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ON A GENERAL THEORY OF INTEGRATION
BASED ON ORDER

ERIK M. ALFSEN

Introduction.

Integration theory is usually confined to linear lattices of real valued
functions, and the theory is based on the linear structure as well as the
order structure and the topological structure of simple (pointwise) con-
vergence. In the present paper we shall verify that the fundamental
results of integration theory may be stated and proved by means of
order properties only. Linearity or topological concepts will not be
applied.

In § 1 we shall define the concept of an integral over an (abstract)
lattice. It is defined to be a lattice-valuation with an additional limiting
property (axiom I, of § 1). This concept generalises the elementary in-
tegral of M. H. Stone [8]. We shall then define a full integral over a lat-
tice to be a lattice-integral for which the Beppo Levi theorem is valid
(I, of § 1). Then we shall prove that a full integral over a lattice has all
the fundamental limiting properties of the Lebesgue integral, i.e. the
properties stated in the Fatou, Lebesgue, and Riesz-Fischer theorems.

In § 2 we shall introduce the notions of upper and lower semi-integrals
(axioms U, to UI, of § 2). These concepts generalise the upper and lower
integrals as well as the outer and inner measures in various existing ap-
proaches to integration theory (ref. [3] to [8]). Prop. 3 of § 2 states that
under fairly general conditions a pair consisting of an upper and a lower
semi-integral will determine a full integral.

In § 3 we shall apply the results of § 2 to prove that every integral
defined over a lattice imbedded in a countably distributive o-lattice (3.1),
can be extended to a full integral. The paragraphs 3 and 4 outline gen-
eralisations of the Stone-Daniell theory and the Bourbaki theory, re-
spectively.

In § 5 we shall prove that under fairly general conditions, there exists
a unique, minimal, full extension of a given integral, and that the exten-
sions of § 3 and § 4 are only unessentially different from this minimal
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extension. (Cf. theorem 7 of § 5 for the precise content of the last state-
ment.)

§ 1. General integrals.

Let L denote a lattice with elements «,y,2, ... . To specify an in-
creasing sequence of elements of L we shall use the notation {y,}+. If
{y,}* has a Lu.b. y, then we shall write y, 1y. The dual concepts are
defined analogously.

We shall write ({#,}1)2({z,} V) if y=y,, 25z, for all natural n, im-
plies y2z. If y, 1y and 2, |z, then ({y,}1)2({z,} ) means y = 2.

An integral I over L is a real valued function over L with the following
properties:

(I) vzy =I(x)21(y) ,

(Ly) I(x)+1(y)=I(xvy)+I(xAy),

(Is) ({ya}1)2 ({23 V) = sup, I(y,) 2int, I(z,).

() and (I,) together define a waluation on L (cf. [1, p. 74]). For a
general valuation v, the function

(L.1) d(x, y) = v(@Vy)—v(@Ary)
is a pseudo-metric. This result is established by means of the relation

(1.2) which is easily proved from (/) and (/,) and remains valid if » is
allowed to assume one of the values +oo, —oo (cf. [1, p. 76).

(1.2) dxvz, yaz)+d(xve, yaz) < d(z,y).

It is easily verified that the function v is continuous with respect to
(1.1).

A consequence of (I,) and (I;) is the following statement, known as
Daniell’s axiom:
(1.3) z,te = 1(x,)1 (), and dually .

ProrositioN 1. If L is a linear lattice of real valued functions defined
over some set §, and [ is a positive linear functional over L satisfying
(1.3), then [ is an integral over L.

Proovw. (1,) is a consequence of the identity x+y=xvy+axay gener-
ally valid in lattice-ordered groups [1]. If ({y,}*)=({z,}), then for
every teS we have sup, v, () 2inf, z,(f), and hence sup, [y, () —2,()]20,
which implies (y, —#,)A04 0. Thus by (1.3)

SupnI(yn_zn) Z Supnl[(yn—zn) A0] =0,

and hence sup, I(y,) =inf, I(z,), q.e.d.
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An integral I over a lattice L is said to be full (over L) if
(Iy) {z,}t, sup, I(x,)<oo =x,txeLl, and dually.
(The property required in I, may be called the “Beppo Levi property”.)

Propos1TioN 2. A real valued function I over L which satisfies (I,),
(Is), (1.3) and (I,) is a full integral.

Proor. Let ({y,}1)2({z,}v). If sup,I(y,)= +oo or inf,I(z,) = — oo,
then the inequality at the end of (/;) is trivially satisfied. Tf not, we
have by (I,), (I;) and (1.3): y, 1y, 2,42, and sup, I(y,)=1(y)=1(z)=
inf, I(z,), q.e.d.

Lemma. If I is a full integral over L, z,<z, for all natural =, and
liminf, I(x,)=a <co; then y,=inf, ., x,el, y,tx=liminf, 2z, L, and

In particular, the conditions stated are satisfied if {x,} is some se-
quence such that d(z,, x,.,) <2 for all natural », and in this case
d(z,, x) - 0.

Proor. 1) We write y,, ,=2, A%, ;A .. .AZ,,, for all natural n, ». Then
{Yn.,t ¥, and inf I(y, ,) = I(x,) for every fixed n. Hence by (I,) we have
Yn,» VYn€ L.

For every fixed n, y,, < x,, for m 2 n. Hence(by (I,))I(y,) <inf,, . ,I(z,,).
Since sup,,inf,, -, I(z,,) =« < o, we can apply (I,) to the sequence {y,}1,
giving y,, 4 xel. Finally, application of (1.3) to the same sequence gives
I(x)=sup, I(y,) < .

2) Application of (1.2) gives

r—1

(1'4) d(xn’ yn,r) é 27 d(yn,i’ ?/n,i+1)
=20
r—1 n—H;l
= S AYn,i A Tpsss Yn,s A Tppie1) S 2, Ay, Tiyq) -
=0 i=n

Hence by hypothesis d(x,,, y,,,) < 2"+ for all natural r. Since x, 2y, ,,
this means I(z,)—I(y, ,) <2+, or equivalently I(y, ,)zI(z,)—27"*
for all r. Hence by (I,) ¥, ,t¥,€L, and by (1.3) I(y, )} I(y,). Thus

(15) d(xn, yn) = I(xn) —I(yn) = I(xn) _infr(yn,r) = 2-nH
In particular we may take the lower bound z, to be y,. Further
(x,) = L(@p 1)l = ATy Tpyq) = 277,

proving {I(x,)} to be a Cauchy sequence, and thus liminf, I(x,) < co.
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By application of the first half of the lemma and (1.5), we finally

obtain
d(x,, x) £ d(z,, y,)+d(¥y,, z) = 0, q.e.d.

TuroreM 1 (Fatou). A4 valuation v over L is a full integral if and only if

(1.6) zy =2, n=12,..., liminf v(z,) = &« < o
and dually. = liminf 2, = x€ L, v(z) £ «,
Proor. 1) If {z,}+ and sup,v(z,) < oo, then application of (1.6) gives
z,tx and v(x)=<sup,v(x,), proving (I,) and (1.3), so that v is a full
integral (cf. proposition 2).
2) If v is a full integral, then (1.6) is valid in virtue of the lemma.

TrEOREM 2 (Lebesgue). If I is a full integral over L, L is imbedded in

a lattice H, yelL, zeL, x,eL, y=x,<z for n=1,2, ..., and liminf, z, =
limsup,z,=xeH; then we can conclude that x also belongs to L and

Proor. Application of (1.6).

TaeorREM 3 (Riesz-Fischer). If I is a full integral over L, then L is
complete with respect to the pseudo-metric defined by I (1.1).

Proor. Every Cauchy sequence contains a subsequence for which
d(x,, x, ;) < 2" for every n. Application of the lemma accomplishes the
proof.

§ 2. Generation of full integrals by means of upper
and lower semi-integrals.

An upper semi-integral I* over L is an extended (that is to + o) real
valued function over L, with the properties:
(UL) zsy = I*(x) = I*(y).
(UlL,) I*(x)+I*(y)=I*(xvy)+I*(xay). (Both sides simultaneously un-

determined.)

(UL,) x,txe = I*(1,)t [*(x). (Not dually.)

A lower semi-integral is defined by reversing the sign of inequality in
(UI,) and the arrows in (UI,).

ProrosiTion 3. If I* and I, are upper and lower semi-integrals defined
on a g-lattice H, and I,(x) < I[*(x) for all z, then
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L={ | xeH, —oo <I,(x)=1I*x)< +oo}

is either empty or a sublattice of H to which the common restriction I
of I* and I, is a full integral.

Proor. 1) If e L and ye L, then
I@)+Iy) £ Li@vy)+1may) < IHavy)+ ¥ ay) < L)+ 1) .

Thus, the signs of equality are valid, which is possible only if I*(zvy)=
I*(xvy), I (xay)=I*(xay), and these values both are finite. Hence if
L+0, then L is a sublattice of H.

2) L evidently satisfies (7;) and (I,). By prop. 2 of § 1, it is sufficient
to prove (1.3) and (/,) to make sure that I is a full integral. Let {x,}1t,
x,eLl for n=1,2,.... Since H is o-complete x, + xcH. Then by (UI,)
for I, and (UI,) for I*

Supni(xn) = I*(.Z) s I*(z) = Supnj(x'n) .
Thus the signs of equality are valid proving (1.3) and (1,).

Proposition 3 gives a clue to the extension problem. As we shall see
in the subsequent paragraphs, integrals can be extended to upper and
lower semi-integrals in very general cases by means of various limiting
processes. The major difficulty remains to extend them as far as to o-
lattices so that proposition 3 can be applied.

Lemma. If H is a o-lattice, U°< H, U° is closed with respect to finite
meets and countable joins, and I° is an upper integral over U° which
even satisly ([,) and not only (Ul,), and takes values in ]—oo, + oc];
then I° can be extended to an upper integral I* defined over H by the
expression

infI°(y), = £ y e U°, if such a y exists,
.+ o0, else.

(2.1) I*x) = {

Proor. I* evidently satisfies (UI,). To prove (Ul,), we consider
xeH, yeH, and we first suppose x £2'e U, y<y'eU°. Thenxvy=a'vy’,
xay=x’ay’. Hence

I*avy)+I*@xay) S I°@ vy )+1°(@" Ay) = I°@)+1°(y) .

Passing to the minimal value at the right, we obtain the desired state-

ment.
To prove (UI,) when no such z’, y' exist, we have to examine a few

simple cases.
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We then turn to (UI;). Let z,+2. Then the non-trivial part of the
verification consists in proving I*(x)<sup,*(z,). If sup, I*(z,)= + oo,
this statement is trivial. If not, we may assume (extracting a subse-
quence if necessary) that I*(x,.,)—I*(x,) < 2" for every n.

Now for n=1, 2, ... we define z, such that

z, 22,/ €U, I°(,)—I*x,) 2.

From the assumptions concerning I°, we know d°(z, y) =I°(xvy) —I°(x Ay)
to be a pseudo-metric on U° (cf. § 1). We then have
do(xnl’ xn-i—l’) = Io(xn,) + Io(x'n.+1/) - 2Io<xn, Ax'n+1’)
< I°(2,) + 122, 41) — 21%(x,)
=[L(,") = (@) ]+ (@ 11") — T¥ (@ 4 )] + [T (@ 40) — ¥ ()]
£3-2-",

We now write y, =sup,,-,%, €U° and an expansion similar (actually
dual) to (1.4) gives d°(z,’, y,)<3-2-"*1 for all ». Since z,'<y,, this
means

I°(y,)—I°(x,) S 3-2-7+1.
Moreover z <y, for all », and hence

I*) £ I°(y,) < I°(w,) +3:2-741 < T*(z,)+7-27".

Thus, we have obtained I*(x) £lim,,_, I*(x,), q.e.d.

§ 3. First application. Extension by sequences.
Generalised Stone-Daniell theory.

In this paragraph we shall assume I to be an integral defined over a
lattice L which is imbedded in a o-lattice H satisfying the following
requirement of countable distributivity:

(3.1) (sup,z,) A (SUP,,Y,) = SUP,, (X, AYy,), and dually .
THEOREM 4. The set of those xe H for which

(3.2) —oo < sup{inf, I(z,) | 2, €L, 2,12
= inf {sup, (¥,) | ¥n € L, yuty

z}

x} < 400

vV 1A

is a sublattice L of H, over which the common value of the two expressions
of (3.2) defines a full integral I extending I. Moreover L is dense in L
with respect to the pseudo-metric d(x, y)=I(xvy)—I(xAy).
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Proor. We define U°<H as the set of those 2 which are of the form
T=8UP, Yy, Yn€l, n=1,2,.... The set U° is closed with respect to
finite meets and countable joins. A function I° is defined on U° by

(3:3) I°(2) = sup{l(y,) | yut®, ype L} = sup{I(y) | =z ye L}.

Application of (1.3) proves I° to be an extension of I, that is, I°(x)=I(x)
for zeL.

We shall verify that I° satisfies the requirements of the lemma in § 2.
Evidently (Ul,) is satisfied. To prove (,), we suppose xeU°, yeU°,
2,42, Y2y, v, €L, y,eL,m=1,2, .... Then application of (I,) to z,, v,
and passage to the limit as n — oo gives the desired result.

To prove (Ul,), we suppose z,eU°, x,tx. Let y, ;tx,, ¥y, ;€L, and
let us write z;=sup,, ;,;¥, ;. Then

z,el, 2z for 1=1,2,...,

1,§x'

k3

and z;tz. Thus I(z;) £I°(x;), and further sup,/(z;) <sup,l°(x;). Since

z; 1 x, we have
I°(x) = sup;I(z;) = sup;I°(x;) .

The converse inequality, sup,I°(x;) < I°(x), is a consequence of (Ul,), and
(Ul) is proved.

We can now apply the lemma of § 2 to define an upper integral over H.
Substitution of the actual value of I° into (2.1) shows that the value
I*(z) for some xe H can be written like the latter of the two expressions
of (3.2). Since I° is an extension of I, I* must be an extension of I as
well.

Similarly we can verify that the former of the two expressions of (3.2)
defines a lower integral I,, which is also an extension of I.

By application of the axiom (I;) we obtain I (x)<I*(x). (Now, for
the first time, we really need (I,) and not only (1.3).)

From prop. 3 of § 2 we can conclude that L> L is a sublattice of H,
and that the common restriction I of 7* and I, to L is a full integral.

It remains to be proved that I is dense in L. Let xel and &> 0.
Letx'eU° o' 2, I°(x') — [*(x) < }e. Letalsoye L, y<a', I°(x")— I(y) < 3e.
Then d(z, y) =d(x, z') +d(2', y) <e.

§ 4. Second application. Extension by directed sets.
Generalized Bourbaki theory.

A subset @ of a lattice L (or more generally, of a partially ordered set)
is said to be directed upward if any pair x, y of elements of @ admits a
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common majorant ze @. The notion directed downward is defined dually.

The notion of ‘directed set’ is effectively, though not formally, a
generalisation of the notion of monotoneous sequence. The incongruity
could easily be removed by replacing @ by a family {z,},.,, where 4 is
some partially ordered index-set, and « — 2, is an order-isomorphism of
4 onto @. However, such a convention would only complicate our nota-
tions, and shall not be adopted.

To specify a set @ which is directed upward, we shall use the notation
@+, and dually ¥ . If sup,.,x=y exists in L, we shall write @4y, and
dually Yiz. If &+, ¥ and y= @, z< ¥ implies y 2z, then we write
(@1)2(P4).

In this section we shall consider integrals satisfying the following
strengthened version of (/)

(L3 (P1) =2 (¥Y)) = supl(x) 2 infl(x).

red re¥
A consequence of (I;) and (/') is

(4.1) Pryel = supl(x) = I(y),
zed

and dually.
(1.3) and (4.1) are the axioms called M A’ and M A (“‘mesure abstraite’’)
in [3, p. 114].

ProrositioN 4. If L is a linear lattice of real valued functions defined
over some set S, and I is a positive, linear functional over L satisfying
(4.1), then I is an integral over L satisfying (I,').

Proor. Minor modifications in the proof of prop. 1.

There exist important examples of integrals not satisfying (I3') (cf.
f. ex. [7]). The most important integrals which do satisfy (I;’), are the
positive, linear functionals over the linear lattice of continuous real
valued functions with compact support on some locally compact set
(cf. [3, p. 54 and p. 105] [7] [8]).

In the remaining part of this section we shall assume I to be an integral
which satisfes (I,') and is defined on a lattice L imbedded in a complete
lattice H satisfying the following requirement of infinite distributivity:

(4.2) (supz,) A (supy,) = sup (x,Ay,), and dually.
acd BeB xcd, peB

TrEOREM 5. T'he set of those xe H for which
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(4.3) —o00 < sup{ianll(z) | W< L, Pizy = x}
= inf{sup](y) | @< L, dry, = x} < +o

YyeP

is a sublattice L of H, over which the common value of the two expressions
of (4.3) defines a full integral I extending I. Moreover L is dense in L with
respect to the pseudo-metric d(x, y)=I(xvy)—I(xaz).

The proOF is a slightly modified version of the proof of theorem 4.
The set U° is replaced by V° consisting of all ze H for which = SUPy 4 Y5
A< L. The function I° is replaced by J° defined on V° by:

(4.4) J°@) = sup{I(y) | ye® < L, D1y} = sup{I(y) | @ = yel}.

Except for the verification that J° satisfies (U1;), which we shall give
in complete detail, the remaining proof only differs unessentially from
the previous one.

Let x,eV°, x,ta. Let ®,4x,, ®,<L, and let us write @, for the
directed set of all finite joins from U”_, @,, and @’ for the directed sets
of all finite joins from U, ®,. Then &,’<L, @, tx,, and &' <L,
@'t x. Thus for every n, sup,,, . I(z) =J°(x,). Passing to the supremum-
values as n varies, we obtain sup, .4 [(z) =sup, J°(x,). Since @'+, this
means J°(z) =sup,J°(z,), q.e.d.

ReMargs. The extended integral I does not generally satisfy (I,').
This is not even so in the classical case where / is the Riemann integral
over the class of continuous real functions with compact support, and 1
becomes the Lebesgue integral (like I of § 3 as well) (cf. [7]).

Tt follows from (3.2) and (4.3) that L < L and that I(x)=1I(x) for ze L.
In the special case where I is a positive linear functional over the class
of continuous real valued functions over some compact set S, I may
be defined by a “Baire measure”, and I by a “Borel measure” (Halmos’
terminology) (cf. [5, p. 223] [7] [8]). In this particular case the set V° of
the above proof may be interpreted as the class of all lower semi-con-
tinuous functions. By means of this interpretation it can be proved that
whenever S satisfies the second axiom of countability the sets U° and
V°, and hence also L and L will coalesce (cf. [2, p. 12]).

§ 5. Uniqueness.

All lattices occuring in the present section are supposed to be contained
in a fixed lattice H which is (at least) o-complete and countably distri-
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butive. The only lattice operations which will be considered, are the
restrictions of those on 1. Accordingly we shall use the word latiice to
mean a subset of H closed with respect to the restrictions of the finite
lattice-operations on H, and the word o-lattice to mean a subset closed
with respect to the restrictions of the enumerable lattice operations on
H. These conventions conform with the interpretation of H as the set of
all extended real valued functions over some set, and the ordinary use of
the symbols fvg, fag for extended real valued functions.

The symbol C(L) shall denote the smallest o-lattice containing the
lattice L. With the functional interpretation, C'(L) becomes the class of
Baire functions determined by L (cf. [6, p. 32]).

Lemma 1. If xeC(L), then there exists a sequence y,€L, ¥, <9, 1,
n=0, +1, £2, ..., such that inf, y, <x <sup,y,.

Proor. The set of all x with the above property constitutes a o-lattice
containing L, and hence also C(L).

If L is a lattice, M (L) shall denote the set of all xe H with the property
(5.1) 2=y, zel,yeL=>(xAy)vz = (xvz)ayel.

The sign of equality follows from the distributivity (cf. [1, p. 133]). The
element (xAy)vz=(zxvz)ay may be considered as a “middle point” be-
tween «, y, z. With the functional interpretation it becomes the “‘trunca-
tion” of x by y (above) and z (below). The requirement (5.1) is a possible
definition of “measurable element’’ relatively to L (cf. [8]).

Lemma 2. If L is a lattice over which a full integral is defined, then
C(L)=M(L).

Proor. Evidently L < M(L), and application of (5.1) and (I,) proves
M(L) to be a o-complete lattice.

TaEOREM 6 (Uniqueness theorem). Let I be an integral over L, and let
I be some full extension of I to L. Let L, be the intersection of all those sub-
sets of L containing L, to which the restrictions of I have the Beppo Levi
property (I,). Then Ly is a lattice, Ly=LnC(L), and the restriction of I to
L, is a unique, minimal, full extension of I within H.

Proor. 1) (The method of proof is taken from [5, p. 27-28].) We first
notice that the restriction of I to L, itself must have the Beppo Levi
property, and thus I, is the smallest subset of L containing L where I
has this property.

For each xe L, we define N(x) to be the set of all those ye L, for which
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avye Ly, xaye L, Then by the symmetry of the definition we have the
equivalence ye N (x) <>z N(y).

We are next to show that N(x) must have the Beppo Levi property.
Let y,ty, sup,(y,)=x<oo, y,eN(x). Then y,arzel, and by the
distributivity v, ax+yaz. Since

Iy, a2) £ I(y,) < «
for all %, and L, has the Beppo Levi property, we can conclude yaxel,
Similarly v, vxe L, and y,vaxtyve. Since

Iy, va) = Iy,) +1(@) - Iy, a ) < a+12)—1(y, r2)

for all n, and L, has the Beppo Levi property, we can conclude yvze L.
Hence both yaze L, and yvae L, proving yeN ().

The verification that L, is a lattice, will be accomplished if we can
prove L,< N(z) for every ze L.

For xe L we have L < N(x). Since N(z) has the Beppo Levi property,
this implies L,=N(z) for all zeL, and equivalently L<N(y) for all
ye Ly, which again implies L,< N(y) for all yeL,, q.e.d.

2) Application of the fact that C(L) is a o-lattice proves C(L)nL to
have the Beppo Levi property and hence L,=C(L)n L.

To prove the reverse inclusion, we first remark that the restriction of I
to L, must be a full integral since L, is a lattice and (I,) is satisfied.
Thus for every xeC(L)n L we can apply lemma 2 to obtain

xe QL) = OL,) = M(L,) .

By lemma 1 there exist elements y, of L such that y,<y,.;, n=0,

+1, +2, ... and inf, y, Sx<sup,y, The relation xeM(L,) implies

nJn =
(XAY)VY_m€ Ly for m, n=0, +1, +2 ... . Hence for any fixed n

(A VY mbTAY,  BS oo,

while _ N
I((x ny,) vy_,) 2 Ixay,) > —c.

Since L, has the Beppo Levi property, this implies Ay, € L,

Repetition of the same procedure as n —co gives xAy,tz, while
I@ay,) < I(x) < o proving xe Ly, q.e.d. _ _

3) Let I, and I, be full extensions of I to L; and L,, respectively.
Let K be the set of those zeL;n L, for which I () =Ty(x). Tt is easily
seen that K has the Beppo Levi property, and since L < K, we obtain by
the first half of the theorem

L,noL)y <K, L,nCL)<K.
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This shows that, for e L, nC(L) and xe L,n C(L), we shall have I,(x)=
I,(x).

Moreover since K <L, and K < L,, we obtain the following identities
accomplishing the proof of the uniqueness theorem:

L,nCL)y=KnOWL) = L,nC(L) .

ReEmMARK. From th. 6 we obtain an interesting result of negative char-
acter, namely that it is impossible to extend I to a full integral defined
for any other elements of C(L) than those of L,. In virtue of the exten-
sion theory of § 3 this means that it is impossible to extend I to any
integral defined for elements of C(L) not belonging to L, This is the
general version of the well-known fact that it is impossible to extend the
Riemann integral to any proper (i.e. finite-valued) integral defined for
functions like z(t)=1¢-1, ete.

THEOREM 7. Let I be an integral over L, and let I, defined over L, be
the minimal, full extension of I. Then if I is some other full extension of I
to a lattice L, such that L is dense in L with respect to the pseudo-metric
d(z, y)=I(xvy)—I(xAry), then to every xc L there may be assigned a ye L,
such that d(z, y)=0.

Proor. Let xeL. Then we may find a sequence {x,}, x,€L, for
n=1,2, ..., such that d(x,, 2,,,) £ 2" and d(z,, *) - 0. By the lemma
of § 1 we know that y =liminf,z, must exist in L and that d(x,, y) - 0.
Now ~ =

yeCL)nL = L,

and by the triangel inequality d(x, ¥) =0, q.e.d.

The result of theorem 7 applies in particular to the extensions obtained
in § 3 and § 4. If I is an integral (or more generally, a valuation) over L,
then we may assign to L a metric space obtained by identifying elements
with zero pseudodistance. Theorem 7 states that the extensions of § 3
and § 4 give the same metric space as the minimal full extension. The
passage from I, to the set I of § 3 consists in an enlargement of the in-
dividual equivalence-classes; and so does the passage from the set L to
the set L of § 4, whenever the extension theory of § 4 is applicable (that
is, when (1) is satisfied).

For certain applications it is useful to work with full integrals for which
the equivalence classes are order-convex subsets of H. (Integrals of
this kind correspond to the integrals defined by ‘“‘complete measures”
(cf. [5, p. 31].) Every full integral can be extended to a full integral with
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the above property simply by replacing the equivalence classes by their
convex hulls. Clearly this is a unique minimal extension of the original
full integral to a fall integral with order-convex equivalence classes.

TurorEM 8. The extended integral I of § 3 can be obtained from the

minimal full extension I, by passing from the equivalence classes to their
convex hulls.

Proor. 1) From the definition of I and L it follows that the equi-
valence classes of this integral are order-convex.

2) Let e L. We are to prove that x belongs to the convex hull of
some equivalence class of I,. With use of the symbols from the proof of
th. 4, we can find elements ye U° and zeU,, such that y<x <z and

I°(y)—Iyz) = I(y)-I(z) < ¢ .

Moreover we can find a descending sequence {y,,} of such elements y and
an ascending sequence {z,} of such elements z for which I(y,) — I(z,) < 1/n.

Then, since YoeCI)nL =L, zeCL)nkl =1L,,
and z, v =<y, forn=1, 2, ..., we can conclude (by I,) that
znTzGEO, yanyEEo, 2wy, To(z)=jo(?/)-

Hence x belongs to the order-convex hull of the common equivalence
class of y and 2 of L, q.e.d.

Theorem 8 shows in particular that the values of the integral I of § 3
for xe L are still uniquely determined. The values of the integral I of § 4
for ze L, however, are no longer unique. From the theory of integration
in locally compact spaces we know that I becomes unique when an
additional requirement, such as “‘regularity”, is imposed (cf. [5, p. 239]).
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