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THE DETERMINATION OF FIELDS
OF SMALL DISCRIMINANT WITH A GIVEN SUBFIELD

H.J. GODWIN

1. In some recent papers [1][2] [3] I have developed a method for the
determination of all the fields which are of given degree and signature,
have no subfield, and have discriminants bounded by some chosen value.
In the present paper! I extend this method to the case of fields having a
given subfield other than the rational field, but before coming to this case
it may be helpful to remind the reader of the method used in the simpler
cases.

The integers of an algebraic field K of degree n can be represented as
points of a lattice #; in » dimensions: if complex numbers arise they do
so in conjugate pairs and by using their real and imaginary parts we can
ensure that %, is real. The rational integers are represented by a line of
points in ¥, and by projecting on a space orthogonal to this line we
obtain a lattice %, in n—1 dimensions every point of which, except the
origin, represents an integer of K. The determinant of %, is a simple
function of the discriminant 4 of K. For a given value of 4 we know that
an ellipsoid, centered at the origin, with a given shape and a volume
depending on 4, will contain a point of %,: from this it follows that K
(or a subfield other than the rational field) is generated by an algebraic
number which is the zero of a polynomial, the zeros (and hence the co-
efficients) of which satisfy some inequality in terms of 4. Not all polyno-
mials so obtained lead to fields with discriminants within the bound with
which we are working: it was suggested in [3] that by choosing the shape
of the ellipsoid suitably we can minimize the number of unwanted poly-
nomials which occur.

A subfield of K other than the rational field is represented by a sub-
lattice of %, of dimension greater than one: on projecting .#; on to the
space orthogonal to this we obtain a lattice .#’; and proceed with this as
we did with %, above. This is the essence of the proof of Theorem 1
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below: this gives an inequality for the zeros of a polynomial defining K
and involves the arbitrary positive numbers /;, ..., n, which determine
the shape of the ellipsoid used.

2. Notation. Let K be a field of degree N=mnv and discriminant 4,
possessing the subfield k of degree n, signature s and discriminant §. K is
generated by a zero 0 of some polynomial

D(x) = w4+l 1+ ... +1

'y )

the coefficients 4;, ..., 4, of which are integers in k. On replacing
A1, - .., A, by their conjugates in k we obtain r real polynomials

Di(x), ..., D(x)
and s pairs of complex conjugate polynomials
gjl(x)9 Y—Il(x): e ey Ts(x)ﬁ Ts(x);

the zeros of all these are 6 and its conjugates in K. Each ®;(x) will have an
even number 2s; of complex zeros, conjugate in pairs, but the zeros of the
¥’s must all be complex, since if & were a real zero of ¥;(x) it would be
a zero of ¥,(x) also, and so the conjugates of 6 in K would not all be
distinct.

Let the zeros of @;(x) be

R DI . 980 - - -5 & rits; T W) ;
and of ¥;(x) be
Vi1t 1 - yj’v+1,8j,”

where the «’s, 8’s, ¥’s and &’s are all real.

3. We now state and prove the theorem referred to above.

TaEOREM 1. There exists a polynomial @,(x) such that

1=1

7; rj+85 r N
0 < 2 {2 (Xj’iz— <2 oc],z)z/(Tj—FS])}-l-Z lyz{zlvlgj,zz}
J=1 7 7=1 =

+Jé: m? {é? ?’j,iz—(; Vj,i)z/”} +]§ ”jz{zef,i2—(§8j,i>2/”}

i=1
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é yN—-nl

lo]vs [T (r;+s,)}
j=1
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where yy_, s Hermite’s constant of order N —n (that is, the critical deter-
minant of an N —n dimensional hypersphere of radius r is rN-njyiN-m)
This polynomial @y(x) either defines K as in section 2, or is a power of a
polynomial y,(x) such that the zeros of x,(x) and its conjugates in k form a
subfield of K.

Proor. The integers of K form a lattice £ with determinant 4* which
we transform into a real lattice .#; by operating on the pair of values
&, Vjir T 485, With the matrix

( - ;‘l,. ;z,.)

and on the pair of values y; ; + i¢; ; with the matrix

(25, i)
—in;  damy
where [,, ..., n, are arbitrary positive numbers; variation of these is

equivalent to varying the shape of the ellipsoidal region in which we
shall show the existence of lattice-points. The determinant of %, is

At JT i) JT (dimym,y .
J i

We then project &, on to the N —n dimensional space orthogonal to
the space containing the integers of k, thus producing a lattice #5;. The
coordinates of a typical point of %, may be taken to be

<3 B pidsp F2,15 » v 0 Kprg MaV1,15 oo os MgV s 18115 -+ o o5 M€y s lllgl,la ) lr’ ﬂr,sr)

and we carry out the projection by operating on .#; with the orthogonal
matrix L constructed as follows. Let each of the submatrices

Ay ..oy AuTy oo Ty Ey .. E,

be an orthogonal matrix with the elements in the first row all equal.
A, is of order r;+s; and the [’s and E’s are of order ». Then L is of order
N and consists of A, ..., E; arranged diagonally, with the remaining
places on the principal diagonal (equal in number to the number of §’s)
filled with 1’s, and with zeros elsewhere. Let the set of rows of L con-
taining first rows of A,, ..., E; be denoted by R.

A point of &£ representing an integer of k is of the form

(@, o vvs @y, @y, oo vy @y, CyFT€5, o o0, Cg—1E)
each element occurring » times, and this becomes in %, the point

(@gy vy Qs Agy ooy Bpy MyCqy oo vy MCyqy My, ..., N, 0, .., 0) .
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When L operates on this set of coordinates all rows other than those in R
give zeros and so in general give the lattice ;. The first row of 4, is
(ry+s8,)"t repeated r,+s, times and so multiplies a number of k& by
(r,+5;)%. Hence the rows R give a determinant

ot ]I (3im;m;) Jf (rj+s;)vs
J=1

Jj=1

and so the determinant of the lattice %, is

det Jl/{é*lsz (3im;n;) [r{ (rj+8j)*vs}.
j= =

Now there is a point of ¥, with sum of squares of coordinates positive
and not greater than yy_,(det Z,)¥Y" and since the sum of squares of
coordinates is

é{};jaj,iz— (27 o‘j,i)z/(rj+8j)}+ ;7 ljg{.:w ﬂj,iz}+

=1 li=1 i
8 v
+ ‘21’ m,-z{%’ Yj,iz_(z ?’j,i)z/v
7= = @

the result follows.
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4. Some special cases of Theorem 1 have been proved already; in [2]
we have k=£k(1), [;=1 and in [3] we have k=k(1), N=4, r;=2, s;=1,
l,=(c/3)}. As has been stated in section 1 it was shown in [3] that a suit-
able choice of I, (and presumably, in general, of all I’s, m’s and »’s) can
improve the efficiency of the method by reducing the ratio of the largest
discriminant to be considered to the chosen bound and hence possibly the
ratio of the number of polynomials to be considered to the number which
actually yield discriminants within the chosen bound.

5. As an example of the use of Theorem 1 I prove the following spe-
cial result.

THEOREM 2. The discriminant of a totally real sextic field, having k(5%)
as a subfield, is either 300125 or is not less than 355556. Only the field
K (5%, cos(2x/7) has the discriminant 300125.

It seems likely that 300125 is the least possible value for the discrimi-
nant of a totally real sextic field.

Proor. We take, in Theorem 1, N=6, n=2, k=Fk(5%), 6=5, r=2,
r,=7,=3, and 4=2355555 and deduce that there exists a polynomial
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Px) = a® — (a+bw)x? + (c+dw)x — (e+fw)
with zeros «y;, &y, ;5 and a conjugate polynomial

Px) = 2® — (a+bd)x® + (c+dd)x — (e+fd)
with zeros oy, xgs, sy such that

2 2 2 2 2 2 2
0 < ot oge?togs® — $ogy+oxqatog3)? + dgy®+ dge® +Xga? —

3oy 4 gg + x93)% < 2H(3 - T11113)F < 40/3 .

(Throughout the proof w= (1 +5%), o=3(1—5% and a, ..., h are rational
integers.) Now

o P+ e+ og? — $(oggt ot agp)? = §(a+bw)? — 2(c+dw)
and
X%+ Kgp? + Xpg® — F(0xgy +gp + 0p3)® = 3(a+bD)? — 2(c+dd)

8o that we need

(1) 0 < 8 = 22+2b+3b2—3(2c+d) < 19.

Since all the zeros of P(x) are real we have

(2) (Z(a+bw)®—3a+bow)(c+do)+e+fow) £ H(3Ha+bw)?—c—dw)?
and similarly

(3) (Z(a+bd)®—ta+bod)c+dd)+e+fo) £ £(3(a+bd)2—c—dd)®.

Hence we must have
Ha+bw)? — c—dw > 0

and
Ha+b0)?2 — c—do > 0

whence
(4) (2c+d)/5* — 2(a+b0)%/3 5% < d < 2(a+bw)?/3 58 — (2¢+d)/5%.

We do not affect the value of S, nor, apart from possibly interchanging
conjugates, the field defined by the zeros if we add the same integer of
k(5%) to each zero, change w into & or change the signs of the zeros.
Hence we may suppose that a and b are each 1, 0 or —1, then that
b20, and finally exclude the cases a=—1, b=0 and a=—1, b=1 (be-
cause —1+@d= —w). Also if a=b=0 we may suppose that d=20 and
20, and if d=0 that ¢20, if a=1, b=0 that dz0, and if d=0 that
fz0,andif a=b=1thatd=1, and if d=1 that 2e+f=c.

For each pair of values of (a, b) we find possible values of 2¢+d from
(1), then values of d from (4) and then (e, f) from (2) and (3). Finally we
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discard all polynomials which have a linear factor x —g —hw. We are left
with the polynomials

23— —2x+1;

= (1+w)x?+(w—2)x+w;
-2+ (w—3)x— (w—2);
B—wrl—(w+2)z+w;

22— (1+w)2?+ (20 —3)r+2—-w;
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o@) = 2P — w2+ (w—3)r+w;
Pyx) = 22— w2’ +(w—3)r+w—1;
Pyx) = 2 — (1t o)+ 2w —3)z+ w;
Pyz) = 2®*— (1 +w)2?+ (2w —3)x+1;
Pio(x) = 23— w2+ (w—3)x+1;
Py(x) = 23 —3x+ 1.

The zeros of P,(x) are — 2 cos(2x/7), — 2 cos(47/T), —2 cos(6x/7), so
that we obtain the field K(5%, cos(27/7)) with diseriminant 52- 7%= 300125.
P,(x) has discriminant 58 + 11o with norm 3881, and so its zeros give a
field with discriminant 53-3881 =485125. Since

% _

Py(x) = —-C;PZ(J)(Q:—— 1)/z),
3 _

Py@) = == Py(alz-o)fe),

3
Pyx) = = Py@f),

these give the same field as P,(x). Similarly Pg(x) gives discriminant
537841 =980125, P,(x) and
(x

)
P = =P (1w 0)

give discriminant 53-7729=966125 and Py(x) gives discriminant
53-10501 =1312625. P,i(x) has discriminant 104—-36w with norm
5776=2%-192 and gives a field with discriminant 53%-2%-192=722000.
(The discriminant cannot be less than this since if so it would be at most
1-722000=180500 and would yield a polynomial for which § was less
than 2-2%-(3-36100%) =285 =16.88 ... whereas, for P (z), S is 18.)
Finally P;,(x) has zeros 2 cos(2m/9), 2 cos(4n/9) and 2 cos(8x/9) and
gives the field K(5, cos (27/9)) with discriminant 5°- 3% =820125.
This completes the proof of Theorem 2.
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