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EXISTENCE PROOFS FOR MIXED PROBLEMS
FOR HYPERBOLIC DIFFERENTIAL EQUATIONS IN
TWO INDEPENDENT VARIABLES BY MEANS
OF THE CONTINUITY METHOD

VIDAR THOMEE

The aim of this paper is to give existence proofs for mixed boundary
problems, on the one hand for a hyperbolic system of linear differential
equations of the first order in two independent variables, and on the other
hand for a linear hyperbolic differential equation of arbitrary order in
two independent variables. Existence theorems for boundary problems
of the types considered in this paper have been given previously by
Campbell and Robinson [1] by means of Picard’s iteration method. Our
fundamental tool will be a priori inequalities for these types of boundary
problems, which have been obtained in [13].

In the theory of hyperbolic differential equations a priori estimates,
or estimates of the Friedrichs-Lewy [4] type, as they often are called
here, have proved to be an efficient tool for existence proofs in boundary
problems. Thus, for Cauchy’s problem estimates of this type have been
used in existence proofs by Schauder [11], Petrovskii [10], Friedrichs [2],
Leray [9], Lax [8], and Garding [5], and for mixed problems for a hyper-
bolic second order equation Krzyzanski and Schauder [6] used a priori
estimates to prove the existence of solutions.

In the papers quoted above different methods have been added to
supplement the a priori inequalities. In some of the papers, for instance,
it turned out that if it is possible to solve the problem in the special case
of analytic coefficients and boundary data, which in the case of Cauchy’s
problem is granted by the Cauchy-Kovalevsky theorem, it is possible to
derive results also for the non-analytic case. The method in this paper
is also to reduce the problem to a special case, and from this to derive
the general result by means of the continuity method.

The continuity method consists in considering a family of operators
A* (02 =1) such that A! is the operator, for which we want to prove
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the existence of an inverse, and A° is known to have an inverse. The
proof is then obtained by means of a continuous variation of the para-
meter A. In the theory of partial differential equations this method for
existence proofs has been frequently used for non-linear equations. For
linear elliptic and parabolic differential equations it has for instance been
used by LadyZenskaya [7] [14].

By using normed spaces, in which the norms in addition to the ordinary
L2-norms contain L2-norms of the boundary values, it is possible to reduce
the general boundary problem for the first order system to the Cauchy
problem for first order equations with only one dependent variable each.
Further it is possible to reduce the boundary problem for the n™* order
equation to a special boundary problem for a special nt" order equation.
Then this special equation is reduced to a simple first order system.

In the reduction of the n'® order equation to a first order system, we
use some results from the differential calculus in L2, In order to facilitate
the reading, these results have been given in a separate part. One of
these results is the identity between the classes of functions, which are
n times differentiable in L?(V) in the strong and weak senses, respect-
ively, where V has a sufficiently smooth boundary. Similar results have
been given previously by Friedrichs [3] and Sobolev [12], but their results
are valid only for functions vanishing at the boundary of V.

The plan of the paper is the following.

In Part I we treat the differential calculus in L2. In Section I.1 the
identity between weak and strong derivatives in a region with a suffi-
ciently smooth boundary is proved. Since the proof is the same in E™
as in R?, we have given the proof in B™ although we only need the result
in the case m =2. In Section 1.2 we discuss the simultaneous integrability
of the equations

o\*1 /0 \nF
(5;) (a'_> U = Wy, k:l,._"n.
x

In Part IT we treat the mixed boundary problem for the hyperbolic
first order system. In Section IT.1 we introduce notations and formulate
the boundary problem. In Section II.2 the problem is reduced to the
form Lu=F, where L is an operator from one Hilbert space to another.
The main result is formulated in Theorem II.1, which states that the
boundary problem for arbitrary boundary data has a strong solution.
Here we also introduce a family of auxiliary operators LY(0<1<1) with
L1=L. This family is investigated in Section II.3 and there we also
obtain the solvability of the equation L% =F. Throughout this section
the estimates obtained in [13] are fundamental. In Section 1I.4 the
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proof of Theorem II.1 is completed. In Section II.5 we obtain estimates
for higher order derivatives analogous to those in [13]. In Section II.6
these results are used to derive a result corresponding to Theorem II.1
for a special system with stronger regularity assumptions, which will be
needed in Part III.

In Part III we treat the mixed boundary problem for a hyperbolic
equation of arbitrary order. Section III.1 is analogous to Section II.1
and in Section I1I.2 the problem is given an abstract form and is written
as an equation Mu=G. The main result is formulated in Theorem III.1,
which states that the boundary problem for arbitrary boundary data
has a strong solution. The proof uses a family M(0<1<1) of axiliary
operators such that M!=M and is analogous to the proof of Theorem II.1.
The existence of solutions of the equation M% =G, which is assumed in
Section II1.2, is proved in Section I1I1.3. For the sake of completeness,
we state in Section I1I.4 the estimates for the higher order derivatives,
corresponding to those in Section II.5.

The notations in this paper coincide with the notations in the paper
[18]. Therefore Sections II.1 and III.1 have been condensed, and the
reader is referred to [13] for details.

I wish to express my gratitude to Professor Lars Hérmander for several
inspiring discussions on the subject of this paper.

I. Some results from the differential calculus in L*(V).

I.1. Weak and strong derivatives. Let V be a bounded region in the
m-dimensional euclidean space R™. We denote by L* V) the set of real-
valued functions w(x)=wu(z,, ..., z,), which are square integrable in
Lebesgue’s sense in V and define

3
lull = Huzdx} ,
‘.‘7

where dx is the element of volume in B™.

Let C™(V) be the set of functions, which are n times continuously diffe-
rentiable in ¥ and correspondingly for the closure V of V. We denote by
p the m-tuple (p,, ..., p,) of non-negative integers and |p| =27, p, and

write
0 \P1 0 Pm
Dry =(—) ...(—
“ (8901) (&vm) “

We shall recall two definitions of the derivatives of functions in L3(V).
We say that ue L%(V) has a weak derivative DPu=u,cL*V) of order
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|p| if for every y(x)eC'?I(V), which vanishes outside a compact subset
of V, we have

(L1.1) Sup(x) p(@)de = (= 1)k g u(x) D p(e)da .
14 v
For the weak derivatives we have the following

Lemma I.1. Assume that v has a weak derivative DP'uc L3 V) and that
DPu has a weak derivative DP*(DP'u)e L*(V). Then u has a weak derivative
DPriPeye LA(V), and DPYP2y = DP2(DP1y).

Proor. Let y(x)eC'P*P2(V) be an arbitrary function which vanishes
outside a compact subset of V. Then by repeated use of the definition
of weak derivatives we have

gu(x)DPI‘Lpztp(x)dx - Su(x)D”leq)(x)dx

14 14

— (—1)n S DPru(z) DPy(x) d
14
= (—1)pripal S DP*(DPru(x))y(x)de
14

which proves Lemma I.1.

We say that ue L%(V) has a strong derivative DPu =u,eL* V) of order
|p| if there exists a sequence of functions u*eC?|(V) (u=1, 2, ...) such
that

(L.1.2) Jur—wul|—->0 and [|DPut—uyl—-0 when u-—>oo.

We shall be concerned with two corresponding extensions of C*(V),
namely the sets L,,>?(V) and L27*(V) of functions in L3(V) for which all
derivatives DPu, |p| < n, exist in the weak and strong sense, respectively,
and belong to L3(V). It is obvious that

LEMY) € La™(V).

In fact, let u be an arbitrary function in L,27(V) and let p be an arbitrary
m-tuple with |p| <n. Then DPy =u, exists in the strong sense, and there
is a sequence of functions weC?(V) (u=1,2, ...) satisfying (I.1.2).
After an integration by parts, we get for every y(x)eC?I(V), which
vanishes outside a compact subset of V

(L1.3) S Drus(@)p(@)de = (—1)Pl gu/‘(x)Dpzp(x)dx .
v v

Making 4 — oo in (1.1.3) we obtain (I.1.1) from (I.1.2).
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Our purpose is to prove that, if the boundary S of V is sufficiently
regular, the sets L,>™(V) and L2™(V) coincide. We therefore make the
following assumption concerning the boundary § of V (cf. fig. 1):

(R) There exists a continuously turning direction ;(P) defined on S, which
points to the interior of V, and an angle 0, such that at an arbitrary
point P of S, the double cone with vertex P, the axis along ?(P) and
top angle 0, in a neighbourhood of P has only P in common with S.

Fig. 1. Fig. 2.

We can now state our result.

TuaeoreEM 1.1. If V has the property (R), the sets L,>™(V) and L2™V)
cotncide, that is the set of functions which have weak derivatives tn L*(V) of
all orders Zn equals the set of functions which have strong derivatives in
L2(V) of all orders <n. Further, for every weL, >»™(V)=L2"V) there

exists a sequence ureC™(V) (u=1, 2, ...) such that for all |p|=n
Dryr — DPy  when  p—>oo.

In the proof we first assume that V has the following property

(cf. fig. 2):

(R') V s star-shaped with respect to a point O in V, and such that every
point P of the boundary S is the vertex of a cone with OP as its axis
and with a constant top angle 6’. This cone has in a neighbourhood of
P only P in common with S.

The region V is said to be star-shaped with respect to the point O in

V if for @ in V all points on the segment 0@ belong to V. In what fol-

lows, O is supposed to be the origin in E™.
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If V has the property (R’), there exists a constant g such that if ¢ is
small enough, then for every xzeV the sphere with centre x(1—¢) and
radius ge is entirely in V.

Let ¢(z) be a positive, infinitely differentiable function with its support
in the unit sphere and with |

S(p(x)dx =1.
Rm

For ue L?(V) we then define a modified mollifier operator J.,

1 ¢ z(l—¢)—y —
Jou(e) = —— \ uly) ¢<-———) &y, xeT.
(0e)™ i Q¢
Here the integrand is non-vanishing only for such points y that
ly—x(1 —¢)| < g¢, that is, in a sphere lying entirely in V. J u(x) is in
C™(V) for any n and the differentiation of J u(z) may be performed under
the integral sign. Further, one can prove that

Jau—u in L¥V) when ¢—0.

The proof of this fact is analogous to the proof in [3] and [12] of the
corresponding result for the ordinary mollifier operator J,,

1

(I.1.4) J (@) = — g w() ¢<x —Y

)dy, zelV.

em

We now suppose that ueL,2™(V). The weak derivatives DPu=u,
then exist and belong to L(V) for all |p| <n. We shall prove that u, is
the strong derivative DPu for |p|<mn, too. More precisely, we shall
prove that for all |p|<n

DrJ oy —wu, in LXV) when &-0.

We obtain
Do _ b p T8 Y
Jau) = S u D2 g2 ay
_ (=gl TV N ol Skt
= _(ge)’" Sfu(y)( ni?l D, q)( ot ) dy .

According to the definition (I.1.1) of a weak derivative, and since
x(l—e)—y
()
o

vanishes in the neighbourhood of § if x€ ¥, we obtain
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_ D — —_
DrJ u(x) = (1=¢)l7 g u,(y) <P('7~C~(—l-—f—)— *y—> dy = (L—&)P1J uy () .
(o)™ ) o
But J u, - u,in L¥V) when ¢ — 0, and hence D?J u= (1 —¢)?lJ u, - u,
in L*(V) when ¢ -~ 0. Theorem I.1 is therefore proved for this special
shape of the region.

We now turn to the general case. We first prove that there is a covering
of V by means of a finite number of open sets O, (i=1, ..., N) such that
0,nV has the property (R’).

An arbitrary point P of S can be considered as the vertex of a double

cone, with its axis along -fv)(P) and with top angle 0. If this cone is sub-

mitted to a sufficiently small translation in the direction of Z(P), the
open component of V defined by the translated cone, having P on its
boundary, gives after a suitable similarity transformation with respect
to the translated vertex an open set
whose intersection with V has the (P)
property (R’) if O is a point on the
axis sufficiently close to the trans-
lated vertex (cf. fig. 3). If we com-
plete this covering of S by means of
a covering of V consisting of spherical
open neighbourhoods of the points
of V, we get an open covering of V.
Now V is a compact set in ™ and
we can thus find a finite sub-
covering UYN 0, such that O,nV
(¢=1,...,N) have the property (R’').
Now suppose that ue L,,%*(V).Then
ueL,2"(0;nV) for i=1, ..., N and there is a sequence u#cC™"(0;,nV)
such that

Dryp — Dry  in L2O,nV)  when p-—>co

and |p|<n. Let hyx) (¢=1, ..., N) be functions in C"(R™) vanishing
outside O, and such that XY  h(x)=1 for all  in V. We construct the
sequence

N
w (@) = ' hy(x)us(x), w=12 ....
=1

Tt is easily seen that w* —u in L*V), and observing that XY , Dk (x)=0
(0<|p| =), we also get DPur — DPu in L*V). This proves Theorem I.1
in the general case.

In Part ITT we shall restrict ourselves to regions ¥ having the property
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(R). According to Theorem I.1 there is then no reason to distinguish

between weak and strong derivatives and we shall simply write genera-

lized derivatives. The set L,2™(V)=L2™(V) will be denoted by L>*(V).
We end this section by stating the following well-known

Lemma 1.2. A functton weL®™(V) with DPu=0 for |p|=n is a poly-
nomial of degree <n-—1.

REMARK. Sobolev states in [12], p. 494, that for ue L, >™(V) the or-
dinary mollifier J,, defined in (I.1.4), has the property D?J u —~ DPu in
L3(V) for all |p|<n and ¢ -~ 0. This is, however, not true in general for
a bounded region V if u does not vanish in the neighbourhood of §,
which is easily seen by examples.

1.2. The simultaneous integrability of the equations D"u:w,,, Ip| =
n—1. In this section we assume that V is a simply connected region in
the at-plane having the property (R) in Section I.1. We have the follow-

ing

TrEorEM 1.2. Assume that wy, ..., w, are n functions in L>Y(V) such

that
0 0
BT g

Then there exists a function weL>™(V) such that

2 i—1 ) n—1i
(8_t> (8—> u=w, 1=1...,n.
x

The function w is uniquely determined wp to an arbitrary additive poly-
nomial of degree <m— 2.

Jor =2, ...,n.

The theorem is an easy consequence of Lemma I.1, Lemma 1.2, and
the following

Lemma 1.3. Assume that w, and w, are two functions in L>Y(V) such
that 5 3

"a—t w, = —Z;v Wy .«
Then there exists a function we L®2(V) such that

ou ou
= Y and »a—£=wt.

T

The function w is uniquely determined wp to an arbitrary additive constant.
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In the case of three dimensions the corresponding result follows from
Theorem II in Weyl’s famous paper [15]. Also in the case of two dimen-
sions the result follows from the paper quoted after obvious modifica-
tions. Since V satisfies the regularity assumption (E), we see that w,
itself, and not only its derivatives, belongs to L3(V).

II. The hyperbolic first order system.

I1.1. Notations and preliminaries. Let C,/(V) (i=0,1,...;m=1,2,...)
be the set of real-valued vectors u:(ul(:c, 1), ..., u,le, t)), which are 7
times continuously differentiable in the closure ' of a simply connected
region V in the x¢-plane. For m =1, we shall usually omit the lower index
and write Ci(V).

For weC,1(V) the equations

n
Liu = (Dt"“OCti)ui‘l‘ Zaikuk’ 1 = 1, R /4
k=1

(D,=0/ot, D,=0[ox), where x,eCYV) and a;eC%V) define a linear

hyperbolic operator
P P Lu = (L, ..., Lu)

from O, }(V) to C,%V). For the sake of simplicity, we assume that
oA P . SN
The boundary S of V is supposed to be piece-wise smooth, and S,

(¢=0, ..., N) stands for the set of points of S at which ¢ of the numbers
v,—ove (k=1,...,7n) are <0. Here »r= ¢
(ve, v,) is the exterior normal of S. The g "
parts of §; on which v, is negative and 0 gl
positive are denoted by S,” and S,;", respec- _ Sy
tively (cf.fig. 4). The endpoints of S,7, S;" 8y
and 9, are included in these sets so that S j
they are all closed sets. We write S,

S =8 US, UL U S, Ss .
and St = Sl+ U S2+ U...u Sn~1+ Fig. 4 (n=3).

and make the following assumptions about the boundary §:

(a) 8~ has a positive distance to S*;

(b) infgly, —axw ] >0, i=1,...,n;

(¢) the interior angle between the two tangents to S at a point be-
longing to two sets S; is <.
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Let C,48,) (¢=0,...; m=1,...; k=0, ...,n) be the set of real-
valued vectors u= (ul(s), Cee, um(s)), which are ¢ times continuously
differentiable with respect to the arc length s on §;. For m=1 we shall
usually omit the lower index and write Ci(S,). For ue(,%V) the equa-
tions

lik(u) = lik(ul’ vees un) = 2 likjuj’ k= 1; sy ) 5
j=1
where 1;,7eC(S,) define a boundary operator

liu = (lﬂ(’u,), e e ey l.u(u))
from C,%V) to C,2(S;). About the linear forms ,,(u) we assume that

L 1.2 ... I,

1 0 =0 on 8
l,iil ----------- liii

and
A A A L I L

(IL1.2) | e +0 on S;F.
L2 L

In fact, in the sequel we only need ,,7e C1(8;) for the coefficients occurring
in (IL.1.1) and (II.1.2). For the others we only need [,7€C(S,). For

Pt
weC V), Lu = (Lu, lu, ..., 1lu)

defines a linear operator from C,(V) to the direct sum C°(V,S)=
(CAT), CL8y), - .., C28,)).

The boundary problem to be treated in this part is to solve the equa-
tion Lu=F.

I1.2. Abstract formulation of the boundary problem. For vectors
ueC,(V) we define a norm by

lully = “ Su2dV o+ S _)_:’ufdsr.
i/' i=1 ,'S’ =1
Here dV is the euclidean measure in V and ds is the element of arc on S.
Let o, be the Hilbert space obtained by completing C, % V) with respect
to this norm.
For the elements F=(F,f,, ...,f,)eCV,8) (F=(F,, ..., F,), fi=
(fia> - - +» J3:)) we define a norm by

3

{ 2 Feav + 2\2 i

V=1

IFlly = {
v
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and let 57, be the Hilbert space obtained by completing C°(V, §) with
respect to this norm.

We now consider L as an operator from #; to S, with domain
D(L)=C,(V) and with range R(L)<C%V, 8). An operator from #; to
Hy is called pre-closed, if it has closed extensions. It is well known that
a linear operator P from J#, to 5, is pre-closed if and only if

w0 in #, p=12 ...,

and Pur - F in 2, when pu->o
implies F=0.
Lemvwma I1.1. The operator L is pre-closed.
Proor. Let u*=(us#, ..., u,*) be a sequence of vectors in C,}(V) such
that
(IL.2.1) llusll; = 0 when u4 —> oo
and
(I1.2.2) [[Lut — Flly > 0 when p— oo,

We shall prove that F=0. In virtue of (I1.2.1), we have

g D (ug)?ds -0  when u-—>oo,
JiT

and hence

n i n %
Zg 2 (Lyw) —fye)ds 92:8 D falds  when p—oco.
=1 g k=1 =1y k=1
Compared with (I1.2.2) this implies f;,=0 for k=1, ...,¢;i=1,...,n.
It remains to prove that F;=0 for i=1, ..., n. Let ¢ be an arbitrary

function in C(V) which vanishes outside a compact subset of V and
consider

gL@u/‘(pdV =
4

< —s

{(Dt—Dz“i)uz”+ui"Dx0‘i +2 “ik“k"} pdV.
=1

After an integration by parts we get

Lo g @V = (=D =D+ D 3 a4V ~ 0
. ) k=1
14 14

when u — oo, because (I1.2.1) implies

n
gz (u#)2dV -0 when p-—>oo.
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Thus
SF,iq)dV -0,
14

and ¢ being arbitrary we conclude that F,=0.
Let L be the closure of L. The main result in Part II is the following

TuroreM I1.1. The equation Lu=F has a unique solution uw=L-1Fe#,
for every Fef, and —
IL-2Fliy = CliFly,
where C is a constant independent of F.

Here, and in what follows, C means a positive constant independent
of the particular elements in the Hilbert spaces considered, but it does
not always mean the same constant even during the course of a proof.
When necessary, we distinguish between different constants by using
subscripts.

In the proof, which will be postponed to Section 11.4, we shall use a
family of operators LA(0 <2 <1) defined in D(L*)=C, (V) by

Vu = (LA, L u, ..., L ),
where LAy = (Lyu, ..., L,*u) with
Liuw = (D= D)u; + 2 3 aguy,
=1

and lru= (I (w), ..., l;/(w)) with

7

lyM(u) = 2 Ladw; + A 2,’ L wg on S;-

J=1 J=1+1
and
n—i
27 Ll u; +22lzku on S;t.

J=n—i+1

The operator L* thus defined is an operator of the same kind as L and
coincides for A=1 with L. For 1=0, however, L° only contains the prin-
cipal part of L and the boundary forms only contain those coefficients
which occur in conditions (I1.1.1) and (IL.1.2). From the definition of L4
we get the formula

(I1.2.3) L* = L + (A—24y)(Lt—L?)
for all 2 and A,

To solve the equation L% = F is equivalent to solving the system
(II.2.4) (Dl——lel)x)ui = Fi

with the boundary conditions
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| .

(II.2.5) ! likjuj = f’l:k" k = ]., “ ey 'b‘, on S’l:_
j=1
and
(II.2.6) 2 l,l:kjuj = fik, k = 1, ooy 7:, on Si+ .
j=n—i+l

Because of the conditions (II.1.1) and (I1.1.2) and the definition of S,,
this is equivalent to solving each of the equations (IL.2.4) when u, is
given on the part of § where »,—«x;».<0. This is, however, Cauchy’s
problem for each of the equations (I1.2.4). From the elementary theory
of Cauchy’s problem, it is therefore possible to obtain the solvability of
the equation L% = F.

The idea in the proof is to derive the results for the equation Lu=F
from the results for LOu=F by means of a continuous variation of the
parameter 2. For the proof we deduce in Section I1.3 some lemmas.

11.3. Some lemmas.

Lemma I1.2. The operator L1 — L° is bounded, that is, there is a constant
C, independent of w such that

(L= L%ull, < Cylull, weC,XV).

The proof is trivial.

Lemma I1.3. There is a constant C, independent of w and A such that
flul, < Oyliliull, weCNV).

Proor. According to Theorem I in [13] there is for every 4, 0<1=<1,
a constant C(A) such that [ull; £ C(4)||LAul, for all ueC,X V). Put
ILA |
— =)
weCpl (V) [leelly
Then g(A)>0 for 011, and we shall prove that g(1) has a positive
lower bound. This will follow if we can prove that g(1) is a continuous
function of 2 in the interval 0<A< 1. Let 4, be an arbitrary point with
0<%, =1 and &> 0 an arbitrary number. Choose 6 =¢/C; where (| is the
constant in Lemma I1.2. We then have for [1—1y| <6 (cf. (I1.2.3))

[Loull,—ellull, < Ll £ IL%ully+ellull ,
that is,
L], - L ), - (| Lo Iy

& = =
llelly reelly lleelly

and hence ¢g(1,) —¢ = g(1) £g(4,) +¢ which proves the assertion.

Math. Scand. 6. 2
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Levma I1.4. R(L%) equals the closure R(L%) of R(L%.
Proor. It follows from the definition of L* that R(L}) < R(L%). It

remains to prove the opposite inclusion. Suppose that FeR(L*). Then

there exists a sequence u* (u=1, 2, .. .) of elements in C,1(V) such that
[L*w*— Flly - 0

when py — oo, According to Lemma I1.3 we have

lu —wlly £ Cyliltu” — L'u’lly - 0

when x4 and v — co. Thus w* converges to an element u e 5#;, and
L*u=F.

Lemma I1.5. Assume that R(L)=3#,. Then
<

L™ Flly £ CyliFll,, Fedf,,

and o
L (LI —LYul, £ Cyluly, weHy,

where C3=C,Cy and C, and C, are the constants tn Lemma 11.2 and Lemma
I1.3.

Proor. If F belongs to R(L%), the first statement follows at once from
Lemma II1.3. For a general F it then follows from the continuity of the
norms. The second statement then follows from Lemma II.2.

Lemma I1.6. R(LO)=27,, that is, the equation LOu=F has a unique
solution we ', for every FeH,.

Proor. According to Lemma II.4, we need only prove that L'»=F
has a solution for every F=(F, f,, ..., f,) in a set which is dense in J#,.
As we already observed in Section II.2, solving the equation L% =F is
equivalent to solving Cauchy’s problem for each of the equations (I1.2.4).
The initial curves for these equations, which according to condition (¢)
are connected, consist of a finite number of smooth arcs. Now if FeC,}(V)
and f,eC(S;) (i=1, ..., n) and certain compatibility relations are ful-
filled in the endpoints of these arcs, then we can find uweC,}(V) such
that L% =F. We shall discuss these compatibility relations in some
detail.

According to conditions (I1I.1.1) and (II.1.2), the boundary conditions
(I1.2.5) and (I1.2.6) are, as already observed, equivalent to

we =fu, k=1...,4 on 8;-
and
w = fu's k=mn—-i+1, ..., on 8+
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where f;;’ are certain linear combinations of f,;(j=1,...,4). In order to
ensure the continuity of w, in V, the functions f;;, must be such that in
the points belonging to two of the sets 3,, u,;, gets the same value. This
gives in every such point one linear relation between the f;; for each of
the u,; which are given on both sets ;. If the sets are §; and §, and
t<k, we thus have 7 linear relations between the f;;(j=1, ...,%) and
fi(7=1, ..., k). In order to ensure the continuity of the derivatives of
such a wu,, we must have one more condition in the same point, for
(I1.2.5) (or (I1.2.6)) gives the derivatives of u, in two directions and
(11.2.4) gives the derivative of u, in a third direction. In order to make
these conditions consistent, we have therefore to impose one linear rela-
tion between the f;;, their derivatives with respect to the arc length on S
and F;, in the point in question. Obviously, these regularity and com-
patibility assumptions on F are also sufficient to ensure the existence of
a solution in C,}(V) of the equation L% = F. The set of these F is, how-
ever, dense in J,, since point-wise conditions are non-essential when
completing in the 5 ,-norm. This proves Lemma II1.6.

I1.4. Proof of Theorem II.1. In this section we shall prove that the
equation Lu =LTu=F has a solution ue#, for every Fe.#,. Combined
with Lemma 1.5 this proves Theorem II.1.

For the proof we consider the equation

(11.4.1) Liw = F.
From (II.2.3) and Lemma IIL.2 it follows that
L7 = [h 4 (A—2)(LT—19).
Equation (11.4.1) can therefore be written
(I1.4.2) Low + (A=) (LT —L%u = F.
Now assume that we already know that R(L%)=",. A solution of
(11.4.3) U+ (A—2g) Lo (LT —L0)u = L' F

is then also a solution of (I1.4.2) and therefore a solution of (I1.4.1) as

well. Let |A— 4| <0 <1/C, where C; is the constant in Lemma I1.6. With
B = (A-2)l»(L1-L% and ¢ = La'F,

(II.4.3) may be written

(I1.4.4) u + Bu =g.
Here

2%
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IBll, = su p”[ [||1< A2y < 1.

H1 | |1
The Neumann series

OF

u = (—B)g

k

[
S

is then a solution to equation (11.4.4).

We have thus proved that if R(LM)=u,¢, and |A—1j<p, then
R(L})=4,. Combined with the fact, proved in Lemma II.6, that
R(L%) =#,, this gives in a finite number of steps that R(LT)= #,.

I1.5. Estimates for the higher order derivatives. In this section we
shall extend the fundamental estimate, which is the essential tool in the
existence proof above, to the higher order derivatives. Let ¢ be an
arbitrary positive integer. For ue(C,%(V) we define

0 n %
”u”R(Q) = {\2 2 (Dpul)zdR} ’ R = V,}S’ 3
pi=llrl=g¢
(1’= (Pp Pz); |P|=p,+Py; DP =D D ?), and for
Fe CuV,8) = (CAV), C148y). ..., C,98,))

we define

(IL5.1)  |Flly @

n n n e 4 3
(3 sorpar+ (3 orpas+ S0 5 syl
vi=1lplsq ri=1lpl=g-1 i=1 $; 7=1 l=q

Here D, stands for differentiation with respect to the arc length on §.
In (I1.5.1) the term

\ 33 (DvFeds

o g < g—
g =t Ipl =g-1

is immaterial since it can be estimated by means of the term

§~ > X (DPF AV .
=1 Ipl=q

This will, however, not be used in the sequel. Now let k be a fixed positve
integer and assume that the boundary pieces S; (i=1, ..., n) are k times
continuously differentiable, that is, ve C,¥-1(8S;), and that L satisfies the
following differentiability assumptions, namely

oy € CFHY( 17), a;; € C*( 7)7 lie Ok(si) .
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If <k, L can be considered as an operator from C,2+1(¥V) to C«(V, S)
and we have the following

TuroreM I1.2. There s a constant C such that

(I1.5.2) lulp® < Clluly §@, R=7V,8,

for all ueC,9*(V) and q £ k.

Proor. We accomplish the proof by induction, noting that (11.5.2)
for ¢=0 reduces to the inequalities (1.6) and (1.7) in [13]. Now suppose
that the inequalities (IL.5.2) are already proved for the integer ¢ <k.
We shall then prove that they are valid also for ¢+ 1.

We consider D u;. On S; there exist functions 47 and BieC*-1(S,)
such that

(I1.5.3) Du; = AiDau; + BI(Dy—ox;D)u;  on S

with 474 0; for Da; and (1 +ocj2)“5(D,—<x]-Dx)uj are in virtue of condi-
tion (b) derivatives of u; in two different directions.

We consider an auxiliary operator L' of the same kind as L but with
slightly modified coefficients, namely,

(I1.5.4) ay; =ay for @ +1,
ay = ay—Dyx;,
Vg = lizj/Aj'

The operator L’ then satisfies all assumptions made on the operator L in
Section 1I.1 and has the same regularity properties as L. In particular
(11.1.1) and (I1.1.2) follow easily from the corresponding conditions for L.

Let ue(C,9+2(V). Then

D,u = (Dyuy, ..., Dyu,) e C,aY(V)
and we get from the induction assumption
(I1.5.5) 1D,ulig® = CIL'D,ully &9 .

After a simple computation, we get from (II1.5.3) and (IL.5.4)

LD, = D, Lo — > (Dya,)uy,

k=1

L/ (Dyu) = Dlg(u) + X' fud Liw + X galw;,
Jj=1 J=1

where f;;7 and g, /e C*-1(S,). This gives

”L/Dacu”V,S(Q) < C”Lu”V,S(q+1>



22 VIDAR THOMEE

and with (I1.5.5)
(11.5.6) IDulz@ < CllLully, @tV .
From "
Dyu; = o;Dyu; —1227 .y, + L;u
-1

and (I1.5.6) it follows that

HDNHR@ < OHLU’”V,S(q+1)
and using the assumptions (11.5.2) and (I1.5.5) it follows that

”u”R(q+1) hS O”Lu”V,s(qul) .

I1.6. An auxiliary result. In this section we assume that the coeffi-
cients in the operator L satisfy somewhat stronger regularity conditions
than i Sections 11.1-II.4, namely,

a; € OV), ageCV), IyfeC¥S,).

Further we assume that the boundary forms /;,(u) like /,,%(u) in Lemma
I1.6 only contain the coefficients occurring in conditions (II.1.1) and
(I1.1.2). For F in the equation Lwu=F it is then possible, just as in the
proof of Lemma II.6, to give compatibility relations, necessary in order
that u, be continuous in the points of the boundary which belong to two
of the sets S;. If a point belongs to S; and S, and ¢ <k, we thus have ¢
linear relations between the f;; (j=1, ...,4) and f;; (j=1, ..., k) in that
point. Let CY(V, 8)* be the set of FeCY(V, 8) satisfying these compat-
ibility relations and define for FeCY(V, 8)*

(I1.6.1) IFle" = IFlp, gP

(cf. Section I1.5). Let 5#," be the Hilbert space obtained by completing
CY(V,S)" with respect to the norm (I1.6.1). The Hilbert space #,"
depends essentially on the compatibility relations, and by completing
CYV,S), we would have obtained a larger Hilbert space than #,".
Let 5, be the Hilbert space obtained by completing C,X(V) with respect

to the norm
Tt = {(lellp®)2 + (ullg®)2E

Because |[ully®< |jull;" it follows that the components of an element
u=(Uy, ..., U,)€H " have strong derivatives in L* V). (The norms
lull,* and |lull,® are, in fact, equivalent). Because

IFl, < IFl," for  FeCYV,8)",
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H#," can be considered as a subset of #,. It follows from the proof of
Lemma I1.6 that CX(V, 8)* is dense in 2#’,. Therefore, so is #,".

Let L* be the restriction of L to C,2(V). Then L can be considered as
an operator from ;" to #,", and is then pre-closed. For

IL*u“—Fll," -0  when u - oo
implies
ILu” — F”2 -0 when U — oo
and the statement follows from Lemma II.1. If the closure of L% is
denoted by L™ we obtain

TarorEM I1.3. The equation
Ltu = F

has a unique solution we #," for every Fest,".

The proof is analogous to the proof of Theorem II.1, and we shall only
point out a few details.

Firstly, if we introduce the family (L*)* defined in the same way as L?
above, then a change in 1 does not imply any change in the boundary
forms. Therefore

(LYueO(V,8)" for ueCXV)

independently of 1. Further, (L*)!—(L*)° only contains the lower order
terms of the differential operator and is easily seen to be a bounded
operator from J#," to o#,".

Secondly, the a priori estimate needed is contained in Theorem II.2 for
k=1.

Observe, that in order to solve the equation (L*)’u= F we have to give
stronger compatibility relations than in the proof of Lemma I1.6, for we
want the solution to be in C,%(V). It does not, however, present any
difficulties to find a set of such F which is dense in #,".

II1. The hyperbolic equation of order n.

III.1. Notations and preliminaries. Suppose that

Mu = > a,D?u, ueC™V),
Ipl=n

with a,eC%V) for |p| =n and a,eC%V) for |p| <n defines a linear hyper-
bolic differential operator from C"(¥) to C%(V). The characteristic form
associated with M is then, if a(, =1
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n
2 ay it = [ (v )
i=1

Ipl=n
with a,eC2(V). We assume that o; <oy < ... <x,.
This characteristic form gives rise to the same division of the boundary
S of V as in Part II. We assume again that the boundary is piece-wise
smooth and satisfies conditions (a), (b) and (c) (see p. 13). Further, we
assume that

(d) 8, and S,, do not have a common tangent tn a possible common point.

Together with conditions (a) and (b), condition (d) implies that V satis-
fies condition (R) in Part I. It will therefore be possible to apply the
results of Part I for the region V.

On 8, (¢=1,...,n—1) we define a boundary operator mmu=
(myy(w), ..., my(u)) from CnYV) to C,2S,), the components of which
are linear forms in DPu (|p| < n— 1) with coefficients in C*(S,) for |p|=n—1
and in C%S8,) for |p| <n—1, namely

mi(w) = X' my, , DPu .
Ipl =n—1

On 8,, we put

my(w) = DFIDr%y, k=1,...,n, wueCrYV),
and m,u=(m,y(«), ..., M,,(w)). Thus m,u is an operator from C*-1(7)
to C,°%(8,). On S, we do not only give the derivatives of « of order n—1
but also the totality of derivatives of lower order and we put

w,u = (DPu; |p] < n—1).

Of course 7, u is uniquely determined on the connected set S, (cf. condi-
tion (c)) by m,u up to integration constants by means of integration with
respect to the arc length. We consider #%,u as an operator from C*-1(V)

to the set C(S,,) of restrictions to 8, of arrays
(Go = D?§; Ipl < n—1, e CnY(T)).
We introduce » differential operators
M,':u = Zbithk_lDwn—'ku
=1

with the characteristic forms

2 byt ek = [T (1-o;8) .

k=1 =
These n polynomials constitute a basis for all homogeneous polynomials
in £ and 7 of degree n — 1. The inverse matrix (c;;) of () is given by
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Cifp = ‘xki—lﬂ (o —oxy)~t

J*E
(cf. [13, p. 105]) and we have

DiiD "ty = X' ey Myu .
k=1
The principal part of the operator m,(u) can then be expressed by
means of M u (k=1, ..., n) and we obtain
n

2 my ,DPu = Y myiMu .

lpl=n—1 J=1

About the linear operators m,,(4) we now assume that

(III.1.1) myt cemyt
.............. + 0 on 8,7
My . miii

and

(I1I1.1.2) my" L L ™
.............. + 0 on S8;".
m n—i+1 mz‘in

For ¢=n this follows from the definition of m,,(u). An alternative for-
mulation of these conditions can be found in [13], pp. 1061f.
The different operators considered can be condensed into

My = (Mu, mu, ..., mu, m,u),
which defines a linear operator from (V) to the set 6’0(7, S) of elements

G = (G’ J15 « -5 9ns gn)
where GeC%V), g,=(Ji1> - - -» 9::)€C2S;) (=1, ..., n) and

gn = G, = D?§; |p| < n—1)eC(S,)
and where
DE-1p kg =g k=1 ...,n, on 8,.

The boundary problem to be treated in this part is to solve the equation
Mu =G.

Observe that in this part we have made stronger regularity assumptions
for the coefficients of M than for the corresponding coefficients of the
operator L in Theorem II.1. We have done so in order to be able to use
Theorem I1.3 in the proof of Lemma II1.6. The assumption m; /e C¥S,)
can be weakened a little. In fact we only use m;/eC%(S;) for those co-
efficients which occur in conditions (ITI.1.1) and (II1.1.2). For the others
we only use m;, /e C%(S,).
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II1.2. Abstract formulation of the boundary problem. For functions
ueCn-1(V) we define a norm by

llully = {5 D (Dru)2dV + g P (Dpu)zdsr

lpl =n—1 g lpl=n-1
and let s, be the Hilbert space obtained by completing C»~1(V) with
respect to this norm.
For the elements G= (G, g, - . ., §p, §,)€C*V, S) we define a norm by

IGlly = ”szV + Zg 2, gu.2ds + S P g,fdsr

1Y k= <n-—1
=14 S Ipl

and let 5, be the Hilbert space obtained by completing 0%V, S) with
respect to this norm. Note that also after the completion §,, is uniquely
determined by g, up to the successive integration constants.

We now consider M as an operator from 3, to 5#, with domain

D(M)=C(V) and range R(M)=C°(V, 8). As in Section II.2 we have
Lemma II1.1. The operator M is pre-closed.

The proof is analogous to the proof of Lemma II.1. Let M be the
closure of M. The main result in this part is the following

TuroreM II1.1. The equation Mu=G has a unique solution w=
M-1Ge#, for every GeH# y and

IM-1GJl; £ CIIGI,,
where C is a constant independent of G.

The idea in the proof is as in Part II to replace the equation Mu=G
by an equation M =G, which is easier to handle. We therefore intro-
duce a family of operators M0 <1< 1) defined in D(M*)=C™(V) by

My = (M*u, miu, ..., m, u, 9, ) ,
where Mu = X' a,DPu + A 3 a,Dru
[pl=n Ipl<n
and miu=(my*(w), ..., mgt(w) (=1, ..., n) with

7 n
Myt () = X myl M, “+'1( 2 myl Mju+ Y mik,pru> on S~
=1

J J=i+1 |pl <n—1
and
n—1
+
mn 2’ my M; u+l(2’mzkﬂM ut > my, ,,Dl’u) on §;%.
J=n—i+1 lp| <n—1

Finally, we put i, u = 9, u.
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The operator M* thus defined is, as well as M, an operator from 5, to
# , and coincides for =1 with M. For 1=0, however, }° only contains
the principal part of M and m,°(u) only contains some terms of the prin-
cipal part om m ;,(u).

We then have the following lemmas.

Lemma II1.2. The operator Mt — M? ts bounded, that is, there is a constant
C, independent of u such that

I(ML—MOuj, < Cyllull;, welCV).

Lemma II1.3. There is a constant C, independent of u and A such that
lully < CyliMiul,, ueC¥V).

Levmma 111.4. R(M}) equals the closure R(MY) of R(M%).

Lemma II1.5. Assume that R(Mh)=.#,. Then
MGy £ CulIGl,  Ge

MO (ML=MO)ufly, < Cyllully,  ue i,

and

where Cy=C,Cy and Cy and C, are the constants tn Lemma I11.2 and Lemma
I11.3.

Lemma I11.6. R(MY) =, that is, the equation Mou=G has a wnique
solution uweH 5 for every Ge A .

The proofs of Lemmas I11.2-111.5 are analogous to the proofs of Lem-
mas II.2-I1.5 and will not be carried through. In the proof of Lemma
IT1.3, we use a result from [13], namely, that for every 1, 0 <11, there
is a constant C(A) such that

lully < C(A) MM, .

Lemma ITI.6 will be proved in the next section.

I11.3. The equation M®u=G. In this section we shall prove that the
equation

(I11.3.1) My = G

has a solution in ¢, for every Ges#,. According to Lemma III.4, we
need only prove that (III.3.1) has a solution in J#; for every G=
(G, 91 -+, 9n> §n) In a dense subset of S,

The operators (D,—«;D,) M u and M°u have the same principal part
and their difference only contains terms of order » — 1. This implies that
there are a,;,cCY(V) such that we have the following identity :
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(IT1.3.2) Dy—x; DY) Mu + X' agMu = MOu.
k=1

Now suppose that ueC*(V) is a solution of (IT1.3.1). Then (IIL.3.2)
implies that v= (v, ..., v,)=(Mu, ..., M, u) is a solution of

(Dy—o; D)o, + Yagv, =G, =1 ...,n,
=1
with the boundary conditions (cf. the definition of M?)

n

a j Yo —
ZZik”Uj:gik, k=1,...,’b,’t—l,...,’)’b,
j=1

where

L fmad =10

ik 0, j=1t+1,...,n, on 8~
and

i 0, . j=1...,n—1

i myd,  j=mn—i+1l,...,n, on 8.

The boundary problem for v thus defined is of exactly the same kind
as the boundary problem considered in Section I1.6. Therefore, let L* be
the operator corresponding to this boundary problem. Then all condi-
tions imposed in Section I1.6 on the operator L™ are satisfied. In partic-
ular, the conditions (II.1.1) and (I1.1.2) are fulfilled according to (ITI.1.1)
and (II1.1.2).

Let I' be the set of G=(G, ¢y, --.s9p> Gu)€H, such that G'=
(G, g1, - - ., go)€H, . Here G is the vector (G, ..., ) with n equal
components. Then I is dense in 5, and it will be sufficient to solve
(I11.3.1) for GeI'. Therefore we solve for Gel' the equation

(IT1.3.3) o =G*.

This is possible according to Theorem I1I.3. Let v=(v,, ..., v,) be the
solution of (II1.3.3). Then v, has generalized derivatives of the first
order in L3(V). That is, v; belongs to L%1(V) and we shall prove that
there exists a function ue L2™(V) with M, u=v, (i=1, ..., n) in the gen-
eralized sense. Such a « must satisfy

n

k-1]) n—kgy — V'
DFEADu = X o0, .

i-1

We therefore construct w,=27_,c.;v, (k=1, ..., n). Then w,eL>Y(V)
and we shall prove that

Dw, = Dyw, for k=2,...,n.
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In fact,

(I11.3.4) Dywy_— D w), = D, ( 2 G, ”i) - D, ( chivi)
i—1 i=1

3

I

n n
ch-l,i—Dtvi - e Dy + Y (Dir1,s— Dylri) v;
; i=1 i=1

k2

s L

-

i

i (Dy— D)oy + 3 (Diegq,s— Dycy) v,

=1

I
—

7

n
Wl
= a,G + a;v; .

s
1=1

)

Here we have used «;c;_; ;=c;; and the fact that v is a solution of
(I11.3.3). The functions a; (¢=0, ..., n) do not depend on G but only on
the coefficients of L*. Therefore, if G is of the form M°p with peCn(V),

we have v=(M;p, ..., M,p) and w,=D} 1D "*p and we get from
(II1.3.4) that for every peC™(V)

agMp + X a; Mg = 0.

=1
This implies, however, that ¢; = 0 (¢=1, ..., n) and thus that for a gen-
eral ¢, we have Dw,_,—D,w,=0 (k=2, ..., n).
According to Theorem 1.2, the quantities w,, ..., w, are therefore the

generalized derivatives of order n —1 of a function ue L>™(V). This fune-
tion % is uniquely determined up to the successive integration constants.
Because of the consistency between g,, and §, it is possible to determine
these constants so that #i,u=¢,, which determines u completely. We
shall prove that u is a solution of (I11.3.1). Since ucL?*™(V) there exists

in virtue of Theorem I.1 a sequence of functions w*eC™(V) (u=1,2,...)
such that for |p|=n

Doy — DPyy in LAV)  when pu-—>oco.
We shall prove that
(IMOy~ —GJly — 0 when p—co.

Put Ve=(M,u, ..., M,u*)and let v* be a sequence of functions in C,2(V)
such that
v >v in #," and L'v*>G"' in "

when u — co. The existence of such a sequence is granted by the defini-
tion of L. From the definition of ", we obtain

VE>» in ;"
when y —> co. We have
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IMOyr — Gl <

] %
ILYV# — Lo, 4+ L o —GF" + {\ D (DPur—g,)dsy = 0.

S Ip| <n—1

The first term on the right side converges to 0 because L* is bounded,
considered as an operator from .#," to #, and V* — v, v* v in H#,".
The second term tends to 0 according to the definition of »*, and the
third term tends to 0 because

DF1D rkyr g, in  L%S,)

and because of the way in which we have determined the integration con-
stants. This completes the proof of Lemma I11.6

I11.4. Estimates for the higher order derivatives. We shall complete
the treatment of the hyperbolic equation of order » by stating a theorem
corresponding to Theorem II.2 in Part II.

Let ¢ be an arbitrary integer. For ueCn+1-1(V) we define

b3
HunR@={§ pX (Dz'u)zdR}, R=1V,8,

plpl=ntg-1
and for GeCUV, 8)=(CUV), C,48y), - .., C,%8,), CUS,)), where C¥(S,)
is the set of arrays (§,=D?§; |p|<n—1, geC*(V)) in C(S,) such that
Dtk—IDa:n—kg = Ink on Sn .

Further we define

IGllp, &@ = H 2 (DP@)2dV + g S (DrQ)2ds+

= < g—
virl=g slrl=g-1

+2$2 3 (Djgyrds +§ 3 geal

] 11l=z¢q lpl <n—-1
l

Here D, stands for differentiation with respect to the arc length on 8.
Like in (I1.5.1), the term

| ¥ wrepds
glplsg-1

is immaterial and can be estimated by means of

S X (DPG)2dV .

yirlzq
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Let & be a fixed integer and assume that the boundary pieces S,
(¢=1, ..., n) are k times continuously differentiable, that is, ve C,¥-1(8,),
and that M satisfies the following differentiability assumptions, namely

a, € C*+Y(V) for |p| =n,
a,e CKV) for |p| <mn,

my, , € OF(S;) .

If ¢ <k, M can be considered as an operator from C"+¢(¥) to C2(V, S) and
we have the following

TarorREM I11.2. There is a constant C such that
lulz® < ClMully &9, R=1V,8,
for all weC™ (V) and qg<k.

This theorem is proved from Theorem I1.2 in the same way as (5.10)
and (5.11) are proved from (1.6) and (1.7) in [13]. The proof will not be
carried through.
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