ON THE ALGEBRA GENERATED BY A CONTINUOUS FUNCTION

EBBE THUE POULSEN

Let A denote the algebra of continuous real-valued functions in the closed interval $0 \le x \le 1$. If $g \in A$ we shall let A(g) denote the closed subalgebra generated by g, that is, the set of all polynomials in g and their uniform limits.

It follows from the Stone-Weierstrass theorem (see for instance [1, p. 9]) that A(g) = A if g distinguishes points of the interval, i.e. if g is monotone. Conversely, it is clear that $A(g) \neq A$ if g does not distinguish points.

Consequently, if g distinguishes points and $f \in L^1(0, 1)$, we have that

(1)
$$\int_{0}^{1} f(x)g^{n}(x)dx = 0, \quad n = 0, 1, 2, \dots,$$

implies that f(x) = 0.

On the other hand, assume that g does not distinguish points, and let L(g) denote the closure of A(g) in $L^1(0, 1)$, then L(g) is a closed subspace of $L^1(0, 1)$, and since it is easily seen that L(g) is a proper subspace, there exists a non-zero function f, bounded and measurable in $0 \le x \le 1$, such that

$$\int_{0}^{1} f(x)g^{n}(x)dx = 0 \quad \text{for} \quad n = 0, 1, 2, \dots$$

The following question was communicated to the author by W.G. Bade (the original source is unknown to the author):

Can it happen that g does not distinguish points, but that (1) for a continuous function f implies f = 0?

The object of this paper is to construct an example that will show that the answer is affirmative.

Lemma 1. Let g be continuous in $0 \le x \le 1$, let $f \in L^1(0, 1)$, and assume that

Received June 21, 1958.

$$\int_{0}^{1} f(x)g^{n}(x)dx = 0 \quad \text{for} \quad n = 0, 1, 2 \dots$$

Let α and $\beta > \alpha$ be real numbers, and let $E = \{x \mid \alpha \leq g(x) \leq \beta\}$. Then

$$\int_E f(x) dx = 0.$$

PROOF. Let $\alpha_0 \leq y \leq \beta_0$ be the range of g. It is obviously sufficient to consider the case $\alpha_0 \leq \alpha < \beta \leq \beta_0$. In the interval $\alpha_0 \leq y \leq \beta_0$ there exists a sequence of polynomials $P_n(y)$ such that

$$P_{n}(y) \to \left\{ \begin{array}{ll} 1 & \text{ for } \alpha \, \leq \, y \, \leq \, \beta \; , \\ 0 & \text{ otherwise } , \end{array} \right.$$

and the $P_n(y)$ are uniformly bounded. Then, if we consider the sequence $f_n(x) = f(x)P_n(g(x))$, we have

$$f_n(x) \to \begin{cases} f(x) & \text{for } x \in E, \\ 0 & \text{otherwise,} \end{cases}$$

and the f_n are majorized by a summable function. Since

$$\int_{0}^{1} f_n(x) dx = 0$$

for each n, the assertion follows by Lebesgue's dominated convergence theorem.

LEMMA 2. There exists a continuous function g, monotonely increasing in $0 \le x \le \frac{1}{2}$, such that the upper right derivative of g is infinite at a dense set of points.

Proof. Such a function g is easily constructed by superposition of suitable functions.

Theorem. Let g(x) be as described in lemma 2 with g(0) = 0, $g(\frac{1}{2}) = \frac{1}{2}$, and define

Then

$$\int_{0}^{1} f(x)g^{n}(x)dx = 0, \qquad n = 0, 1, 2 \ldots,$$

for a continuous function f implies that f(x) = 0 in $0 \le x \le 1$.

PROOF. Assume that f(x) is not identically 0. By means of the continuity of f and lemma 1 we construct two intervals

$$0 \le a_1 \le x \le b_1 \le \frac{1}{2}$$
 and $\frac{1}{2} \le b_2 \le x \le a_2 \le 1$

such that $g(a_1) = g(a_2)$, $g(b_1) = g(b_2)$ and such that $f(x) \neq 0$ in both intervals. Assume for definiteness that f(x) < 0 in $a_1 \leq x \leq b_1$, then f(x) > 0 in $b_2 < x < a_2$. Now choose x_0 with $a_1 \leq x_0 < b_1$ such that the upper right derivative of g is infinite at x_0 , and let $\{x_n\}$ be a sequence of points with $x_0 < x_n \leq b_1$ such that

(2)
$$\frac{g(x_n) - g(x_0)}{x_n - x_0} \to \infty \quad \text{for} \quad n \to \infty.$$

By lemma 1 we have for each n:

$$\int_{x_0}^{x_n} f(x) dx + \int_{1-g(x_n)}^{1-g(x_0)} f(x) dx = 0$$

 \mathbf{or}

$$\int_{1-g(x_n)}^{1-g(x_0)} f(x) dx = \int_{x_0}^{x_n} |f(x)| dx.$$

Now let

$$m = \min_{b_2 \le x \le a_2} f(x), \qquad M = \max_{a_1 \le x \le b_1} |f(x)|,$$

then the above equation yields

$$m(g(x_n) - g(x_0)) \leq M(x_n - x_0),$$

which is in contradiction with (2).

The theorem follows.

REFERENCE

1. L. H. Loomis, An introduction to abstract harmonic analysis, New York, 1953.

UNIVERSITY OF CALIFORNIA, BERKELEY, U.S.A. and UNIVERSITY OF AARHUS, DENMARK