that the system (3.1)—(3.11) is changed into the system
(4.1)-(4.11) by the substitutions

Py— 8, Qo — R, ay, — by
P, -8, @, > R, ay —> by
Py, -8, Qs — R, ay — by
Py~ 8 Qs — By
Py~ 8, )

Now, the equations (3.17), (3.23) and (3.24) were deduced from (3.1)-
(3.11), and from these alone. Hence, the system (4.1)—(4.11) implies the
equations

Rle = R42 P
RoRz = R3R4 s
R1R3 = R0R4 s

and thus the identities (1.7)-(1.9) are proved.
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