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UNCERTAINTY PRINCIPLE FOR DISCRETE
SCHRÖDINGER EVOLUTION

ON GRAPHS

ISAAC ÁLVAREZ-ROMERO∗

Abstract
We consider the Schrödinger evolution on graphs, i.e., solutions to the equation ∂tu(t, α) =
i
∑
β∈A L(α, β)u(t, β), where A is the set of vertices of the graph and the matrix (L(α, β))α,β∈A

describes interaction between the vertices, in particular two vertices α and β are connected if
L(α, β) �= 0. We assume that the graph has a “web-like” structure, i.e., it consists of an inner part,
formed by a finite number of vertices, and some threads attach to it.

We prove that such a solution u(t, α) cannot decay too fast along one thread at two different
times, unless it vanishes at this thread.

We also give a characterization of the dimension of the vector space formed by all the solutions
of ∂tu(t, α) = i

∑
β∈A L(α, β)u(t, β), when A is a finite set, in terms of the number of the

different eigenvalues of the matrix L( · , · ).

1. Introduction

The Hardy Uncertainty Principle has been studied by several authors in the
continuous case in recent years, see for instance [3], [4] and the references
therein. This principle can be formulated in terms of the dynamic version for
the free Schrödinger equation: let u(t, x) be a solution of

∂tu = i�u

with |u(0, x)| = O(e−x2/β2
), |u(1, x)| = O(e−x2/α2

), then for 1/αβ > 1/4,
one has u ≡ 0 and for 1/αβ = 1/4, the initial data is a constant multiple of
e−(1/β2+i/4)x2

. A similar result is given in [6], [5] for the discrete case, that is
when�u(t, n) = u(t, n−1)−2u(t, n)+u(t, n+1) is the discrete Laplacian
and n ∈ Z, t ∈ [0, 1]. Such types of operators appear, for instance, in the study
of quantum graphs, see for example [2], [7] and the references therein.

The aim of the present paper is to study the uniqueness of solutions for
the discrete Schrödinger evolution on connected graphs. We suppose that the
graphs have a “web-like” structure, that is, there exists a central part A1, which
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consits of a finite number of vertices, and some threads attached to A1. We
denote by A the set of all vertices, a detailed description is given in Section 2.2.

These systems appear, for example, when one considers a system of particles
interacting with each other and perhaps an external field, see [9], [10]. These
interactions are described by the matrix(

L(α, β)
)
α,β∈A

.

This matrix is symmetric and real-valued. The operator
(
L(α, β)

)
α,β∈A

:

�2(A ) → �2(A ) is related to the Hessian matrix of the potential energy func-
tion near the equilibrium position of the particles, thus L( · , · ) is a positive
and self-adjoint operator.

There is a graph that describes these systems: the vertices play the role of the
particles and the edges describe the interactions, that is, there is an edge (α, β)
if α �= β and the particle α interacts with β, i.e., L(α, β) �= 0. The evolutions
on such graphs are described by functions u(t, α), t ∈ [0, 1], α ∈ A and they
satisfy the equation

∂tu(t, α) = i
∑
β∈A

L(α, β)u(t, β), α ∈ A , t ∈ [0, 1]. (1.1)

We will show that if a solution of (1.1) decays sufficiently fast on one thread at
two different times, then the solution is trivial on the whole thread. To this end
we will combine techniques on scattering theory on such graphs, developed
in [9], [11] and techniques of the growth of entire functions, present e.g. in [8],
to follow a similar strategy as it was done in [6] in Theorem 2.3, where it was
proven that if a solution u(t, n) of the problem

∂tu(t, n) = i
(
�u(t, n)+ V (n)u(t, n)

)
, n ∈ Z, t ∈ [0, 1], (1.2)

decays sufficiently fast on one side at two different times, then the solution
is trivial, where �u(n) is the discrete Laplacian and V (n) is a compactly
supported real-valued function.

In [1], this result was improved by letting L be a Jacobi operator:

Lf (n) = −b(n− 1)f (n− 1)+ a(n)f (n)− b(n)f (n+ 1), n ∈ Z,
such that the sequences a and b fullfill certain decay conditions as n → ±∞.

When we have several threads, we cannot in general be certain that the
function u(t, α) is trivial in the whole system once we know it is zero on one
thread. This simple but very important fact is a big difference with (1.2). One
of the reasons of this issue is because of the inner part A1. Motivated by this
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fact, we will restrict (1.1) to the case when A is a finite set and show some
cases when it is possible to extend the solution to the whole system:

(i) Either if we know the behaviour of the solution u(t, α) along the threads.
In fact, if we know the solution on all the threads, except one, and we can
extend the graph formed by these threads to the whole system, then we
know the solution on the whole system, a detailed description is given
in Corollary 4.3.

(ii) Or if we know the solution on the central part A1 and there is an extension
of A1 to the whole system, then u(t, α) is uniquely determined for all
α ∈ A , see Corollary 4.2.

These ideas are based on [11].
The paper is organized as follows: in Section 2 we give some brief notions

of the growth of entire functions, see [8], and some results of the scattering
problem on the considered graphs, see [9]. We need them to prove in Section 3
our result on the uniqueness of the solution of (1.1) on one thread, that is, when
the solution decays sufficiently fast at two different times on that thread.

In Section 4 we study the problem (1.1) restricted to finite graphs and we
give a complete characterization of the dimension of the vector space formed
by all the solutions u(t, α) in terms of the number of the different eigenvalues
of the matrix L( · , · ). To this end, we need the concept of the extension of a
subgraph developed in [10] and [11], in chapter 12.

2. Preliminaries

2.1. Growth of entire functions

We will briefly give some notions of the growth of the entire functions and
some related results, all of them can be found in [8] in lectures 1 and 8.

Let f be an entire function, we say that f is of exponential type σf , if for
some constants k, C > 0, we have

|f (z)| < Cek|z|, z ∈ C, (2.1)

and σf is defined as

σf = lim sup
r→∞

log max{|f (re iϕ)| : ϕ ∈ [0, 2π ]}
r

.

It follows from the definition of σf that

σfg ≤ σf + σg
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and
σf+g ≤ max{σf , σg}, (2.2)

where f and g are entire functions of exponential type σf and σg respectively.

Theorem 2.1. Let f = ∑
n≥0 cnz

n be an entire function of exponential type,
then σf is determined by the formula

eσf = lim sup
n→∞

(
n|cn|1/n

)
.

Let f be an entire function, it may happen that it does not grow with the
same speed along all directions. To this end we introduce the indicator function
hf ,

hf (ϕ) = lim sup
r→∞

log |f (re iϕ)|
r

,

where ϕ ∈ [0, 2π ] is the direction we are looking at, that is arg(z) = ϕ.

Definition 2.1. A functionK(θ) is called trigonometrically convex on the
closed segment [α, β] if for α ≤ θ1 < θ2 ≤ β, 0 < θ2 − θ1 < π we have

K(θ) ≤ K(θ1) sin(θ2 − θ)+K(θ2) sin(θ − θ1)

sin(θ2 − θ1)
, θ1 ≤ θ ≤ θ2

Lemma 2.1. Let h(ϕ) be a trigonemetrically convex function on the segment
[α, β]. Then

h(ϕ)+ h(ϕ + π) ≥ 0, α ≤ ϕ < ϕ + π ≤ β.

Theorem 2.2. Let f (z) be an entire function of exponential type. Then its
indicator function hf is a trigonometrically convex function.

As a consequence we note

Corollary 2.1. Let f (z) be an entire function of exponential type, then

hf (ϕ)+ hf (ϕ + π) ≥ 0. (2.3)

Remark 2.1. (i) Notice that if f (z) is a function that fullfills (2.1) and
has a finite number of poles, then there exists a polinomial P(z) such that
f̃ (z) = f (z)P (z) is an entire function and

σf̃ = σf , hf̃ = hf .
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(ii) In addition if f (z) is an analytic function on C \Dr , where Dr := {z ∈
C : |z| ≤ r}, then all the definitions mentioned above can be extended to this
kind of function. Moreover, since the key part of the proof of Theorem 2.2 is
the Phragmén-Lindelöf theorem, one can easily adapt the proof of Theorem 1
from Lecture 8 in [8] to show that it continues to hold in this case. In particular,
inequality (2.3) is still true in this case.

2.2. Direct multichannel scattering problem

The detailed description of this problem is given in [9]. In this subsection
we repeat it in order to introduce notation and also to make our exposition
self-contained.

Consider a set of particles A and study small oscillations around their
equilibrium position. The particles interacts each other and possibily with an
external field. This problem is reduced to the spectral problem

Lx = λx (2.4)

Here L: �2(A ) → �2(A ) is a self-adjoint operator, symmetric, real-valued
and positive with matrix (L(α, β))α,β∈A . In the sequel we will not distinguish
between the operator L and its corresponding matrix L( · , · ).

A1

ν1

ν2 ν3

νN

. . .

Figure 1. General picture of the system.

Letα, β be two particles, we say that they interact ifL(α, β) �= 0. The particles
are distributed in a finite set A1 and a finite set of channels which are attached
to this set A1, as in Figure 1, where νj denotes a set of infinitely many particles
where each element νj (k) ∈ νj interacts with two more different from itself
and no other particle outside νj , except the ending point (νj (0)), that is

νj = {νj (k)}k≥0, L(νj (k), νj (n)) = 0 if |n− k| > 1, 1 ≤ j ≤ N.

These sets are called channels; we write C = ⋃N
j=1{νj } and

A0 =
⋃
ν∈C

⋃
k≥1

{ν(k)}.
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(A1 \ ν(0)) −−−− ν(0) −−−− ν(1) −−−− . . . −−−− ν(k) −−−− . . . −−−−

Figure 2. Representation of an arbitrary channel ν ∈ C .

Cf. Figure 2. The A1 in figure 1 is defined as A1 = A \ A0.
Equation (2.4) is written now as

λx(α) =
∑
β∈A

L(α, β)x(β), α ∈ A . (2.5)

To simplify notation, for a channel ν ∈ C and k ≥ 1, we set

−bν(k − 1) = L(ν(k − 1), ν(k)), aν(k) = L(ν(k), ν(k)), ν(k) ∈ ν.
(2.6)

In the sequel we assume that the sequences bν , aν are stabilized after some
K0 > 0 for all ν ∈ C , that is{

bν(k) = 1, if k ≥ K0,

aν(k) = 2, if k ≥ K0.

Let α ∈ A1, then (2.5) can be expressed as

λx(α)−
∑
β∈A1

L(α, β)x(β) =
∑
β∈A0

L(α, β)x(β)

=
∑
ν∈C

L(α, ν(1))x(ν(1)).
(2.7)

The last equality follows from the fact that the only pairs (α, β) ∈ A1 × A0

such that L(α, β) �= 0 are of the form (ν(0), ν(1)), ν ∈ C .
Let L1 = (L(α, β))α,β∈A1 be a submatrix of the operator L. It follows that

L1 is real, symmetric and positive. Let 0 < λ1 ≤ · · · ≤ λM and p1, . . . , pM ∈
�2(A1) be its eigenvalues and the respective normalized eigenvectors, which
can be chosen to be real-valued. Here M = #A1 and for λ /∈ {λj }Mj=1, the
operator L1 − λI is invertible and (2.7) turns into

x(α) = −
∑
β∈A1

r(α, β; λ)
∑
ν∈C

L(β, ν(1))x(ν(1))

=
∑
ν∈C

r(α, ν(0); λ)bν(0)x(ν(1)), α ∈ A1,

where r(α, β; λ) are the entries of the resolvent R = (L1 − λI)−1 of the
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matrix L1:

R = (r(α, β; λ))α,β∈A1 , r(α, β; λ) =
M∑
�=1

p�(α)p�(β)

λ� − λ
. (2.8)

Thus, for α = ν(0) we obtain

x(ν(0)) =
∑
σ∈C

r(ν(0), σ (0); λ)bσ (0)x(σ (1)), ν ∈ C . (2.9)

This relation links the values of a solution x(α) on A0 and on
⋃
ν∈C {ν(0)} ⊂

A1. We refer to it as the boundary condition.
Consider now the finite-difference equation, see for instance [12] and [11]

in particular Chapters 1 and 2:

−b(k − 1)x(k − 1)+ a(k)x(k)− b(k)x(k + 1) = λx(k), k = 1, 2, . . . ,
(2.10)

where the sequences a, b are real valued and for every k > K0 > 0, a(k) = 2
and b(k) = 1. Set λ = λ(θ) as follows

λ:T −→ [0, 4],

θ −→ λ(θ) := 2 − θ − θ−1.
(2.11)

Then there exists linear independent solutions of (2.10): e(k, θ), e(k, θ−1),
such that e(k, θ) = e(k, θ−1) and

e(k, θ) =

⎧⎪⎪⎨
⎪⎪⎩
θk, if k > K0,

K0+1∑
n≥k

c(n, k)θn, otherwise,
(2.12)

where θ ∈ T \ {±1} and c(n, k) are constants. Thus every solution ξ(k, θ)
of (2.10) can be expressed as

ξ(k, θ) = m(θ)e(k, θ)+ n(θ)e(k, θ−1), k = 0, 1, 2, . . . (2.13)

Notice that m(θ), n(θ) are constants that depends on θ only.
Consider the sequences aν, bν defined in (2.6) and the corresponding finite-

difference equations (2.10) for each channel ν ∈ C . Define the matrices

E(k, θ) := diag{eν(k, θ)}ν∈C , B(k) = diag{bν(k)}ν∈C ,

R(θ) = (r(ν(0), σ (0); λ(θ)))ν,σ∈C : �2(C ) → �2(C ),

R1(θ) = (r(α, ν(0); λ(θ)))α∈A1,ν∈C : �2(C ) → �2(A1),



58 I. ÁLVAREZ-ROMERO

where the functions r(α, β; λ) are defined in (2.8) and eν(k, θ) are the corres-
ponding solutions of (2.10) for ν ∈ C defined in (2.12). Let m = {mν(θ)}ν∈C

and n = {nν(θ)}ν∈C , heremν(θ), nν(θ) are the constants in (2.13) correspond-
ing to the channel ν. Then the boundary condition (2.9) acquires the form

E(0, θ)m + E(0, θ−1)n = R(θ)B(0)(E(1, θ)m + E(1, θ−1)n)

or
T (θ)m = −T (θ−1)n, (2.14)

where
T (θ) = E(0, θ)− R(θ)B(0)E(1, θ). (2.15)

The matrices R(θ) and T (θ) are well defined for all θ ∈ D \ O , where

O = {θ ∈ D : λ� − λ(θ) = 0 for some � ∈ {1, . . . ,M}} ∪ {−1, 0, 1}. (2.16)

Lemma 2.2. The inequality

∣∣〈E(1, θ)B(0)T (θ)x, x〉∣∣ ≥ ∣∣Im〈
E(1, θ)B(0)T (θ)x, x

〉∣∣ ≥ |θ − θ |
2

�‖x‖2

holds for all θ ∈ D \ O and x ∈ �2(C ).

As a consequence we have

Corollary 2.2. The operatorsT (θ)are invertible for all nonreal θ ∈ D\O .

Thus, for θ ∈ D \ O , equation (2.14) implies that

m = S(θ)n,

where
S(θ) = −T (θ)−1T (θ−1) = (s(σ, ν; θ))σ,ν∈C .

Thus, all solutions ϕ(α, θ) of (2.4) are of the form

ϕ(α, θ) =

⎧⎪⎨
⎪⎩

(
U(k, θ)n

)
(ν(k)),

if α = ν(k), for
some ν ∈ C , k ≥ 0,(

R1(θ)B(0)U(1, θ)n
)
(α), if α ∈ A1,

(2.17)

with an arbitrary n ∈ �2(C ) and

U(k, θ) = E(k, θ−1)+ E(k, θ)S(θ), θ ∈ T \ O , k = 0, 1, . . .

Actually the function U(k, θ) can be extended to a meromorphic function
inside the unit disk and
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Lemma 2.3. There is a finite set � ⊂ D such that for all k ≥ 0 the poles of
U(k, θ) are located in�∪{0}. In addition the order of the pole in the origin is
k and the rest of poles are simple. The matrix functions U(k, θ) are bounded
in sufficiently small annulus 1 − ε ≤ |θ | ≤ 1.

The exact statement of the Lemma 2.3 is given in [9] in section 4, in
Lemma 4.1, Lemma 4.2 and their Corollary.

3. Discrete Schrödinger evolution

Before we establish our main result of this section (Theorem 3.1), we need the
following technical lemma:

Lemma 3.1. The entries of the matrices U(k, θ), k ≥ 0, and
R1(θ)B(0)U(1, θ) in (2.17) are rational functions with respect to θ .

Proof. It follows from (2.8) that the entries of r(α, β; λ) of the resolvent R

are rational functions with respect to λ. Using (2.11), λ(θ) is a rational function
with respect to θ , whence r(α, β; λ) are rational functions with respect to θ
too. Since the entries of B(0) are constants, it remains to show that U(k, θ),
k ≥ 0, are also rational, but this follows from (2.12) and (2.15).

Theorem 3.1. Let u(t, α) ∈ C1([0, 1], �2(A )) be a solution of

∂tu(t, α) = i
∑
β∈A

L(α, β)u(t, β), t ∈ [0, 1], α ∈ A , (3.1)

where A and L are as in Section 2.2. Let ν0 ∈ C . If for some ε > 0,

|u(t, ν0(k))| ≤ C

(
e

(2 + ε)k

)k
, k > 0, t ∈ {0, 1}, (3.2)

then u(t, ν0(k)) = 0 for all t ∈ [0, 1] and k ≥ 0.

Proof. To prove this result we will follow a similar strategy as in [6, The-
orem 2.3].

LetL be the operator of (3.1),L: �2(A ) → �2(A ), then the solution u(t, α)
is defined by

u( · , t) = eiLtu( · , 0)

and hence (u(t, α))α∈A is in �2(A ) for all t ∈ [0, 1].
Consider the auxiliar function �,

�(t, θ) =
∑
α∈A

u(t, α)ψν0(α, θ), (3.3)
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where ψν0(α, θ) is defined as in (2.17) with n = S−1(θ)(δν0(σ ))σ∈C , with
δν0( · ) the Kronecker delta. Suppose that � �= 0 to get a contradiction. Thus

−i∂t�(t, θ) = −i∂t
∑
α∈A

u(t, α)ψν0(α, θ) = −i
〈
∂t (u(t)), ψν0(θ)

〉
= 〈
u(t), λ(θ)ψν0(θ)

〉 = λ(θ)�(t, θ),

where λ(θ) is defined in (2.11). In particular we have obtained

�(t, θ) = �(0, θ)eiλ(θ)t . (3.4)

On the other hand, using the definition of ψν0(α, θ), (3.3) can be rewritten as

�(t, θ) =
∑
α∈A

u(t, α)ψν0(α, θ)

=
∑
α∈A1

u(t, α)ψν0(α, θ)+
∑
α∈A0

u(t, α)ψν0(α, θ)

=
( ∑
α∈A1

u(t, α)ψν0(α, θ)+
∑
ν∈C

K0∑
k≥1

u(t, ν(k))ψν0(ν(k), θ)

+
∑
ν∈C

∑
k>K0

u(t, ν(k))s−1(ν, ν0; θ)θ−k
)

+
( ∑
k>K0

u(t, ν0(k))θ
k

)

= A(t, θ)+ B(t, θ),

where s−1(ν, σ ; θ) denotes the entries of the matrix S−1(θ). The functions
�(t, θ) are in L2(T) for all t ∈ [0, 1]. Moreover, by Lemma 3.1 we have that
A(t, θ) converges for |θ | ≥ 1 and B(t, θ) for |θ | ≤ 1. For t = 0 and t = 1,
B(t, θ) also converges for |θ | > 1, due to (3.2). Thus�(0, θ) and�(1, θ) are
analytic functions in C \ D, except maybe at θ ∈ O (see (2.16)). Thus, using
Corollary 3.2 in [6], one can extend this convergence property to �(t, θ) for
all t ∈ [0, 1].

Now, using (2.2)

lim sup
|θ |→∞

log |A(t, θ)|
|θ | ≤ max{σf , σg},

where

f (θ) =
∑
α∈A1

u(t, α)ψν0(α, θ)+
∑
ν∈C

K0∑
k≥1

u(t, ν(k))ψν0(ν(k), θ),

g(θ) =
∑
ν∈C

∑
k>K0

u(t, ν(k))s−1(ν, ν0; θ)θ−k =
∑
ν∈C

o(θ−K0)s−1(ν, ν0; θ).
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Notice that by Lemma 3.1, f and s−1(ν, ν0; θ) are rational functions with
respect to θ , whence σf , σg ≤ 0 and

lim sup
|θ |→∞

log |A(t, θ)|
|θ | ≤ 0. (3.5)

It follows from (3.2) and Theorem 2.1 that B(t, θ) = ∑
k>K0

u(t, ν0(k))θ
k

are entire functions of exponential type at most (2 + ε)−1 for t ∈ {0, 1}. In
particular,

lim sup
r→∞

log |�(t, reiϕ)|
r

≤ log |B(t, reiϕ)|
r

≤ 1

2 + ε
,

t ∈ {0, 1}, ϕ ∈ [0, 2π ]. Whence, on the one hand by (2.3), we have

0 ≤ lim sup
r→∞

log |�(t, reiπ/2)|
r

+ lim sup
r→∞

log |�(t, re−iπ/2)|
r

≤ lim sup
r→∞

log |�(t, re±iπ/2)|
r

+ 1

2 + ε
, t ∈ {0, 1},

and on the other hand, using (3.4)

lim sup
y→∞

log |�(1, iy)|
y

= 1 + lim sup
y→∞

log |�(0, iy)|
y

≥ 1 − 1

2 + ε
>

1

2 + ε
.

Thus, we have a contradiction unless � ≡ 0.
We claim that � ≡ 0 implies B(t, θ) = 0 for all t ∈ [0, 1].
Suppose that B(t, θ) �= 0 to get a contradicttion. Since � ≡ 0, we have

that A(t, θ) = −B(t, θ), and by Lemma 2.3 there exists a polinomial P(z) =∑N
j=0 pjz

j , with all its roots aj simple and |aj | < 1 such that P(θ)A(t, θ) =∑N0
k=−∞ dkθk and P(θ)B(t, θ) = ∑

k>K0
ckθ

k . This implies that for k  K0,
ck = 0. That is, let P be the matrix

P =

⎛
⎜⎜⎝

0 −pN−1 −pN−2 . . . −p1 −p0 0 0 . . .

0 0 −pN−1 −pN2 . . . −p1 −p0 0 . . .

...
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎠ .

Then the condition ck = 0, k  K0, is equivalent to P(u(t, ν0(k)))kK0 =
(u(t, ν0(k)))kK0 . Using (3.5) and (2.3), we get σB(t,θ) = 0, which is a con-
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tradiction with the fact that ck = 0, unless u(t, ν0(k)) = 0 for k  K0 and
hence for all k ≥ 0.

4. Uniqueness of the solution of the Schrödinger equation on finite
graphs and applications

In general it is not true that a solution u(t, α) of (3.1) is trivial if it is zero on
one channel. Thus, the aim of this section is to study what happens on A1 in
such cases.

If we consider F as a finite set of particles and we study small oscillations
around their equilibrium position, see [10], [11], then the problem is reduced
to the spectral problem

λx(α) =
∑
η∈F

L(α, η)x(η), α ∈ F .

Here L( · , · ) is a symmetric real-valued and positive matrix. There is a graph
G = (F ,�) associated to this problem. Here the elements of F are the
vertices of the graph and � is the set of the edges. It is given by the matrix
L( · , · ), that is, there is an edge (α, β) ∈ � if α �= β and L(α, β) �= 0.

In the sequel we will use F to denote a finite set of particles and A to
denote sets as in Section 2.2.

Now if we look at the dynamics of this problem, that is

∂tu(t, α) = i
∑
η∈F

L(α, η)u(t, α), α ∈ F , t ∈ [0, 1]. (4.1)

Then the solution u(t, α) of (4.1) is given by

u(t) = eitLu(0),

where u(0) = (u(0, α))α∈F and the dimension of the vector space V formed
by all solutions of (4.1) is dim(V ) = #F . A natural question is: what happens
if for some α ∈ F , u(t, α) = 0, for all t ∈ [0, 1]? Is it true that u(t, β) = 0 for
all β ∈ F and t ∈ [0, 1]? And if this is not the case, then how big is dim(V )
with these extra conditions?

Consider the the example of Figure 3 to illustrate this problem.

β1 α1

α2 β2

Figure 3
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Here we take u(t, βj ) = 0, j = 1, 2, t ∈ [0, 1]. We have

∂tu(t, αj ) = iL(αj , αj )u(t, αj ), whence u(t, αj ) = eitL(αj ,αj )u(0, αj ),
(4.2)

for j = 1, 2. Then by the boundary condition u(t, βj ) = 0, and the equa-
tion (4.1) at βj , j = 1, 2,

0 = L(βj , α1)u(t, α1)+ L(βj , α2)u(t, α2), j = 1, 2. (4.3)

Now using the expresion (4.2) in (4.3)

0 = eitL(α1,α1)L(βj , α1)u(0, α1)+ eitL(α2,α2)L(βj , α2)u(0, α2).

There are two options. The first is L(α1, α1) �= L(α2, α2), which implies

L(βj , αk)u(0, αk) = 0, j, k = 1, 2.

But there is an edge from αk to βj , thus L(βj , αk) �= 0 and u(0, αk) = 0, in
particular u(t) = 0, t ∈ [0, 1] and dim(V ) = 0.

The other option is L(α1, α2) = L(α2, α2). Then{
0 = L(β1, α1)u(0, α1)+ L(β1, α2)u(0, α2),

0 = L(β2, α1)u(0, α1)+ L(β2, α2)u(0, α2),

and dim(V ) = 0 or 1 depending on the rank of the matrix (L(βj , αk))j,k=1,2.
The generalization of this result is proved in Theorem 4.1. Before we for-

mulate it, we need some definitions and the concept of extension of a subgraph,
given in [10], [11]. We will use their notation as well. In order that our article
is self-contained, we repeat it here.

Let F be a finite set of points and let G = (F ,�) be a connected graph
formed by the set F and the edges (α, β) ∈ �, where α, β ∈ F . Given a set
B ⊂ F , we want to extend this set to a bigger one as follows. Let β ∈ B be
such that there exists a unique α ∈ F \ B with (α, β) ∈ �:

•β −−−− ◦α −−−− ◦ −−−− •
Here (•) denotes the elements of B. Then we say that B(1) = B ∪ {α} is an
extension of B. We can iterate this process: (B(k))(1) = B(k+1) and we will
obtain a chain of prolongations

B ⊂ B(1) ⊂ · · · ⊂ B(p).

If B(p) does not have an extension, we say that it is maximal and we denote
it by [B], this set depends only on B as it is shown in the following lemma,
see [10] and [11].
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Lemma 4.1. Given a subset B ⊂ F , all maximal chains that begin at B

end with the same set [B] ⊂ F .

In addition of the previous concepts from [10], [11], we give some new ones
that we need afterwards to set our main result of this section, Theorem 4.1.

Remember that our graph was connected, thus we can consider the con-
nected components of the graph G ′ which results from F \ [B]. We will call
each connected component of G ′ a branch and for each α ∈ F \ [B] we will
denote them by γα , where α ∈ γα . Notice that γα = γα′ if and only if α ∈ γα′

and α′ ∈ γα .

Figure 4

Cf. Figure 4, where (∗) denotes the elements of [B] and it can be observed
that [B] = F , which in particular implies that there are no branches.

Given a set B ⊂ F we have defined the concept of branch, which depends
on [B], so the natural question is if there is some notion which allow us to
gather the branches. Thus we define the cluster. Let β ∈ [B], we call (β) a
cluster and

(β) =
⋃
α∈J

⋃
ξ∈γα

{ξ}, J = {α ∈ F \ [B] : (α, β) ∈ �}.

In other words, the cluster (β) is the set of the particles which form the branches
that are attached to β.

If it happens that a branch is attached to n different clusters, n ≥ 1, then we
say that the branch is of order n− 1, i.e., ord(γα) = n− 1, for α ∈ F \ [B].
See Figure 5.

◦α• • ∗ ∗◦α

Figure 5

Here B = [B], there are two different clusters and each point of F \ [B]
forms a branch. Each branch is of order zero, except the one formed by the
point α which is of order one, since it belongs to two different cluster as we
can see in Figure 6.
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◦α

cluster 1

◦α

cluster 2

Figure 6

Theorem 4.1. The dimension of the vector spaceVB formed by the solutions
u(t, α) of (4.1) such that u(t, β) = 0, β ∈ B, t ∈ [0, 1] is bounded as follows

#(F \ [B])−
M∑
i=1

�i ≤ dim(VB)

≤ #(F \ [B])+
N∑
i=1

ord(γi)�i −
M∑
i=1

�i , (4.4)

where M denotes the number of different clusters with respect to [B], N the
number of different branches γi with respect to [B], �i is the number of
different eigenvalues that comes from the restriction of the matrix L( · , · ) in
(4.1) to the cluster (βi) and �i is the number of different eigenvalues that
comes from the restriction of the matrix L( · , · ) in (4.1) to the branch γi .

If we look at the example in figure 5, the theorem tells us that −1 ≤
dim(VB) ≤ 0 if all the eigenvalues are different, thus dim(VB) = 0, i.e,
u ≡ 0.

For the example in figure 3 we have that if the eigenvalues are different then
−2 ≤ dim(VB) ≤ 0, which means that dim(VB) = 0 and if there is only one
eigenvalue then 0 ≤ dim(VB) ≤ 2.

Before proving the theorem we need a technical lemma.

Lemma 4.2. Let u(t, α) be a solution of (4.1) and let B ⊂ F be such that

u(t, β) = 0, β ∈ B, t ∈ [0, 1].

Then u(t, β) = 0 for all β ∈ [B], t ∈ [0, 1].
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Proof. Consider a chain of prolongations B(j) of B. Let {α1} = B(1) \ B

and β ∈ B be such that L(α1, β) �= 0, then by (4.1)

0 = ∂tu(t, β) = i
∑
α∈F

L(β, α)u(t, α)

= i

(∑
α∈B

L(β, α)u(t, α)+
∑

α∈F\B

L(β, α)u(t, α)

)

= i(0 + L(α1, β)u(t, α1)), t ∈ [0, 1].

Thus u(t, α1) = 0 and applying an inductively argument, it follows that for all
j ≥ 1, u(t, β) = 0, β ∈ B(j), t ∈ [0, 1].

Thus, by Lemma 4.1, after some j0, B(j0) = [B] and we obtainu(t, β) = 0,
β ∈ [B].

Proof of Theorem 4.1. First of all notice that due to the previous lemma
dim(VB) = dim(V[B]).

The problem (4.1) can be split into different independent pieces, that are the
study of (4.1) restricted to each of its cluster. Thus, let β ∈ [B] and consider
the restriction of (4.1) to the cluster (β) �= ∅, that is,

∂tu(t, α) = i
∑
ξ∈(β)

L(α, ξ)u(t, ξ), t ∈ [0, 1], α ∈ (β). (4.5)

In what follows, to simplify notation, we denote by L(β) the matrix L( · , · )
of (4.1) restricted to the cluster (β), in other words, L(β) is the matrix of (4.5).

For each α ∈ (β) we associate a number j (α) := j , 1 ≤ j ≤ n, here
n = #(β) and we will write j instead of α.

The general solution of (4.5) can be written in a matrix form as

u(t) = eitL(β)u(0). (4.6)

If we denote P the matrix of the eigenvectors of L(β), then P−1L(β)P =
diag(λj )nj=1, where λ1 ≤ λ2 ≤ · · · ≤ λn are the real eigenvalues of L(β). This
happens because L( · , · ) is a symmetric real matrix whence L(β) is real and
symmetric as well. If y0 = P−1u(0), then (4.6) turns into

u(t) =
n∑
j=1

e itλj y0,jpj ,

where y0,j denotes de j−entry of the vector y0 and the pj are the columns of
the matrix P , that is, the eigenvectors of L(β).
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Without lost of generality, we assume that {pj }nj=1 forms an orthogonal
system.

Using now the boundary condition of the cluster (β), that is u(t, β) = 0,
t ∈ [0, 1], we have

0 =
n∑
j=1

L(β, j)u(t, j). (4.7)

Let {μj }�
j=1 be the set of eigenvalues of the matrixL(β) without any repetitions

ordered by μ1 < μ2 < · · · < μ�, then equation (4.7) turns into

0 =
n∑
j=1

L(β, j)u(t, j) =
n∑
j=1

L(β, j)

n∑
m=1

e itλmy0,mpm(j)

=
n∑

m=1

e itλmy0,m

n∑
j=1

L(β, j)pm(j) =
�∑
m=1

e itμm
∑
s∈m̃

y0,s

n∑
j=1

L(β, j)ps(j),

where m̃ := {j : λj = νm} and ps(j) denotes the entry of the matrix P which
corresponds to row j and column s.

In particular we have obtained

0 =
∑
s∈m̃

y0,s

n∑
j=1

L(β, j)ps(j)

=
∑
s∈m̃

( n∑
�=1

{
p−1
� (s)

n∑
j=1

L(β, j)ps(j)

}
u(0, �)

)

=
n∑
�=1

{∑
s∈m̃

p−1
� (s)

n∑
j=1

L(β, j)ps(j)

}
u(0, �), 1 ≤ m ≤ �.

(4.8)

Here
{
p−1
� (s)

}n
�,s=1 denotes the entries of the matrix P−1.

Thus equation (4.8) can be written in matrix form as Aβu(0) = 0, where
Aβ is a � × n matrix. The rows a(m) of the matrix Aβ fullfill

a(m) =
∑
s∈m̃

p−1(m)

n∑
j=1

L(β, j)ps(j), 1 ≤ m ≤ �. (4.9)

We claim that rank(Aβ) = �.
Let m, 1 ≤ m ≤ �, and s ∈ m̃ be such that

n∑
j=1

L(β, j)ps(j) �= 0. (4.10)



68 I. ÁLVAREZ-ROMERO

These exist as otherwise L(β, j) = 0 for 1 ≤ j ≤ n, since the vectors pj ,
1 ≤ j ≤ n form an orthogonal base forRn. Thus, ifL(β, j) = 0 for 1 ≤ j ≤ n

then (β) = ∅ which is a contradiction.
Assume that rank(Aβ) < � and pick m and s such that the equation (4.10)

is fullfilled. There are constants ηj , not all of them zero, such that

a(m) =
�∑

j=1,j �=m
ηja(j),

whence

0 =
n∑
j=1

η′
jp

−1(j),

where

η′
j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ηk

n∑
�=1

L(β, �)pj (�), if j ∈ k̃, k �= m,

−
n∑
�=1

L(β, �)pj (�), if j ∈ m̃.

In particular, by the choice of m and s, not all η′
j are zero, which is a contra-

diction with the fact that rank(P−1) = n.
Define the matrix T∑M

i=1 �i×#(F\[B]) as

Tα(j) =
{
a
(βj )
α (Mj − j), if α ∈ (βj ) and 1 ≤ Mj − j ≤ �βj ,

0, otherwise.
(4.11)

Here j is bounded by
∑n

i=1 �i ≤ j <
∑n+1

i=1 �i , thus Mj = ∑n+1
i=1 �i , (βj ) =

(βn) and �βj = �n. Finally, a
(βj )
α ( · ) are the entries of the matricesAβj defined

in (4.9).
Now dim(VB) = dim(ker(T )) and rank(T ) ≤ ∑M

i=1 �i , using #(F \
[B]) = rank(T )+ dim(ker(T )), the left inequality of (4.4) follows.

To show the right inequality of (4.4), first consider the matrices A′
βj

, 1 ≤
j ≤ M . Define A′

β1
= Aβ1 . For j > 1 choose the branches γi ⊂ (βj ), such

that ord(γi) ≥ 1 and γi ⊂ (βn), for some n < j .
Fix the set � = {μm}, where μm are the eigenvalues which comes from

those branches γi , i.e., the eigenvalues of Lγi .
Thus the rows a′,(βj )(s) of the matrix A′

(βj )
are

a′,(βj ) =
{
a(βj )(s), if μs /∈ �,

0, otherwise.
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Define the matrix T ′ as we did for the matrix T in (4.11) but with the matrices
A′
(βj )

. We have obtained that if u(t) ∈ VB , then u(t) ∈ ker(T ′) by construction,
whence

dim(VB) ≤ dim(ker(T ′)) = #(F \ [B])− rank(T ′). (4.12)

By construction, the matrix T ′ is diagonal block matrix where each block
which is nonzero is equal to A′

(βj )
, 1 ≤ j ≤ M . Thus

rank(T ′) =
M∑
j=1

rank(A′
(βj )
) =

M∑
j=1

�j −
N∑
j=1

ord(γj )�j , (4.13)

where N denotes the total number of different branches of F \ [B], γj are
the branches of the system and �j the corresponding different number of
eigenvalues of Lγj .

Using equation (4.13) in (4.12) the theorem is proved.

Corollary 4.1. Under the hypothesis of Theorem 4.1,

dim(VB) = dim

( M⋂
j=1

ker(Aβj )

)
,

where M is the number of the clusters of the system with respect to [B] and
the matrices Aβj are defined in (4.9).

We give now some results on the uniqueness of the solution u(t, α), α ∈ A

of the problem (3.1) depending on the zeros of u(t, α). We use the idea given
in [11] in Chapter 17, where they extend A0 to the whole system, that is
[A0] = A .

If the zeros are in A1, then Corollary 4.2 extends the solution on the channels
uniquely. If the solution is zero on the channels, then we use Corollary 4.3

Corollary 4.2. Letu(t, α) be a solution of (3.1). Set F = A1∪{ν(1)}ν∈C .
If there exists some subset B ⊂ F , such that [B ′] = F and u(t, β) = 0 for all
β ∈ B ′, t ∈ [0, 1], where B ′ = B \ {ν(1) : ν(1) ∈ B and ν(0) /∈ B, ν ∈ C }.

Then u(t, α) = 0 for all t ∈ [0, 1] and α ∈ A .

Proof. A simple application of Lemma 4.2 shows us that u(t, β) = 0 for
all t ∈ [0, 1] and β ∈ F . In particular for any ν ∈ C we have obtained that
u(t, ν(1)) = u(t, ν(0)) = 0, t ∈ [0, 1], and hence u(t, ν(k)) = 0, for all
k ≥ 0 and t ∈ [0, 1].
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Corollary 4.3. Let u(t, α) be a solutoin of (3.1), such that for all ν ∈
C \ {ν0} and some ε > 0,

|u(t, ν(k))| ≤ C

(
e

(2 + ε)k

)k
, k > 0, t ∈ {0, 1}.

If in addition [B] = F , where B = ⋃
j=0,1

⋃
ν∈C\{ν0}{ν(j)} and F = A1 ∪

{ν(1)}ν∈C , then u(t, α) = 0 for all α ∈ A and t ∈ [0, 1].

Proof. By Theorem 3.1, u(t, ν(k)) = 0 for all ν �= ν0, ν ∈ C and k ≥ 0,
t ∈ [0, 1]. Thus u(t, β) = 0 for all β ∈ B, t ∈ [0, 1] and using Corollary 4.2
the result follows.

Remark 4.1. (i) Notice that in the proof of the Theorem 4.1 it is not neces-
sary that the matrix L( · , · ) be positive, only symmetric and real valued.

(ii) In Corollary 4.3, if the solution u(t, α) is zero along all the channels
ν ∈ C , then u(t, α) will be trivial if

[⋃
ν∈C {ν(0)}] = F , where F = A1.

Acknowledgements. I am indebted to Yura Lyubarskii for posing the
problem and for productive discussions on this topic.
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