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ON POLYGONS IN REAL PROJECTIVE »n-SPACE

DOUGLAS DERRY

Although Juel [2] made full use of the differentiability assumption in
the proofs used in his theory of differentiable curves of bounded real
order, many of the results seem to be true if the differentiability is
weakened. This has already been pointed out by Hjelmslev (cf. [1], where
polygons in the projective plane and polyhedra in the projective space
are considered). The present paper develops a theory of polygons ana-
logous to the simplest of Juel’s curves, those of order n in n-space. The
methods are related to those used by Kivikoski [3] [4] in his study of
polygons in the projective plane. The principal result, given in 4.6, is
that each such polygon may be obtained from a polygon connecting the
vertices of a simplex by a succession of inscribed polygons defined in
3.1. Two applications of the results are given. The first of these, in 5.6,
is a proof of a duality theorem for these polygons analogous to the one
proved by Scherk [6] for differentiable curves. The second in 6.1, related
to the first, proves a result for continuous but not necessarily differen-
tiable curves. This result for # =3 follows from a result of Marchaud [5]
on which he based his analysis of continuous plane curves of real order 3.

1. Definitions and notation.

A polygon x in real projective n-space is defined by its sides 4,4,,
A,4,, ..., A, A, and in the case in which it is closed 4,4;. The consec-
utive endpoints 4,, 4,, ..., A, of the sides are the vertices of n. If the
polygon is closed it is useful to define the vertex subscripts ¢ modulo 7.
Thus A4,, A;,, both represent the same vertex.

A point common to a linear k-space L, 0<k<n—1, and a polygon = is
defined to be an tniersection point of L and = if it is a vertex of z or if
it is the only point of a side of # which is within L.

A polygon n, with vertices 4,, 4,, ..., A, is defined to be a polygon of
order n in n-space provided it satisfies
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(1) the dimension condition that it is not contained in a hyperplane,
and
(2) the order condition that no hyperplane intersect s, in more than
n points.
The symbol n,, will be used exclusively for polygons which satisfy these
two conditions.
If Q, Q,, ..., @, are points in real projective n-space then the linear
space generated by these pcints will be designated by the symbol
Q1 Qs - - -, Q,].

2. Preliminary lemmas.

2.1. If By, By. ..., B, 05k=n, are wvertices of a polygon m, then
[By, By, . . .,B;] has dimension k.

Proor. If [B,B,, ...,B,] had dimension less than k then, as =z, satis-
fies the dimension condition, vertices B,.q, Byis, - - -5 By, m>mn, would
exist so that [B,,B;, ..., B,,] had dimension n— 1. As this would contra-
dict the order condition, 2.1 is proved.

This result implies that the vertices of a polygon z, must be distinct.

2.2, If, for n22, A;, A;_,A; be the projections of the vertex A; and the
side A; 1A, i%j, i+j—1, of a closed polygon =, from a vertex A; onto a
hyperplane, then the projection of =, from A, is an open polygon =, _; with
sides AA,, .. D s A oA, ApAises - A,.A1

Where A; 1A, is defined to be the pro]ectwn of the third side of the odd
triangle with sides A, A, AA, ., then =, _; may be closed by the addition
of A;_1A;., without increase of order.

Proor. If 4,€[4;_,,A4;] then by 2.1 either =35 or s =j— 1. Hence the
projection of the side A;_,4; of n, from the vertex 4, is a line segment
A; 4 A;if i), i%j—1. Let 4; 1A, be the third side of the odd triangle
¢t which contains the two sides 4, ;4,, 4,4,,,. Where 4, ;A,,, is de-
fined as the projection of 4;_;4; ., from the vertex 4, let = be the closed
polygon which consists of the segments A;A,, ..., A; ,A; 1, A; 14,4,
AidAiis .., A A, 7 is not included in a hyperplane of the projected
space, for otherwise =, would be included in a hyperplane of the original
space.

To complete the proof it is sufficient to show =z has order n—1. To do
this let A be any hyperplane of the projected space and H the hyperplane
of the original space, the projection of which from A4, is H. Suppose
first that H contains no interior point of 4, ;4,,;. In this case each
intersection of H and m is the projection of an intersection point of H

4%
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and 7, different from 4,. As =, has order n and 4, is an intersection point
there are at most n — 1 such intersection points. Hence H intersects = in
at most »— 1 points. We now consider the case in which H does contain
an interior point of 4; ;4;,,. H now supports the triangle ¢ at A, as ¢
is odd. Let L be the linear subspace generated by the vertices of =,
within I which are different from 4, It follows from 2.1 that 4, ¢ L.
Hence H may be subjected to a displacement to a position H so that the
points of L remain fixed but so that H intersects 4, ,4; in an interior
point. If this displacement of H is sufficiently small the original points
of intersection of H and x, will each move in arbitrarily small neighbor-
hoods. As H supports ¢ at 4,;, H will also intersect 4,4,., in an interior
point. Thus H contains exactly one more intersection of z, than H.
Therefore H intersects xr, in at most n — 1 points including 4,. The hyper-
plane H intersects A, ;A4;,,; in an interior point as H is assumed to
intersect A;_,A4;,; in an interior point. All the other intersection points
of H and n are projections of intersection points of H and =, different
from A,. As we have proved there are at most n — 2 such points it follows
that H intersects v in at most n—1 points. Thus = has order n—1. The
proof is now complete.

2.3. If o, is a closed polygon not within a hyperplane with exactly n+ 1
sides and if a hyperplane exists which intersects o, in exactly n poinis each
of which s interior to a side, then o, has order n.

Proor. We first show that a hyperplane which does not contain ver-
tices of o, intersects ¢, in at most n points. By the hypothesis a hyper-
plane H exists which intersects o, in exactly n points each of which is
an interior point of a side. Hence successive vertices 4,, 4,, ..., 4,4
may be chosen so that H does not intersect the side 4,,.,4,. If P, be the
intersection point of H and the side 4,4,.,, 1 <¢<n, then[P,P,,...,P,]
is a hyperplane. Otherwise [4,,P;,...,P,] would have dimension at
most n— 1 and contain all the vertices of ¢, as P;, P,, ..., P, are interior
points of consecutive sides. Hence ¢, < [4,,P,,...,P,], contrary to the
hypothesis that ¢, is not in a hyperplane. This also proves that if P,
varies continuously but remains an interior point of 4;4,,,, 1<¢=<n,
then [P, P,, ...,P,] is a hyperplane which varies continuously and can
never enter a vertex of o,. Hence no position of this hyperplane can
intersect the side A4,,,4,. Consequently no hyperplane can intersect o,
in n+1 points, none of which are vertices as such a hyperplane would
be one of the hyperplanes [P, P,,...,P,].

Now let H be a hyperplane which intersects o, in at least one vertex.
As o, is not contained in a hyperplane, not all of the vertices can be con-
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tained in . Hence H contains at least one vertex, say 4,, so that a
consecutive vertex, say A4,, is not contained in H. This means that H
contains only the point 4; of the line [4,,4,]. A, cannot be within the
space generated by the other vertices of o, within H for then all vertices
of ¢, would be within a hyperplane. Hence H may be displaced so that
its displaced position H intersects the line [4,,4,] in an interior point 4
while each vertex of ¢, within H other than A, remains within H. If the
displacement is sufficiently small any intersection point of H and ¢, is
displaced into an intersection point of H and ¢,. This process may be
repeated until a hyperplane is obtained which intersects ¢, only in
interior points of its sides and which does not intersect ¢, in fewer points
than H. As such a hyperplane intersects ¢, in at most n points by the
result of the first paragraph, H intersects o, in at most n points. Hence
o, has order n» and the proof is complete.

3. The inscribed polygons I(7x,).

3.1 DeriNtTION. If 1 consecutive sides A A4,, AyA4q, ..., A, A, of a
closed polygon s, with vertices A;, 1 £t <r, are each subdivided into segments
A.B; .\, B; 14, by an interior point B, ., and if BB, is defined so that
BB, ,,, B;A;, A;B; , is an even triangle, then I(n,) is defined to be the
polygon inscribed in =, with sides ABy, ByB;, ..., B, B, 1, B,.14,.1,
Ay pies - 4,4,

3.2 The polygons I(n,) satisfy the dimension condition and have order n.

Proor. As the vertices of x, are linear combinations of the vertices of
I(7,) it follows that if I(x,) is included in a hyperplane then this hyper-
plane also contains 7z,. Hence, as x,, satisfies the dimension condition,
I(m,) also satisfies this condition.

Let H be a given hyperplane. We define a one to one correspondence
between the intersection points of H and I(n,) and intersection points of
H and n,,. Let @ be an intersection point of I and I(x,). Suppose first
that @ is a vertex B, of I(sz,) which is not an intersection point of H and
7,. This means that B, is an interior point of a side 4, _;4; of 7, which
is part of a polygon arcA,A4, .4 ... Apip 1Em, m+h<n+1, entirely
within H. This polygon arc may be assumed to have maximum length. m =1
and m+h=n+1 cannot be true simultaneously for otherwise H would
contain n + 1 vertices of z,. If m+h=n+1 then m=1 and we define @
tobe A,,. If m+h<n+1, @ is defined to be 4;. In each case @ is a
vertex of ,, within H which is not a point of I(x,). Now suppose ¢ is an
interior point of a side B;B;.;, 2<i<n. In this case H contains exactly
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one more point of the even triangle with sides BB, B;4,, A.B;.,. We
define this additional point to be @. ¢ must be on either B4, or 4,B,;,,.
As B;, B;,, ¢ H, Q is a point of intersection of H and #,. @ may be the
vertex A; but in this case neither side 4, ;4, nor 4,4,,, can be within
H. Finally, any additional intersection point ¢ of H and I(x,) is also an
intersection point of H and =, and so in this case we define @ =¢. As the
correspondence @ — @ is a one to one correspondence, H cannot intersect
I(m,) in a greater number of points than it intersects z,. Hence I(x,) has

order » and the result is proved.

4. The escribed polygons E,(7t,).

In this section it is shown that every polygon =, is either a polygon
with n+ 1 vertices or can be obtained from such a polygon by constructing
a succession of inscribed polygons.

4.1 DErFINITION OF B, If, for r>n+1, Ay, 4,, ..., A, are the vertices
of a closed polygon =, then, for L<q=<n+1, Bg 18 defined to be the vertex
4, and B{; the intersection

[AI’AZ’ M ?Aq] n [Ak+q’Ak+q+1? e )Ak+n+1] s

15ksr—n—1.

2 (1) Bf=4,, Bf,;=A44,,.1, (2) B is a point and (3) [BE, BE,,] is a
line which contains BE}, BE i+ BE, BE1+BE,, 1sk<r—-n—1,1<¢<n.

Proor. As n, has order n any n+1 distinet vertices of n, generate
the full projective n-space. It follows, then, from the definitions

Bf = Ain[Apiv Apsns -+ > Apinaal
Bfwl = [Al’sz e 7An+1] n Ak-f—n+1 ’

that Bf=A4, and B%, =A,.,.,. Thus (1) is proved.
The spaces [A;,4,, ..., 4, [ApigpArigirs - - > Apinl, and

[A, Ay, .. ApAgig -+ Apinal

contain ¢, n+2—gq, and n+2 distinet vertices of =, respectively, as
E<r—n—1. Tt follows, then, from 2.1 that these spaces have dimension
g—1, n+1—gq, and n respectively. If d is the dimension of the inter-
section

[A17A27 .- "Aq] n [Ak+q’Ak+q+1’ s e 5Alc+n+1] = quc
it follows from the incidence relation (g—1)+ (n+1—¢)=n+d that d=0.
Hence B’q“, 1fk<r—m—1,12g<n+1, is a point and (2) is proved.
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It follows from 4.1 that Bf e[4,,4,,...,4,] and

k
B € [Arigiv Arigrer - s Apinial -

By the method used in the previous paragraph the intersection
(A4, -, A0 [Apygir Arigies - - - Apinial; l=gqg=n,

has dimension — 1 and so is empty. Therefore Bf + B, and consequently
[B’qc, quc+1] is a straight line, 1sk<r—n—1, 1=g<n. It follows from
4.1 that

[B’;’BI;-H] = [AI’A2’ e 7Aq+1] n [Ak+q’Ak+q+1’ e ’Ak+n+1] .

This intersection has dimension 1 by the method of the previous para-
graph. Hence

[quc,Bch+1] = [ADAZ’ e ’Aq+1] n [Ak+q’Ak+q+1» c :Ak+n+1] ’
1gsksr—n-1, 1=q=<n. Consequently, for k=1,

Bt = B, = A, € [BLBE,].

q+1

If k>1, B*! is defined to be

g+1
BI;:% = [Al’Az’ cee 9Aq+1] n [Ak+q’Alc+q+1’ e 7Ak+n]

which point is likewise contained in [B’“,B’qc +1)- Thus

IIA

B"_le[B’q“,Bk 1, l1sksn—r-1, 15¢g=mn.

g+1 q+1

It remains to prove
k1 % k-1 k
B+ B, Bji+B

+1 g+l g+l -

Suppose for k> 1,
Bk—l = [Al»A27 L :Aqul] n [Ak+q’Ak+q+15 et ’Ak+n]

q+1

= [A, Ay . AN [Apig Apigins - > Apinsa] = Bh.

Then the intersection [A;,4,,..., 4,10 [AyigpAsigir -+ > Apin] cannot
be empty as it contains B’q“. However, this intersection is the intersection
of two spaces of dimension ¢—1 and n—¢q which together generate the
whole space. If d be its dimension it follows from the incidence relation
(g—1)+ (n—q)=n—d that d = — 1 which means the intersection is empty.
This contradiction proves B’;:H:B’“, k>1. We now suppose, for k>1,
that

B{;—;i = [AI’A2’ e ’Aq+1] n [Alc+q’Ak+q+1> ce >Ak+n]
= [A17A27 e >Aq+1] n [Ak+q+17Ak+q+2’ v ’Ak+n+1] = quc+1 .

It follows from 2.1 that
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[Ak+q’Ak+q+1’ e aAk+'n] n [Ak+q+1:Ak+q+2? M :Ak+n+1]

Hence = [Ak+q+1,Ak+q+2’ .. '>Ak+n] .

e &
Byii = By € [A1, 4, 40000 [Agiger Arigen -+ o5 Agan] -

This intersection is the intersection of two spaces of dimension ¢ and
n—q—1 which together generate the whole space. As before it follows
from the incidence relation that it is empty and so B{;;j #B’; .1 Finally
let k=1. In this case By, =AQ+1:B; would imply 4,,, €[4, 4,,...,4,]
which is impossible because of 2.1. Likewise By, =B}, would imply
Ay €lAgigpAgigs -+ -5 Ayipia] which is also impossible because of 2.1.
This completes the proof.

These results enable us to introduce

4.3 DEFINITION OF K (x,). If A4, Ay, ..., 4, v>n+1, are the vertices
of a closed polygon =, and B’;, 12k=sr—-n—1,1=2qg=<n+1, are defined in
4.1 then BEBY , 1<q<mn, is defined to be the line segment in [BE, B,,]
which contains By}

E,(n,) is defined to be m, if k=0 and the polygon with sides BB,
B{ZCBI;’ T ‘BZBZ-FI (=B£An+k+1)a An+k+1An+k+2’ T (=ArBllc) if
1Zk£r—n—1.

4.4 If, for 1sk<r—n-1 and n=2, ti-“, 2<1<n, 1s the triangle con-
sisting of the side B¥\BY} of E,_,(n,) and the segments B:'B¥, B¥B%!
of the sides BY | BY, B¥BE, | of Ey(n,), then t¥ is an even triangle.

Proor. Let 4,, 4,, ..., 4, be the vertices of the closed polygon x,.
We first consider the projection of E,(x,) from the vertex 4, for nz2.
If A, , be the projection of 4, from A4,, i+ 1, then the r—1 points
Ay, A,, ..., A, are the vertices of a closed polygon n,_;. Each side
A A, 121572, of m,_, is the projection of the side A;,,4,,, of 7,
while the side A,_,4, is defined as in 2.2. If B{; is defined to be

quc = [Al,Az, .o .,Aq] n [Ak+q7Ak+q+1> .. 'aAn—Hc] 3

1<k<(r—1)—(n—1)—1=r—n—1, 1<q=<n, then BY, BY, ..., B%, A,.,,

.., A,_, are the vertices of E,(n,_,) in accordance with 4.3. Tt follows
from the definition of BY in 4.1 that its projection from 4, is Bf,
2<qs<n+1. As B=4,, the side BYB: is projected into the single
point B¥. To consider the sides B{;B;“ 1» 25¢<n, we note that, for
1<k=r—n—1, the interior point

Bk—l = [A1>A2’ A ’Aq+1] n [Ak+q’Ak+q+17 . ')An+k]

g+1

of BYBE,, is projected into the interior point
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el r 4 3 . . . .
Bq - [Al’ A2’ e ’Aq] n [Alc+q—l7Ak+qr s 7Alc+n—1]

of BY B} while for k=1 the interior point BJ, =4, of BLBl, is
projected into the interior point By=A, of B} , B;. Thus B:B:, | is pro-
jected into the line segment with endpoints B’;_l, B;; which contains the
point B’q‘*1 in its interior which is, by the definition, the side B”;*lB’qc of
Ei(n, ), 22q9=n,12k=n—r—1. Eachside 4,4, 1, n+k+1Zi5r—1,
is projected into the side A, _; A, of E,(x,_;) by 2.2. The remaining side
A,4, of E(n,) is projected into the single vertex 4, ;. Thus the projec-
tion of E,(x,) from A, is the polygon E(x,_,) without the side A, ;4.

Following the definition 4.1 the points B’;, 1£k<r—n-—1, are on the
line [4,,4,]. We now prove that the points 4,, 4,, B5™, B¢ follow in
order in the direction from A, to 4, in the side 4,4, of =,. If
12k<r—n—1, none of the three vertices 4,, 4,, 4, can occur in the
n — 2-space

L =[dyp, 4300 - -, Apix]

and so the polygon arc of all vertices not in L has the form 4, ., .,
Apirsg - - 4,414, ... Aj . If sis a point of this arc then s ¢ L. This
follows from 2.1 if s is a vertex. It is also true if s is not a vertex, for
otherwise the space generated by L and the two endpoints of the side
containing s would have at most dimension »—1 and contain n+ 1 ver-
tices of m,. This also proves that [L,s] is a hyperplane which intersects
m, in s. As [L,s] intersects =, in the n— 1 vertices in L, it follows from
the order of x,, that two different positions of s on the polygon arc define
different hyperplanes [L,s]. Hence, as s runs continuously and mono-
tonously through the polygon arc from 4, ,, ., through 4,, 4, to 4.,
[L,s] moves continuously and monotonously within the hyperplane pen-
cil through L. Therefore, as [L,s] contains exactly one point of the line
[4,,4,], the intersection [4,,4,]n[L,s] runs continuously and mono-
tonously on [4,,4,] from

[Al’Az] n [A2+IC’A3+IC’ s '3An+k+1] = Bgzc
through 4, and 4, to
[A1>A2] n [A1+k7*42+k) c 'aAn+lc] = B{;_I .

This proves that 4,, 4,, B5™, B follow on [4,,.4,] in the order defined
by the direction 4, to 4, in the side 4;4,.

In particular the points 4,, 4, B} follow in the order 4, to 4, on
A,A,. By 4.3 the side Bl By= A, B} of E,(x,) is defined to contain By=4,
as an interior point. Therefore the segment B}B} contains the side
BB)=A,A4, of Eyn,)=m, as a subsegment. More generally as, 4,, 4,,
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B!, Bk follow in the order 4, to 4, and B4 is an interior point of the
side B*B: of Ey(,) it follows that B¥BY contains the side B!BE-! of
B, _,(m,) as a subsegment, 1=k =<r—n—1. If this result is applied to
7,_y it follows that the side BYBY of E(n,_,) contains the side B! Bk
of B, _4(m,_;) as a subsegment.

By the result of the first paragraph the projection of the segment
BEBEL of the side BEB% of Ey(n,) is the segment of the side B¥BY of
E(n,_,) with endpoints B =4, =B*"' and B5. This by the paragraph
above is the side B¥ B! of B, ,(m,_,). As the projection of the side
BE1BE of ¢ is also B*'BE it follows that t¢ is projected into this
single segment. The centre of projection 4, is not located on a side of ¢%
as it is on the line [4,,4,] containing the side BB but not within
BE1B. Therefore tX is even because the projection of an odd triangle
from a point not on the triangle is the full projective line. In particular
this proves the result for n=2,

We assume it true for all polygons =z,_,, n>2, and proceed by induc-
tion. We need now only consider triangles ¢¥ with ¢>2. Let Bf 1B
Bi1BY, B¥B¥! be the sides of such a triangle t*. Then by the result of
the first paragraph the projection of ¢! is a triangle {* defined for the
projection Ey(n,_;). By the induction assumption £/ is even, hence ¢’ is
even. This completes the proof.

4.5 E,_,_4(m,) is not within a hyperplane, has n+ 1 vertices and order n.
Proor. We first show that

ke =
[Bn+1—y n+2—js c :Bn+1] - [An+k+1—j’An+k+2~j’ te ’An+k+1] )

0sk=sr—-mn—1,0=j=<n-—1. For j=0 this is an immediate consequence
of 4.2. We assume the result to be true for j—1, j>0, and proceed by
induction. According to the induction assumption

[Bn+2—]’Bﬁ+3—]’ . "B:Czﬂ] = [An+k+2—j’An+k+3—j’ e :An+lc+1] .
It follows from the definition 4.1 that

k
Bn+1—j € [Apstr1-p Aninsz—js - s Anars]
and so
k k k
[Bn+1—j’ Bn+2—-j’ M "Bn+1] = [AN+k+1—j’An+k+2~—j’ e ’An+k+1] .
However

k
B n+1—j ¢ [An+k+2—J’An+k+8—]? . "An+k+1] .

For otherwise, as by 4.1 BX 11— €[A1, 45, - - ., A1), the intersection

[Al’Am L] An+1——j] n [An+k+2—:i>An+k+3—:i7 e ’An+k+1]
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would not be empty. It follows from 2.1 that this intersection is an
intersection of spaces of dimension n—j and j— 1 which together generate
the projective n-space. Hence, if d is the dimension of the intersection,
it follows from the incidence relation (n—j)+(j—1)=n—d that d= —1
which means that the intersection is empty. This contradiction proves

Bn+1~j ¢ [An+k+2—j’An+k+3—j’ s ’An+k+1] .
It now follows that
[B:'chtlvj’B'IriJrZ—" s ’BicH—l] = [An+k+1~j7An+k+2—j’ s :An+k+l]

as the left hand side is included in the right hand side and both sides have
the same dimension. We now specialize j to be n — 1. Asin 4.1 we assume
r>n+1andsor—n—2z0. We may therefore specialize k to be r —n — 2.
The result becomes

[By "By % LB = (A, Ay - A

The vertices of E,_,_,(w,) are defined to be B} ™ '(=4,), By, ...,
Biiv Y (=4,). Following the definition 4.3 each side B " 'Bj;7 con-
tains the interior point Bj;77% 1<¢<n. By the previous paragraph,

[Bgvn_{ ngn_zy cee 9B:;£—2] = [Ar-—'n’Ar—’n-i-l’ M ’AT‘“I] °

It follows, then, that the n+1 vertices of E,_,_,(w,) generate the space
[4, A4, pi1s - - -»4,], that is, the full projective n-space. Consequently
E,_, _i(=,) cannot be included in a hyperplane. Moreover the hyperplane
[By "2, By™ 2 ..., B="%] generated by n points, one interior to each of
n consecutive sides of E,._,_,(m,), cannot intersect the side 4,4, of
E,_, _i(mw,) as it already intersects s, in the n vertices 4, ,, 4, , 4, ...,
A,_,. Tt follows, then, from 2.3 that K, , ,(w,) has order ». This com-

pletes the proof.

4.6 For n=2 the polygon E,(xn,) has order n. E,_(n,) is inscribed in
E,(x,) in the sense of 3.1, 1 <k<r—n—1.

Proor. By 4.5 E,_,_4(w,) has order n. We assume E,(n,) has order
n, 1 <k<r—mn—1, and proceed by induction. Each of the n consecutive
sides B¥BY |, 1<i<n, of H,(n,) contains the vertex B} of the polygon
E,_,(n,) in accordance with 4.3. By 4.4 the triangle ¢¥ which consists of
the side B¥ "Bl of E,_,(w,) and the segments BB, BfBf ' of the
sides BY  Bf, B*BY, of E(n,), respectively, is even, 2<i=<n. This
means that the polygon K, _,(w,) which is defined to have the sides
BB (= 4, B, BEUBET, .., BEVBEY, BELEE, (=4, 44,0,
A,iniiAninie - - -» 4,4, is inscribed in K, (z,) following 3.1. By the in-
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duction assumption E,(r,) has order n. Therefore by 3.2 £, _,(x,) has
order n and the proof is complete.

5. The osculating hyperplanes of 7,,.

5.1 DEFINITION. If, for n22, 4;, A;44, - . ., Asip, are vertices of a poly-
gon 7w, and A, ,A; is the straight line segment for which the sides AA; 4,
Ao oy Apnadiin of @y and A, A, form a closed polygon of order
n, then the hyperplanes which contain A, .y, A;0, ..., A;in_q but do not
contain an interior point of A, A; are defined to be osculating hyperplanes

of .

It follows from 2.3 that the segment 4,,,4, can always be constructed.
This segment is unique.
If =, is closed, the hyperplanes

V, =[Ap Ay .. 4,0 Vo = [dgdg, .., Ay, ...,
V,=[A4,4,,...,4, ]

satisfy the definition for the osculating hyperplanes. These hyperplanes
will be called the vertex hyperplanes of x,,.
The osculating hyperplanes which contain

Vin Vi = [y Aiias - - 5 Al

and an interior point of the segment complementary to 4;,,4,; form a
linear segment of the hyperplane pencil through [4;,;, 4.0, .+ s A;in-1l
bounded by the two hyperplanes V,, V,,,. The hyperplanes of this seg-
ment will be denoted by V,V,,,.

5.2 If, for nz2, n, is a closed polygon with vertices A, 4,, ..., 4,,
H is an osculating hyperplane interior to the segment ViV, and H' is a
hyperplane which approaches H in such a way that it always contains a
point interior to each side A;4;.,, 1Si<n—1, then H' inlersects m, in
these points and also in an additional point interior to the side A,A4,.4
providing it is sufficiently close to H.

Proor. Let B,,; be the point interior to 4;4,,, which is contained
within H', 1 £¢<n—1. It follows from the existence of these points that
if H' contains one of the vertices 4, 4,, ..., 4, then it contains all of
them and so becomes the hyperplane V,=[A4,,4,,...,4,]. By the
hypothesis H is interior to the segment V,V, and so H <+ V,. Hence if
H' is sufficiently close to H it cannot contain any vertex 4,, 4,, ..., 4,
and so it intersects =z, in B,, By, ..., B,. If 4,,,4, be the segment
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defined in 5.1, let — A, ,,4, be the complement of 4, ,,4, in the straight
line [4,,.,4,]. As H is interior to V,V,, H intersects —4,,,4, in an
interior point and so H’ intersects —4,.,4; in an interior point if it is
sufficiently close to H. If this position of H’ did not intersect 4,4,
then by 2.3 the polygon with sides —4,,,4,, 4,4,, ..., 4,4,., would
have order n. This is impossible as 4,,,4, is defined in 5.1 so that
Ayady, A4, ..., A, 4, has order n. This completes the proof.

5.3 If, for n 2 2, H is a hyperplane interior to the segment V,V,., defined
Jor a closed polygon 7, with vertices A;, A,, ..., 4,, then the two intersec-
tions

T, n f], Ty, n ]7,5 n I/ri+1 3
1= =7, are the same poini sel.

Proor. Without restriction in generality we may assume i=1 as,
because 7, is closed, the vertex notation can be adjusted so that V,V,,,
becomes V,V,. The vertex hyperplanes V,, V, are defined, in 5.1, to be
[4,,4,,...,4,] and [4,,4,,...,4,.,] respectively. Therefore V,nV,=
[45,45,...,4,]. Consequently the set of points « of the polygon
arcA,A4, ... A, of m, is contained within V,nV,. Hence, as H is defined

to contain V,nV,,
a €ca,nVnVy<ca,nH.

To prove the result it is therefore sufficient to show that
n,NH < .

No point of the side 4,4, other than 4, can be within H for otherwise
H would be [4,,V,nV,]=V, contrary to the assumption that H is
interior to the segment V,V,. Similarly no point of 4,4, ., other than
A, can be within H. It remains to show that H cannot contain any point
s interior to the polygon arc 4,,,,4,,, ... 4,4,. Suppose such a point s
exists. Then s ¢[A4,,4,,...,4,]. This is clear if s is a vertex. If s is
interior to a side 4;4,,, of the arc containing s then it is also true for
otherwise [A4,,45,...,4,,4;,4;,,] would have at most dimension n—1
and contain » + 1 distinet vertices in contradiction to 2.1. It follows then
that H=[s,4,,4,,...,4,] and also that H intersects n, in s. Let B;
be a point interior to the side 4;4;,,, 1L4¢sn—1. If B;, By, ..., B,
remain fixed but B, approaches A4, then [B,, B,, ..., B,] approaches

[A,,ByB,, ...,B,] = [Ag, A, ..., 4,].

Hence [s, By, Bs, . . ., B,] approaches H and, if B, is sufficiently close to
A,, is therefore a hyperplane which intersects x, in s. By 5.2



62 DOUGLAS DERRY

[s,By,Bs, . . .,B,], besides intersecting =, in B,, B, . .., B, also intersects
m, in a point B, ,, interior to the side A4,4,,, again provided B, is
sufficiently close to 4,. Ass¢ A,4,.,,[s,B,, B, ...,B,] intersects z,, in
the n»+ 1 distinct points s, By, By, ..., B, ,; which is impossible because
of the order of =,,. Hence H cannot contain a point s interior to the arc
A, 1Ay .. 4,4, Therefore n,nH is contained in the arc «, and the
result is proved.

5.4 If, for n=2, 4,, 4,, ..., A, are the vertices of a closed polygon =,
and B, ;€ 4;4,,1, 1 2t =n are vertices of a polygon I(n,) inscribed in x,,
then the vertex hyperplanes of I(r,) are the vertex hyperplanes of =, together
with the hyperplane [By, B, . . ., B, 4]. All the osculating hyperplanes of =,
except those interior to the segment V.V, are likewise osculating hyper-
planes of I(r,).

Proor. As 4,, By, By, ..., B4, 4,41, - .., 4, are consecutive vertices
of I(z,),
[4,,B,,...,B,],
[BZJB:}’ . "Bn-i—l] ’
[BS’B@ e >Bn+1>An+1] ’

[4,,4,,B,,...,B,_4]

are the vertex hyperplanes of I(z,). As B,,; by its definition is an
interior point of the segment 4,4,.,, 1<7=<mn, the above hyperplanes
are, respectively,

[A4,4,,...,4,],

[B2’B37 v ':Bn+1] ’

[AZ’A37 b "An+1] ’

[4,, 4,45, ..., 4,4].

These are exactly the vertex hyperplanes of xz, together with the addi-
tional hyperplane [B,, B;, ...,B,). Thus the first part of the result is
established.

This means, for 2<i <7, that V,, V,,, besides being consecutive vertex
hyperplanes of xz, are also consecutive vertex hyperplanes of I(r,). By
5.1 V,V,,, is one of the two segments of the hyperplane pencil through
V,nV,.; bounded by V; and V,,,. To prove that V,V, . is the same
whether it is defined for x,, or I(x,) it is sufficient to show a hyperplane
H exists in the pencil which is different from V, and V., and is neither
an osculating hyperplane of z, nor of I(x,). If the side 4;,,4;.,,, is also
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a side of I(x,) let s be any interior point of this side. If 4, ,4,.,.;is not
a side of I(n,) then the vertex B,,,., is an interior point of this side.
In this case s is defined to be B, ;.

s ¢ [Ajpdipe - syl = Vin Vi

for otherwise [4;,1, 4,40, - - -, 4;10n+1] Would have dimension at most n—1
and contain n+1 vertices of z, in contradiction to 2.1. Therefore
[s,4;:1. 440, .. ., 4, 41=H is a hyperplane. As H intersects 4;. ., 4;.n+1
in the interior points s, H+V, H+V, ;. Ass¢ V,nV, 1, s€m,,sel(xn,),
it follows from 5.3 that H is not an osculating hyperplane of either =,
or I(n,). This proves that V,V,,,, 2<i{<r, is the same whether it is
defined for =, or I(x,) as its complementary segment consists of hyper-
planes which are not osculating hyperplanes of either =, or I(z,). The
proof is now complete.

5.5 No space point is within more than n vertex hyperplanes of a poly-
gon m,,.

Proor. As the result is trivial for n=1 we assume n=2. Let
Ay, 4, ..., A, be the vertices of x,. If r assumes its minimum value
n+ 1 then, as x, satisfies the dimension condition, 4,, 4,, ..., 4,,,, are
the vertices of an n-simplex while the vertex hyperplanes

Ve, =1[4,4, ...,4,],
V2 = [Az’An’ .- "An+1] s

Vn+1 = [An+1’A1’ s 7An—1]

of m, are the face hyperplanes of this n-simplex. As no point can be
within all the face hyperplanes of a simplex no point can be within the
n+1 vertex hyperplanes of z,. This proves the result if r=n+1. We
assume it is true for all polygons =, with r — 1 sides, » >n + 1, and proceed
by induction.

Now let @ be a given space point. Asr>n+1, B (zn,) is defined as in
4.3. By 4.6 E,(m,) has order n while E(x,), i.e. m,, is inscribed in E,(7,,).
As E,(m,) has one vertex less than z, the induction assumption may be
applied to it. Hence @ is included in at most » vertex hyperplanes of
E\(n,). As E,(x,) has at least n+ 1 vertices this means that at least one
vertex hyperplane of E,(m,) exists which does not contain ¢. By 5.4
each vertex hyperplane of E,(r,) is also a vertex hyperplane of x,,. 'Hence
at least one vertex hyperplane of x, exists which does not contain @.
By adjusting the vertex notation, if necessary, it may be assumed that
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[A,, A, ..., A,,] is such a vertex hyperplane. As A4,,; is an interior
point of the side B}Bj,;, 1si=<n, of B (x,) it follows from 5.4 that the
vertex hyperplanes of the polygon x, inscribed in E,(=,) are the vertex
hyperplanes of E,(r,) together with [4,,4,,...,4,,;]. By the induction
assumption ) is contained within at most n vertex hyperplanes of Z,(s,,).
As Q ¢[A4,y,4,,...,4,,4], @ is within at most n vertex hyperplanes of
m,. This completes the proof.

5.6 (THE DUALITY THEOREM). If, for n22, Vi, V,, ..., V, are the
vertex hyperplanes of a closed polygon m, then the dual of the system II of
all the kyperplanes of the segments V. Vo, VoV, ..., V,V, is also a closed

polygon of order n which satisfies the dimension condition.

Proor. It follows from 5.5 that at most n of the hyperplancs
Vi, Vo, ..., V, of m, can pass through a given point. Because 7, satisfies
the dimension condition, » >#n and so not all of the hyperplanes of I7 can
pass through a given point. Therefore the dual of II satisfies the dimen-
sion condition.

To show that the dual of the system I7 has order » we must show, in
accordance with the definition of an intersection point in 1, that a given
space point ¢ is contained in at most n hyperplanes which belong to
either of the following two types. The first type consists of the vertex
hyperplanes of x, while the second type consists of hyperplanes of the
segments V,V,,, for which @ ¢ V,, @ ¢ V,,;. This is done by constructing
a polygon 7, of order » so that there is a one to one correspondence
between the hyperplanes of the above two types which contain ¢ and
vertex hyperplanes of 7%, which contain . By applying 5.5 to 7, it
follows that there are at most n vertex hyperplanes of %, which contain
. Hence there are at most n hyperplanes of the above two types which
contain Q.

To complete the proof it only remains to construct a polygon 7%,. If
no hyperplanes of the second type contain ¢ then 7, is defined to be =,,.
Suppose then that a hyperplane H of the second type contains ¢. The
vertex notation may be adjusted so that H belongs to the segment V,V,.
As H is of the second type @ ¢ V,nV,, and so H=[V,nV,,Q]. Now let
B;.; be a point in the interior of the side A4;4,,;, 1si<n—-1. If
By, By, . ..,B, remain fixed but B, approaches 4, then [B,, B;, ..., B,,]
approaches

[A4g,Bs, ..., B,, Q] = [4y,4,, ..., 4,,Q] =[VinV,Q] = H.

Therefore by 5.2 if B, is sufficiently close to 4, then [B,, B;,...,B,,¢]
is a hyperplane which intersects x, in a point B, interior to 4,4,.;
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as well as in B,, B, ..., B,. Let I(xn,) be the polygon inscribed in m,
defined as in 3.1 for the points B,, By, ..., B, ;- By 3.2 I(xn,) has order n
and so [B,, By, . .., B, ,1is a hyperplane. Therefore @ € [B,,Bs, . .., B, 1]
This hyperplane cannot be an osculating hyperplane of =z, as such
hyperplanes intersect =, only in vertices. All the osculating hyperplanes
of n, which do not belong to the segment V,V, are osculating hyper-
planes of I(z,) by 5.4, and in particular a vertex hyperplane of 7, is
likewise a vertex hyperplane of I(r,). We define H to correspond to the
vertex hyperplane [B,,B;, . ..,B, ] of I(x,) and each of the other oscu-
lating hyperplanes of =, which contains @ to correspond to the same
osculating hyperplane of I(m,). As[B,, Bs,...,B,.,] cannot be an oscu-
lating hyperplane of z, this is a one to one correspondence. Moreover
each vertex hyperplane corresponds to a vertex hyperplane while one of
the hyperplanes of the second type, namely H, corresponds to a vertex
hyperplane. By 3.2 I(r,) has order n. Hence the above process may in
turn be applied to I(x,) and then repeated until all the hyperplanes of
the two types which contain ¢ are in a one to one correspondence with
vertex hyperplanes of a polygon 7, of order n. With the construction
of 7, the proof is complete.

6. An application to curves of order n.

The symbol C, is used in this section to represent a curve in real
projective n-space which is homeomorphic to a circle of circumference of
length 1 such that no hyperplane contains more than n points of C,. Let
Q be a point of the circamference. The distance s measured along the
circumference from a fixed point in a fixed direction to ¢ determines @
and so also the homeomorphic image of @ on C,. Thus s serves as a
coordinate to define the points of C,. Accordingly the numbers s, com
puted modulo 1, will be used to designate the points of C,.

6.1 If 5,85 ..., 8y, rTepresent points on a curve C, for which
0<8,<8<...<8y, <1, and if the spaces
[81’82’ s ’Sn]5 ) [Sn(q—1)+1’8n(q—1)+2’ . "an]

all pass through the same space point @, then ¢ <mn.

Proorw. If 5,,5,, ..., 5, are distinct points of C,, then it follows from
the order of C, that [5,5,...,5,] is a hyperplane and moreover
83, 89 - - -5 8, are the only points of €, in this hyperplane. We now in-
scribe a polygon of order n in C, with vertices s;, 85, . .., 8. We may
assume ¢ > 1 for otherwise the result is trivial. It is convenient to define

Math. Scand. 6. 5
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Spg+1=35;- Bach arc of points s with s, <s<s,,; 1 =¢<ng, can be realized
in an affine space obtained by removing the hyperplane generated by n»
distinct points from the arc complementary to the arc s;<s<s,,, from
the projective space. We define the line segment s,s,,, to be the straight
line segment joining s; and s,,, in this affine space. = is now defined to
be the closed polygon with sides s;5;,,, 1 £7<nq. As ¢>1 this polygon
satisfies the dimension condition. To prove it has order » let H be any
hyperplane of the original projective n-space. If H intersects = in a
vertex s; this vertex is also a point of C,,. If it intersects z in an interior
point of side s;s,,, then as this side together with the corresponding
arcs; <s<$8;,, form a closed continuous curve within an affine space,
H must intersect the arc s; <s<s;,, at least once. Hence the number of
intersection points of H and = cannot exceed the number of intersection
points of H and C,. As C,, has order » this proves that = has order n.
The ¢ hyperplanes

[81’827 s ’sn]’ [8n+1’8n+2’ ‘e ’Szn]’ sy [sn(q—-l)+1>8n(q~1)+2’ e ’an]

are all vertex hyperplanes of z. If these all pass through a point ¢, then
by 5.5 there are at most n of them. Thus the result is proved.
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