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ZERO-DIVISOR GRAPHS OF AMALGAMATIONS

SALAH-EDDINE KABBAJ and ABDESLAM MIMOUNI∗

Abstract
Let f : A → B be a homomorphism of commutative rings and let J be an ideal of B. The
amalgamation of A with B along J with respect to f is the subring of A × B given by

A ��f J := {(a, f (a) + j) | a ∈ A, j ∈ J }.
This paper investigates the zero-divisor graph of amalgamations. Our aim is to characterize when
the graph is complete and compute its diameter and girth for various contexts of amalgamations.
The new results recover well-known results on duplications, and yield new and original examples
issued from amalgamations.

1. Introduction

Throughout, all rings considered are commutative with identity. Let R be a ring
and let Z(R) denote the set of zero-divisors of R and Z(R)� := Z(R) \ {0}.
The zero-divisor graph of R, denoted �(R), is the graph whose vertices are the
elements of Z(R)� and, for distinct x, y ∈ Z(R)�, there is an edge connecting
x and y if and only if xy = 0. For two distinct vertices a and b in the graph
�(R), the distance between a and b, denoted d(a, b), is the length of the
shortest path connecting a and b, if such a path exists; otherwise, d(a, b) = ∞.
The diameter of the graph �(R) is given by diam(�(R)) = sup{d(a, b) |
a and b are distinct vertices of �(R)}. The girth of the graph �(R), denoted
gr(�(R)), is the length of a shortest cycle in �(R), provided �(R) contains
a cycle; otherwise, gr(�(R)) = ∞. A graph is connected if there exists a
path between any two distinct vertices, and it is complete if it is connected
with diameter less than or equal to one. A singleton graph is connected and of
diameter zero. Also, �(R) is empty if and only if R is a domain.

The concept of a zero-divisor graph was first introduced by Beck in 1988
for his study of the coloring of a (commutative) ring [7]. In his work, all ele-
ments of the ring were vertices of the graph. In 1993, D. D. Anderson and
Naseer used this same concept in [2]. In 1999, D. F. Anderson and Livingston
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considered only nonzero zero-divisors as vertices of the graph and proved that
the zero-divisor graph of a (commutative) ring is always connected with dia-
meter less than or equal to three. Later, in 2002, Mulay [17] and DeMeyer and
Schneider [13] examined, among other properties, the diameter and girth of the
zero-divisor graph of a ring. The following paragraphs collect background and
main contributions on the zero-divisor graph of some relevant ring extensions.

In [5], Axtell, Coykendall and Stickles examined the preservation, or lack
thereof, of the diameter and girth of the graph of a ring under extensions
to polynomial and power series rings. One of the difficulties in dealing with
R[[x]], when R is not reduced, is that the zero-divisors of R[[x]] can be rather
strange. For example, they cited an example in [5] of a non-reduced ring R with
diam(�(R)) = diam(�(R[x])) = 2 while diam(�(R[[x]])) = 3. But they left
open the existence of a reduced ring with the same sequence of diameters.

In [15], Lucas characterized the diameter of �(R), �(R[x]), and �(R[[x]])
strictly in terms of properties of the ring R. For reduced rings, he gave complete
characterizations for all three graphs; and for non-reduced rings, he succeeded
in characterizing the diameters of �(R) and �(R[x]). He constructed a reduced
ring R for which diam(�(R)) = diam(�(R[x])) = 2 and diam(�(R[[x]])) =
3. He also provided examples of both reduced and non-reduced rings R where
diam(�(R)) = 2 and diam(�(R[x])) = diam(�(R[[x]])) = 3.

For a ring A and an A-module E, the trivial ring extension of A by E is
the ring A � E where the underlying group is A × E and the multiplication is
defined by (a, e)(b, f ) = (ab, af + be). It is also called the (Nagata) ideal-
ization of E over A and is denoted by A (+) E. This construction was first
introduced and studied by Nagata [18]. In [6], Axtell and Stickles investigated
the preservation of the diameter and girth under trivial ring extensions. Spe-
cifically, they completely characterized the girth of the zero-divisor graph of a
trivial ring extension and when it is complete. They also provided conditions
for the zero-divisor graph to have diameter 2.

In [4], D. F. Anderson and Mulay characterized when either diam(�(R)) ≤
2 or gr(�(R)) ≥ 4 for a ring R, and used their results to investigate the diameter
and girth for the zero-divisor graphs of polynomial rings, power series rings,
and trivial ring extensions. They answered some open questions and gave
alternative proofs to previous results in [5], [6], [15]. Their new approach
consisted in working in the total quotient ring of R.

For a ring A and an ideal I of A, the amalgamated duplication of A along
I is the subring of A × A given by A �� I := {(a, a + i) | a ∈ A, i ∈ I }.
If I 2 = 0, then A �� I coincides with the trivial ring extension A � I .
This construction was introduced and its basic properties were studied by
D’Anna and Fontana in [8], [11], [12]. It was motivated by a construction of
D. D. Anderson [1] related to a classical construction due to Dorroh [14] on
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endowing a ring (without unity) with a unity. In [16], Maimani and Yassemi
studied the diameter and girth of the graph of A �� I . More precisely, two of
their main results assert that “�(A �� I ) is complete if and only if (Z(A))2 = 0
and I ⊆ Z(A) if and only if (Z(A �� I ))2 = 0” [16, Theorem 4.8] and “if
Z(A �� I ) is not an ideal, then diam(�(A �� I )) = 3” [16, Theorem 4.12].
Also, they showed that gr(�(A �� I )) is equal to 3 if A is not a domain, or 4
if A is a domain with 0 � I � A.

In [9], [10], D’Anna, Finocchiaro, and Fontana introduced the more general
context of amalgamations. They have studied these constructions in the frame
of pullbacks which allowed them to establish numerous results on the transfer
of various ideal and ring-theoretic properties from A and f (A)+J to A ��f J .
The interest of amalgamations resides in their ability to cover basic construc-
tions in commutative algebra, including classical pullbacks and trivial ring
extensions. Recall that the latter are never reduced, whereas amalgamations
can be domains or reduced [9, Propositions 5.2 & 5.3].

This paper investigates the zero-divisor graph of amalgamations. Our aim
is to characterize when the graph is complete and compute its diameter and
girth for various contexts of amalgamations. Precisely, in view of Anderson-
Livingston’s aforementioned result, Sections 2, 3, and 4 will handle, respect-
ively, the cases when �(A ��f J ) is complete, diam

(
�(A ��f J )

) = 2,
and diam

(
�(A ��f J )

) = 3. Then, Section 5 will be devoted to the girth of
�(A ��f J ). The new results recover and generalize well-known results on
amalgamated duplications [16], as well as yield original examples issued from
amalgamations.

2. When is �(A ��f J ) complete?

To avoid unnecessary repetition, let us fix notation for the rest of the paper. Let
f : A → B be a homomorphism of rings and J a nonzero proper ideal of B.
Let R denote the amalgamation of A with B along J with respect to f ; that is,

R := A ��f J = {(a, f (a) + j) | a ∈ A, j ∈ J }.
Note that if J = 0, then R ∼= A; and if J = B, then R = A×B. Also, recall that
f −1(J ) = 0 if and only if R and f (A)+J are isomorphic [10, Proposition 2.1]
and hence have the same zero-divisor graph. Moreover, R is a domain if and
only if f (A)+J is a domain and f −1(J ) = 0 [11, Proposition 5.2]. Therefore,
all through this paper, the assumption f −1(J ) �= 0 ensures that �(R) �= ∅ and
rules out the trivial case R ∼= f (A) + J .

The main result of this section establishes necessary and sufficient condi-
tions for �(R) to be complete and computes its girth. To this purpose, it is
worthwhile recalling Anderson-Livingston’s result that “the graph of a ring D
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is complete if and only if D = Z2 × Z2 or (Z(D))2 = 0” [3, Theorem 2.8].
Throughout, let

Z(A) ��f J := {(a, f (a) + j) | a ∈ Z(A), j ∈ J }
and for any j ∈ J , let

(0 : j) := {x ∈ f (A) + J | jx = 0}.
Theorem 2.1. Assume that f −1(J ) �= 0. Then, the following conditions

are equivalent:

(1) �(R) is complete;

(2) (Z(A))2 = 0, J 2 = 0, and Z(A) = f −1(0 : j), ∀ 0 �= j ∈ J ;

(3) (Z(R))2 = 0.

Moreover, if any one condition holds, then Z(R) = Z(A) ��f J and gr(�(R)) =
3.

Proof. (1) ⇒ (2): Assume that �(R) is complete. Then, so is �(A). We
claim that (Z(A))2 = 0. Otherwise, suppose that A = Z2 × Z2. Then, Z(A)�

consists of two elements a := (0, 1) and b := (1, 0). Let 0 �= j ∈ J . Then, the
fact a + b = 1 yields j = jf (a)+ jf (b). So, either jf (a) �= 0 or jf (b) �= 0.
Say, jf (a) �= 0. Also the fact 1 = a2 + b2 yields j = jf (a2) + jf (b2).
Now, since (b, f (b))(0, jf (a)) = 0, then (0, jf (a)) ∈ Z(R)� and, as �(R)

is complete, (a, f (a))(0, jf (a)) = 0. Hence jf (a2) = 0. It follows that j =
jf (b2) and therefore jf (a) = jf (b2)f (a) = 0, the desired contradiction. So,
(Z(A))2 = 0.

Next, let 0 �= c ∈ f −1(J ). Then, for every 0 �= j ∈ J , (c, 0)(0, j) = 0
and hence (0, j) ∈ Z(R)�. If |J | ≥ 3, then for every nonzero i �= j ∈ J ,
(0, i)(0, j) = 0, and so ij = 0. Also, since (c, i)(0, j) = 0, (c, i) ∈ Z(R)�.
Thus, (c, i)(0, i) = 0 and therefore i2 = 0. If |J | = 2, then let 0 �= i ∈ J . If
i2 = i, then i(i − 1) = 0. So (1, 1 − i)(0, i) = 0 and then (1, 1 − i) ∈ Z(R)�.
But, J is proper, so that 1 − i �= 0 and hence (1, 1 − i)(c, 0) = 0. Whence
c = 0, absurd. Thus, i2 = 0. In both cases, we showed that J 2 = 0. Next,
let 0 �= j ∈ J and let 0 �= a ∈ A. If a ∈ Z(A), then (a, f (a)) ∈ Z(R)�.
So, (a, f (a))(0, j) = 0; that is, jf (a) = 0. Hence, Z(A) ⊆ f −1(0 : j). If
jf (a) = 0, then (a, f (a))(0, j) = 0. Hence (a, f (a)) ∈ Z(R)�. It follows
that (c, 0)(a, f (a)) = 0 if f (a) �= 0, and (c, j)(a, 0) = 0 if f (a) = 0. Both
cases yield ac = 0. Thus, a ∈ Z(A). Consequently, Z(A) = f −1(0 : j), as
desired.

(2) ⇒ (3): Assume (Z(A))2 = 0, J 2 = 0, and Z(A) = f −1(0 : j) for each
0 �= j ∈ J . Clearly, (0, j) ∈ Z(R), ∀ j ∈ J . Further, if 0 �= a ∈ Z(A) and
j ∈ J , then ∃ 0 �= b ∈ Z(A) with ab = 0 and hence (a, f (a)+ j)(b, f (b)) =
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(0, jf (b)) = 0; i.e., (a, f (a) + j) ∈ Z(R). So, Z(A) ��f J ⊆ Z(R). For the
reverse inclusion, let x := (a, f (a) + i) ∈ Z(R) and y := (b, f (b) + j) ∈
R \ {0} such that xy = 0. If a = 0, then x = (0, i) ∈ Z(A) ��f J . Assume
that a �= 0. If b �= 0, then a ∈ Z(A). If b = 0, then 0 = jf (a) + ij = jf (a)

and hence a ∈ Z(A). In both cases, x ∈ Z(A) ��f J . Consequently, we get

Z(R) = Z(A) ��f J.

Now, one can easily check that xy = 0 for every x, y ∈ Z(A) ��f J . It follows
that (Z(R))2 = 0, as desired.

(3) ⇒ (1): Trivial.
Finally, assume that any one of the conditions (1)–(3) holds. Then, as stated

above, Z(R) = Z(A) ��f J . Further, let 0 �= c ∈ f −1(J ) and 0 �= j ∈ J .
Then, clearly, (c, 0) − (0, j) − (c, j) − (c, 0) is a cycle in �(R) and therefore
gr(�(R)) = 3.

Theorem 2.1 recovers the special case of duplications, as recorded in the next
corollary. Recall that a duplication can be viewed as a special amalgamation
R := A ��f I with A = B and f := 1A.

Corollary 2.2 ([16, Theorem 4.8]). Let D be a ring and I a nonzero
proper ideal of D. Then, the following conditions are equivalent:

(1) �(D �� I ) is complete;

(2) (Z(D))2 = 0 and I ⊆ Z(D);

(3) (Z(D �� I ))2 = 0.

Moreover, if any one condition holds, then Z(D �� I ) = Z(D) �� I and
gr(�(D �� I )) = 3.

Proof. The proof is straightforward via Theorem 2.1. Notice that the con-
dition “Z(D) = (0 : i), ∀ 0 �= i ∈ I” becomes redundant with “(Z(D))2 = 0
and I ⊆ Z(D).”

Unlike duplications, the graph of an amalgamation R (with J �= 0) can
be complete under (Z(R))2 = 0 or R ∼= Z2 × Z2, as shown by the following
examples.

Example 2.3. Let A := Z4, B := Z2 × Z2[X]/(X2), and J = 〈(0, X)〉.
Consider the ring homomorphism f : A → B, defined by f (0) = f (2) = 0
and f (1) = f (3) = 1; and let R := A ��f J . Notice that f −1(J ) �= 0,
J 2 = 0, and Ker(f ) = Z(A) = {0, 2}. Hence, Z(A)2 = 0 and f −1

(
0 :

(0, X)
) = Z(A). By Theorem 2.1, �(R) is complete with (Z(R))2 = 0.
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Moreover, Z(R)� = {(0, (0, X)), (2, (0, 0)), (2, (0, X))} and gr(�(R)) = 3,
as illustrated below:

(0, (0, X))

(2, (0, X))(2, (0, 0))

Example 2.4. Let A := Z2, B := Z2 × Z2, and J = 〈(0, 1)〉. Consider the
ring homomorphism f : A → B, defined by f (0) = 0 and f (1) = 1; and let
R := A ��f J . Notice that f −1(J ) = 0. Hence R ∼= f (A)+J = Z2 ×Z2 and
thus Z(R)� = {(0, (0, 1)), (1, (1, 0))}. So, �(R) is complete with (Z(R))2 �=
0, as desired.

3. When is diam(�(R)) = 2 or 3?

Throughout, let Z(f −1(J )) denote the set of zero-divisors on the ideal f −1(J )

of A and let Z(J ) denote the set of zero-divisors on J as an ideal of f (A)+J ;
that is, the elements of f (A) + J that annihilate some nonzero element of J ,
and let

Z�(J ) := {f (a) + j ∈ Z(J ) | a �= 0}.
Consider the following conditions:

(C1) ∀x ∈ Z�(J ) and ∀j ∈ J : jx �= 0 ⇒ ij = ix = 0 for some 0 �= i ∈ J .

(C2) ∀x, y ∈ Z�(J ): x �= y ⇒ ix = iy = 0 for some 0 �= i ∈ J .

(C3) ∀a ∈ Z(f −1(J )), ∀b ∈ f −1(J ): ab �= 0 ⇒ ac = bc = 0 for some
0 �= c ∈ f −1(J ).

(C4) ∀a, b ∈ Z(f −1(J )): a �= b ⇒ ac = bc = 0 for some 0 �= c ∈ f −1(J ).

The first main result of this section establishes necessary and sufficient
conditions for the diameter of the zero-divisor graph of the amalgamation
R := A ��f J to be equal to 2, when A or f (A) + J is a domain.

Theorem 3.1. In the above notation, assume f −1(J ) �= 0.

(1) If A is a domain, then: diam(�(R)) = 2 ⇐⇒ (C1) and (C2) hold.

(2) If f (A) + J is a domain, then: diam(�(R)) = 2 ⇐⇒ (C3) and (C4)

hold.

Proof. First, let

E1 := {(0, j) | 0 �= j ∈ J },
E2 := {(a, 0) | 0 �= a ∈ f −1(J )},
E3 := {(a, f (a) + j) | 0 �= f (a) + j ∈ Z�(J )},
E4 := {(a, f (a) + j) | f (a) + j �= 0, 0 �= a ∈ Z(f −1(J ))}.
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(1) Assume that A is a domain. We claim that

Z(R)� = E1 ∪ E2 ∪ E3.

Indeed, let x = (a, f (a) + i) ∈ Z(R)� and y = (b, f (b) + j) ∈ R \ {0} such
that xy = 0. If a = 0, then x ∈ E1. If a �= 0, then b = 0 and so j �= 0.
But then j (f (a) + i) = 0 implies that either f (a) + i = 0 and so x ∈ E2 or
f (a) + i ∈ Z�(J ) and so x ∈ E3. For the reverse inclusion, note that clearly
E3 ⊆ Z(R)�, and (0, j)(a, 0) = 0 for any 0 �= j ∈ J and 0 �= a ∈ f −1(J ),
yielding E1 ∪ E2 ⊆ Z(R)�, proving the claim. Notice that the above union is
disjoint. For sufficiency, assume that (C1) and (C2) hold. As mentioned above,
every vertex in E1 is adjacent to every vertex in E2. Next, let us handle five
other possible distinct cases.

• Let x1 := (0, i) �= (0, j) =: y1 ∈ E1 and let 0 �= a ∈ f −1(J ). Then,
x1 − (a, 0) − y1 is a path in �(R) and so d(x1, y1) ≤ 2.

• Let x2 := (a, 0) �= (b, 0) =: y2 ∈ E2 and let 0 �= j ∈ J . Then,
x2 − (0, j) − y2 is a path in �(R) and so d(x2, y2) = 2.

• Let x1 := (0, j) ∈ E1 and x3 := (a, f (a)+ i) ∈ E3. If j (f (a)+ i) = 0,
then x1x3 = 0 and so d(x1, x3) = 1. If j (f (a) + i) �= 0, by (C1), there
is 0 �= r ∈ J such that rj = r(f (a) + i) = 0. Then, x1 − (0, r) − x3 is
a path in �(R) and so d(x1, x3) = 2.

• Let x2 := (a, 0) ∈ E2 and x3 := (b, f (b) + j) ∈ E3. Then, there is
0 �= i ∈ J such that i(f (b) + j) = 0. Hence, x2 − (0, r) − x3 is a path
in �(R) and so d(x2, x3) = 2.

• Let x3 := (a, f (a) + i) �= (b, f (b) + j) =: y3 ∈ E3. If f (a) + i =
f (b)+j , then there is 0 �= r ∈ J such that r(f (a)+i) = r(f (b)+j) =
0 and so x3 − (0, r) − y3 is a path in �(R). If f (a) + i �= f (b) + j ,
by (C2), there is 0 �= r ∈ J such that r(f (a) + i) = r(f (b) + j) = 0.
Again x3 − (0, r) − y3 is a path in �(R) and so d(x3, y3) = 2.

Consequently, diam(�(R)) = 2. Conversely, let x := f (a) + i ∈ Z�(J )

and let j ∈ J with jx �= 0. Since (a, f (a) + i) and (0, j) are two non-
adjacent vertices, there is a path (a, f (a) + i) − (b, f (b) + r) − (0, j) in
�(R). Necessarily, b = 0 and hence r �= 0. But then r(f (a) + i) = rj = 0,
as desired. Finally, let x := f (a) + i and y := f (b) + j ∈ Z�(J ) with x �= y.
Since (a, f (a) + i) and (b, f (b) + j) are two non-adjacent vertices, there is
a path (a, x) − (c, f (c) + r) − (b, y) in �(R). Necessarily, c = 0 and hence
r �= 0. But then rx = ry = 0, completing the proof of (1).

(2) Assume that f (A) + J is a domain. We claim that

Z(R)� = E1 ∪ E2 ∪ E4.
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Indeed, let x = (a, f (a) + i) ∈ Z(R)� and y = (b, f (b) + j) ∈ R \ {0} such
that xy = 0. If a = 0, then x ∈ E1. Assume a �= 0. If b = 0, then j �= 0
and hence f (a) + i = 0, whence x ∈ E2. If b �= 0 and f (a) + i �= 0, then
b ∈ f −1(J ) and so x ∈ E4. The reverse inclusion is straightforward. Notice
that the above union is disjoint. For sufficiency, assume that (C3) and (C4)

hold. In view of the proof of (1), we envisage only three cases.

• Let x1 := (0, i) ∈ E1 and x4 := (b, f (b)+j) ∈ E4. Let 0 �= c ∈ f −1(J )

such that bc = 0. Then, x1 − (c, 0) − x4 is a path in �(R) and so
d(x1, x4) = 2.

• Let x2 := (a, 0) ∈ E2 and x4 := (b, f (b) + j) ∈ E4. If ab = 0, then
d(x2, x4) = 1. If ab �= 0, then by (C3), there is 0 �= c ∈ f −1(J ) such
that ac = bc = 0. Then, x2 − (c, 0) − x4 is a path in �(R) and so
d(x2, x4) = 2.

• Let x4 := (a, f (a) + i) �= (b, f (b) + j) =: y4 ∈ E4. If a = b, then
there is 0 �= d ∈ f −1(J ) such that ad = bd = 0 and so x4 − (d, 0)− y4

is a path in �(R). If a �= b, by (C4), there is 0 �= c ∈ f −1(J ) such that
ac = bc = 0 and so x4 − (c, 0) − y4 is a path in �(R). In both cases,
d(x4, y4) = 2.

Consequently, diam(�(R)) = 2. Conversely, let a ∈ Z(f −1(J )) and b ∈
f −1(J ) such that ab �= 0. Let i ∈ J with f (a) + i �= 0. Since (a, f (a) + i)

and (b, 0) are two vertices that are not adjacent, there is a path (a, f (a) +
i) − (c, f (c) + j) − (b, 0). Then ac = bc = 0 and f (c) + j = 0. So,
0 �= c ∈ f −1(J ), as desired. Finally, let a, b ∈ Z(f −1(J )) with a �= b. Fix two
elements i and j in J such that x := f (a)+i �= 0 and y := f (b)+j �= 0. Then
x and y are two non-adjacent vertices. So, there is a path x − (c, f (c)+ r)−y

in �(R). Then, ac = bc = 0 and f (c) + r = 0. Hence 0 �= c ∈ f −1(J ),
completing the proof of (2).

The special case where both A and f (A) + J are domains is given below.

Corollary 3.2. Assume that both A and f (A) + J are domains with
f −1(J ) �= 0. Then, diam(�(R)) = 2.

Proof. Here (C1) and (C2) always hold since Z�(J ) = ∅ and so
diam(�(R)) = 2 by Theorem 3.1.

For the special case of duplications, we obtain the following corollary.

Corollary 3.3. Let D be a domain and let I be a nonzero proper ideal of
D. Then, diam(�(D �� I )) = 2.

Here are illustrative examples for Theorem 3.1. In the first example, A is a
domain; and in the subsequent three examples, the diameter of the zero-divisor
graph of A is equal to 0, 1, and 2, respectively.
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Example 3.4. Let A := Z, B := Z6 × Z6, and J := 〈(0, 3)〉. Consider the
ring homomorphism f : A → B defined by f (n) = (n, n), and let R := A ��f

J . One can easily check that Z�(J ) = {(1, 4), (2, 2), (3, 0), (4, 4), (5, 2)} with
x(0, 3) = 0, ∀ x ∈ Z�(J ). By Theorem 3.1, diam(�(R)) = 2 as illustrated
below:

(0, (0, 3))
(5, (5, 2))

(4, (4, 4))

(3, (3, 0))

(2, (2, 2))

(1, (1, 4))

and hence, gr(�(R)) = ∞. Note that

f (A) + J := {(0, 3), (1, 4), (2, 5), (3, 0), (4, 1), (5, 2)}
and so diam(�(f (A) + J )) = 3.

Example 3.5. LetA := Z4 (diam(�(A)) = 0), B := Z2[X], andJ := XB.
Consider the ring homomorphism f : A → B, defined by f (0) = f (2) =
0 and f (1) = f (3) = 1; and let R := A ��f J . Then it is easy to see
that Z(f −1(J )) = f −1(J ) = {0, 2}. By Theorem 3.1, diam(�(R)) = 2.
Moreover, Z(R)� = E1 ∪ E2 ∪ E4 = {(0, Xg) | 0 �= g ∈ Z2[X]} ∪ {(2, Xh) |
h ∈ Z2[X]} and hence gr(�(R)) = ∞.

Example 3.6. Let A := Z2×Z2 (diam(�(A)) = 1), B := Z2[X], and J :=
XB. Consider the ring homomorphism f : A → B, defined by f (n, m) = n;
and let R := A ��f J . It is easy seen that f −1(J ) = {(0, 0), (0, 1)} and
Z(f −1(J )) = {(0, 0), (1, 0)}. By Theorem 3.1, diam(�(R)) = 2. Moreover,
Z(R)� = E1 ∪ E2 ∪ E4 = {((0, 0), Xg) | 0 �= g ∈ Z2[X]} ∪ {((0, 1), 0)} ∪
{((1, 0), 1 + Xg) | g ∈ Z2[X]} and hence gr(�(R)) = ∞.

Example 3.7. LetA := Z6 (diam(�(A)) = 2), B := Z2[X], andJ := XB.
Consider the ring homomorphism f : A → B, defined by f (0) = f (2) =
f (4) = 0 and f (1) = f (3) = f (5) = 1; and let R := A ��f J . It is
easy seen that f −1(J ) = {0, 2, 4} and Z(f −1(J )) = {0, 3}. By Theorem 3.1,
diam(�(R)) = 2. Moreover, Z(R)� = E1 ∪ E2 ∪ E4 = {(0, Xg) | 0 �= g ∈
Z2[X]}∪{(2, 0), (4, 0)}∪{(3, 1+Xh) | h ∈ Z2[X]} and hence gr(�(R)) = 4.

Next, we investigate conditions under which diam(�(R)) is equal to 3. To
this purpose, let us negate the aforementioned conditions (C1), (C2), (C3), (C4)

to get the following:

(C1) ∃x ∈ Z�(J ) and ∃j ∈ J with jx �= 0 and, for any 0 �= i ∈ J , ij �= 0 or
ix �= 0.
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(C2) ∃x, y ∈ Z�(J ) with x �= y and, for any 0 �= i ∈ J , ix �= 0 or iy �= 0.

(C3) ∃a ∈ Z(f −1(J )), ∃b ∈ f −1(J ) with ab �= 0 and, ∀0 �= c ∈ f −1(J ),
ac �= 0 or bc �= 0.

(C4) ∃a, b ∈ Z(f −1(J )) with a �= b and, ∀0 �= c ∈ f −1(J ), ac �= 0 or
bc �= 0.

As a straightforward application of Theorem 3.1, we get the next “dual” result.

Proposition 3.8. In the above notation, assume f −1(J ) �= 0.

(1) If A is a domain, then: diam(�(R)) = 3 ⇐⇒ (C1) or (C2) holds.

(2) If f (A)+J is a domain, then: diam(�(R)) = 3 ⇐⇒ (C3) or (C4) holds.

Next, we show how one may use Proposition 3.8 to construct original ex-
amples of amalgamations R with diam(�(R)) = 3.

Example 3.9. Let A := Z, B := Z × Z6, and J := 2Z × Z6. Consider
the ring homomorphism f : A → B, defined by f (a) = (a, a); and let R :=
A ��f J . Notice, first, that f −1(J ) = 2A and f (A) + J = B. Now, let
x := f (1) + (0, 1) = (1, 2) ∈ Z�(J ) and j := (0, 1) ∈ J . Obviously,
jx �= 0. Moreover, we have j (0, 3) �= 0; x(0, m) �= 0 for all m ∈ Z6 \ {0, 3};
and x(2n, m) �= 0 for all 0 �= n ∈ Z and m ∈ Z6. Therefore, (C1) holds and,
by Proposition 3.8, diam(�(R)) = 3.

The second main result of this section establishes conditions for the dia-
meter of the zero-divisor graph of R := A ��f J to be equal to 3, beyond
the domain settings. In particular, it generalizes Maimani-Yassemi’s result on
duplications that “diam(�(D �� I )) = 3, provided Z(D) is not an ideal” [16,
Theorem 4.12].

Theorem 3.10. In the above notation, assume f −1(J ) �= 0. If Z(A) is not
an ideal of A, f is surjective and f −1(Z(B)) ⊆ Z(A), then diam(�(R)) = 3.

Proof. We first prove the following claims.

Claim 1. Z(R) is not an ideal of R.

Indeed, let a �= b ∈ Z(A) such that a − b �∈ Z(A). Clearly (a, f (a)) and
(b, f (b)) ∈ Z(R). If f (a − b) = 0, then a − b ∈ f −1(Z(B)) ⊆ Z(A), which
is absurd. Hence, f (a −b) �= 0. Assume that (a −b, f (a −b)) ∈ Z(R). Then
there is 0 �= (c, f (c) + j) ∈ R such that (a − b, f (a − b))(c, f (c) + j) = 0.
Necessarily, c = 0. Hence j �= 0 and jf (a−b) = 0; that is, f (a−b) ∈ Z(B)

and so a − b ∈ f −1(Z(B)) ⊆ Z(A), the desired contradiction. Therefore,
Z(R) is not an ideal of R.
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Next, recall from [10, Proposition 2.6] that the prime ideals of R arise
exclusively under the following two forms:

P f := P ��f J = {(p, f (p) + j) | p ∈ P, j ∈ J },
Q

f = {(a, f (a) + j) | a ∈ A, j ∈ J, f (a) + j ∈ Q},
for some prime ideal P of A, and some prime ideal Q of B not containing J .

Claim 2. If P is minimal in A, then P f is minimal in R.

Let H be a prime ideal of R such that H ⊆ P f . Assume that H := Q
f

,
for some prime ideal Q of B not containing J . Then, f −1(Q) ⊆ P and
so P = f −1(Q) by minimality. Moreover, for any a ∈ A with f (a) ∈ J ,
(a, 0) ∈ H and so a ∈ P . It follows that f −1(J ) ⊆ P . But, f being surjective
yields

J = f (f −1(J )) ⊆ f (f −1(Q)) = Q

which is absurd. So, necessarily, H = P
′f
1 , for some prime ideal P1 of A.

Minimality forces P1 = P , and then H = P f , as desired.

Claim 3. If Q is minimal in B with J � Q, then Q
f

is minimal in R.

Let H be a prime ideal of R such that H ⊆ Q
f

. Observe that, for any

j ∈ J \ Q, (0, j) ∈ P f for any prime ideal P of A whilst (0, j) �∈ Q
f

.

So, necessarily, H = Q1
f

for some prime ideal Q1 of B with J � Q1. Let
x ∈ Q1. Then, x = f (a) for some a ∈ A. Hence, (a, x) ∈ H and so x ∈ Q.

That is, Q1 ⊆ Q. By minimality, Q1 = Q and therefore H = Q
f

, as desired.
Now, by Claim 1, Z(R) is not an ideal of R. So, if R is non-reduced, then

diam(�(R)) = 3 by [15, Corollary 2.5]. Next, assume that R is reduced.
Then, A is reduced and Nil(B) ∩ J = (0) by [9, Proposition 5.4]. Suppose
that diam(�(R)) ≤ 2. By [15, Theorem 2.2], R has exactly two minimal
prime ideals. If diam(�(A)) = 3, by [15, Theorem 2.6(4)], A has at least
three distinct minimal prime ideals, which lift in R to three distinct minimal
prime ideals by Claim 2, absurd. So, necessarily, diam(�(A)) ≤ 2. Since A

is reduced and Z(A) is not an ideal, by [15, Theorem 2.2], A has exactly two
minimal prime ideals; say, P1 and P2. By Claim 2, (P1)

′f , and (P2)
′f are two

distinct minimal prime ideals of R. Further, since Nil(B) ∩ J = (0), there
is a minimal prime ideal Q of B such that J �⊆ Q (otherwise, J ⊆ Nil(B)

forces J to be null). Hence, by Claim 3, Q
f

is a minimal prime ideal of R and
therefore R has more than two minimal prime ideals, absurd. It follows that
diam(�(R)) = 3, completing the proof of the theorem.

As a first consequence, we recover the result on duplications.
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Corollary 3.11 ([16, Theorem 4.12]). Let D be a ring and I a nonzero
proper ideal of D. If Z(D) is not an ideal of D, then diam(�(D �� I )) = 3.

Next, we show how one may use Theorem 3.10 to construct original ex-
amples of amalgamations R with diam(�(R)) = 3.

Example 3.12. In this example A is non-reduced. Let g:Z4 −→ Z2 be the
ring homomorphism defined by g(0) = g(2) = 0 and g(1) = g(3) = 1. Let
A := Z2 × Z4, B := Z2 × Z2, J := 0 × Z2, and f : A −→ B be the ring
homomorphism defined by f (a, b) = (a, g(b)). Let R := A ��f J . Clearly,
f −1(J ) �= 0, f is surjective, and it is easy to check that f −1(Z(B)) = Z(A)

and Z(A) is not an ideal. By Theorem 3.10, diam(�(R)) = 3. Moreover,
one can check that |Z(R)�| = 11, and gr(�(R)) = 3 since ((0, 0), (0, 1)) −
((0, 2), (0, 0)) − ((1, 0), (1, 0)) − ((0, 0), (0, 1)) is a cycle in �(R).

Example 3.13. In this example A is reduced. Let g:Z6 −→ Z3 be the
ring homomorphism defined by g(0) = g(3) = 0, g(1) = g(4) = 1 and
g(2) = g(5) = 2. Let A := Z6 × Z3, B := Z3 × Z3, J := 0 × Z3, and
f : A −→ B be the ring homomorphism defined by f (a, b) = (g(a), b).
Let R := A ��f J . Clearly, f −1(J ) �= 0, f is surjective, and it is easy to
check that f −1(Z(B)) ⊆ Z(A) and Z(A) is not an ideal. By Theorem 3.10,
diam(�(R)) = 3.

Another result on duplications asserts that “if D is a non-reduced ring
with Z(D) not an ideal of D and I ⊆ Z(D), then diam(�(D �� I )) = 2
provided diam(�(D) = 2)” [16, Corollary 4.14]. This result does not carry
up to amalgamations, in general, and here are two illustrative examples with
A and f (A) + J being non-reduced, respectively.

Example 3.14. This is an example where A is a non-reduced ring, Z(A) is
an ideal of A, J ⊆ Z(f (A) + J ), diam(�(A)) = diam(�(f (A) + J )) = 2,
but diam(R) = 3. Let A := Z4[X]/(X2) and let x denote the class of X

mod (X2). Then, clearly A is non-reduced and Z(A) = {0, 2, x, 2x, 3x, 2 +
x, 2 + 2x, 2 + 3x} is an ideal of A. Let B := Z4 × Z4, J := 0 × Z4 and
f : A �→ B be the ring homomorphism defined by f (a +bx) = (a, a). Hence,
f −1(J ) �= 0, f (A) + J = B and so diam(�(A)) = diam(�(B)) = 2. We
also have J ⊆ Z(B) = Z(f (A) + J ). We claim that diam(�(R)) = 3.
Indeed, (1, (1, 2)) = (1, f (1) + (0, 1)) ∈ R, (0, (0, 2)) = (0, f (0) +
(0, 2)) ∈ R and (1, (1, 2))(0, (0, 2)) = 0. So (1, (1, 2)) ∈ Z(R)∗. Also
(x, (0, 1)) = (x, f (x)+ (0, 1)) ∈ R, (3x, (0, 0)) = (3x, f (3x)+ (0, 0)) ∈ R

and (x, (0, 1))(3x, (0, 0)) = 0 and so (x, (0, 1)) ∈ Z(R)∗. Finally, notice that
(1, (1, 2))(x, (0, 1)) = (x, (0, 2)) �= 0. Also, if d((1, (1, 2)), (x, (0, 1))) =
2, then let (1, (1, 2)) − U = (a + bx, (a, a) + (0, k)) − (x, (0, 1)) be a
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path in �(R). Then a + bx = 0 forces a = b = 0. So U = (0, (0, k)).
But (0, (0, k))(x, (0, 1)) = 0 yields k = 0 and so U = 0, absurd. Hence
d((1, (1, 2)), (x, (0, 1))) = 3 and therefore diam(�(R)) = 3, as desired.

Example 3.15. This is an example where f (A) + J is non-reduced,
Z(f (A) + J ) is an ideal of f (A) + J , J ⊆ Z(f (A) + J ), diam(�(A)) =
diam(�(f (A) + J )) = 2, but diam(R) = 3. Let A := Z6, B := Z2[X]/(X3)

and let J := xB, where x denotes the class of X mod (X3). We have Z(B) =
{0, x, x2, x + x2} = (x) = J . Let f : A �→ B be the ring homomorphism
defined by f (0) = f (2) = f (4) = 0; f (1) = f (3) = f (5) = 1. Then,
f −1(J ) �= 0, f (A) + J = B and so diam(�(A)) = diam(�(B)) = 2.
We claim that diam(�(R)) = 3. Indeed, (3, 1) = (3, f (3) + 0) ∈ R,
(2, 0) = (2, f (2) + 0) ∈ R and (3, 1)(2, 0) = 0. Then (3, 1) ∈ Z(R)∗.
Also (2, x) = (2, f (2) + x) ∈ R, (0, x2) = (0, f (0) + x2) ∈ R and
(2, x)(0, x2) = 0. Then (2, x) ∈ Z(R)∗. Notice that (3, 1)(2, x) = (0, x) �=
(0, 0). If d((3, 1), (2, x)) = 2, then let (3, 1) − U = (a, f (a) + j) − (2, x)

be a path in �(R). Then 3a = 0 = 2a yields a = 0. So U = (0, j). But
(3, 1)(0, j) = 0 forces j = 0 and so U = 0, absurd. Hence d((3, 1), (2, x)) =
3 and therefore diam(�(R)) = 3, as desired. Moreover, one can check that
|Z(R)�| = 12, and gr(�(R)) = 3 since (0, x) − (0, x2) − (2, 0) − (0, x) is a
cycle in �(R).

In this vein, we would like to make the following conjecture:

Conjecture 3.16. In the above notation, assume that both A and f (A)+J

are non-reduced, Z(A) and Z(f (A) + J ) are ideals respectively of A and
f (A) + J , J ⊆ Z(f (A) + J ), and diam(�(A)) = diam(�(f (A) + J )) = 2.
Then, diam(�(R)) = 2.

4. On the girth of amalgamations

This section deals with the girth of the zero-divisor graph of the amalgamation
R := A ��f J for various settings of A and f (A) + J .

Consider the following conditions:

(C5) For any nonzero distinct elements i, j ∈ J , ij �= 0.

(C6) For any nonzero distinct elements a, b ∈ f −1(J ), ab �= 0.

(C5) There are nonzero distinct elements i, j ∈ J with ij = 0.

(C6) There are nonzero distinct elements a, b ∈ f −1(J ) with ab = 0.

Theorem 4.1. In the above notation, assume f −1(J ) �= 0.

(1) If (C5) or (C6) holds, then gr(�(R)) = 3.



ZERO-DIVISOR GRAPHS OF AMALGAMATIONS 187

(2) If “A is a domain and |J | = 2” or “f (A)+J is a domain and |f −1(J )| =
2”, then gr(�(R)) = ∞.

(3) If “A is a domain, |J | ≥ 3, and (C5) holds” or “f (A) + J is a domain,
|f −1(J )| ≥ 3, and (C6) holds”, then gr(�(R)) = 4.

Proof. (1) Let i, j be nonzero distinct elements of J with ij = 0 and let
0 �= a ∈ f −1(J ). Clearly, (0, i) − (a, 0) − (0, j) − (0, i) is a cycle in �(R)

and so gr(�(R)) = 3. Let a, b be nonzero distinct elements of f −1(J ) with
ab = 0 and let 0 �= i ∈ J . Then, (a, 0) − (0, i) − (b, 0) − (a, 0) is a cycle in
�(R) and therefore gr(�(R)) = 3.

(2) Assume that A is a domain and let J = {0, i}. Suppose that �(R)

contains a cycle of length n, say, x1−x2−· · ·−xn−x1 with xk := (ak, f (ak)+
ik) for k = 1, . . . , n. If a1 �= 0, then a2 = an = 0. So i2 �= 0 and in �= 0.
Thus i2 = in = i and so x2 = xn, absurd. If a1 = 0, then x1 = (0, i). Since
a2a3 = 0, then either a2 = 0 or a3 = 0, yielding x2 = x1 or x3 = x1, absurd.
It follows that gr(�(R)) = ∞.

Next, assume that f (A) + J is a domain and |f −1(J )| = 2. Suppose
that �(R) contains a cycle of length n, say, x1 − x2 − · · · − xn − x1 with
xk := (ak, f (ak) + ik) for k = 1, . . . , n. If f (a1) + i1 �= 0, then f (a2) + i2 =
f (an) + in = 0. So 0 �= a2 and 0 �= an ∈ f −1(J ) with a2 �= an, absurd. If
f (a1)+i1 = 0, then 0 �= a1 ∈ f −1(J ), and since (f (a2)+i2)(f (a3)+i3) = 0,
we obtain 0 �= a2 ∈ f −1(J ) or 0 �= a3 ∈ f −1(J ), absurd. It follows that
gr(�(R)) = ∞.

(3)Assume that A is a domain. We claim that |A| ≥ 4. Indeed, if A = {0, 1},
then 1 ∈ f −1(J ) (since f −1(J ) �= 0 by hypothesis) which forces J = B,
absurd. Assume that |A| = 3 and set A = {0, 1, a}. Necessarily, a ∈ f −1(J )

with a2 = 1, hence 1 = (f (a))2 ∈ J , absurd, proving the claim. Next, assume
that |J | ≥ 3 and (C5) holds. Let a ∈ f −1(J ) \ {0, 1} and let b ∈ A \ {0, 1, a}.
Then, 0 �= ab ∈ f −1(J ) with a �= ab. Now, let i, j be two nonzero distinct
elements of J . Then (a, 0)−(0, i)−(ab, 0)−(0, j)−(a, 0) is a cycle in �(R)

and so gr(�(R)) ≤ 4. Suppose that (x, f (x)+ i)− (y, f (y)+j)− (z, f (z)+
r)−(x, f (x)+ i) is a cycle in �(R). If x �= 0, necessarily, y = z = 0, whence
j �= 0 and r �= 0 with rj = 0, absurd. If x = 0, then i �= 0. Moreover, if
y = 0, then j �= 0 with ij = 0, absurd; and if y �= 0, then z = 0 and so r �= 0,
yielding ir = 0, absurd. Consequently, gr(�(R)) = 4.

Next, assume that f (A) + J is a domain, |f −1(J )| ≥ 3, and (C6) holds.
Let a, b be two nonzero distinct elements of f −1(J ) and let 0 �= i ∈ J .
Clearly, (a, 0) − (0, i) − (b, 0) − (0, i2) − (a, 0) is a cycle in �(R) and so
gr(�(R)) ≤ 4. Suppose that gr(�(R)) = 3 and let (a, f (a) + i) − (b, f (b) +
j)−(c, f (c)+r)−(a, f (a)+i)be a cycle in�(R). Iff (a)+i �= 0, necessarily,
f (b) + j = f (c) + r = 0, hence b, c are two nonzero distinct elements of
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f −1(J ) with bc = 0, absurd. If f (a) + i = 0, then 0 �= a ∈ f −1(J ), and
(f (b) + j)(f (c) + r) = 0 forces f (b) + j = 0 or f (c) + r = 0, hence
0 �= b ∈ f −1(J ) with ab = 0 or 0 �= c ∈ f −1(J ) with ac = 0, absurd.
Consequently, gr(�(R)) = 4, completing the proof of the theorem.

The special case where both A and f (A) + J are domains is given below.

Corollary 4.2. Assume that both A and f (A) + J are domains with
f −1(J ) �= 0. Then, gr(�(R)) = 4.

Proof. The proof is straightforward via Theorem 4.1 since (C5) and (C6)

always hold in the domain setting, and |J | = 2 or |f −1(J )| = 2 would yield
J = B (whereas J is by hypothesis proper).

We recover a well known result on the girth of duplications, as shown below.

Corollary 4.3 ([16, Proposition 3.2]). Let D be a domain and let I be a
nonzero proper ideal of D. Then, gr(�(D �� I )) = 4.

The special case, where neither A nor f (A)+J is a domain, is given below.

Proposition 4.4. Assume that Z(A) �= 0 and f is injective with f −1(J ) �=
0. Then, gr(�(R)) = 3.

Proof. Let a and b be nonzero elements of A such that ab = 0 (possibly,
a = b) and let 0 �= c ∈ f −1(J ). If ca = 0 or cb = 0, then c ∈ f −1(J )∩Z(A).
If ca �= 0 and cb �= 0, then ca ∈ f −1(J ) ∩ Z(A). Thus, without loss of
generality, we assume that f −1(J )∩Z(A) �= {0}. Next, let 0 �= x ∈ f −1(J )∩
Z(A) and let 0 �= y ∈ A such that xy = 0. Since f is injective, f (x) �= 0 and
f (y) �= 0. It follows that (y, f (y))− (x, 0)− (0, f (x))− (y, f (y)) is a cycle
in �(R) and therefore gr(�(R)) = 3.

We recover a well known result on the girth of duplications, as shown below.

Corollary 4.5 ([16, Proposition 3.1]). Let D be a ring with Z(D) �= 0
and let I be a nonzero proper ideal of D. Then, gr(�(D �� I )) = 3.

We close this section with some illustrative examples. First, we show how
one may use Theorem 4.1 to construct original examples of amalgamations R

with gr(�(R)) = 3, 4, or ∞.

Example 4.6. Let A := Z6, B := Z6×Z6, and J := 2Z6×Z6. Consider the
ring homomorphism f : A → B, defined by f (a) = (a, a); and let R := A ��f

J . Clearly, f −1(J ) = 2A and (C5) holds. By Theorem 4.1(1), gr(�(R)) = 3.

Next, we revisit Example 3.5 to compute the girth using Theorem 4.1.

Example 4.7. Let A := Z4, B := Z2[X], J := XB, and f : A −→ B be
the ring homomorphism defined by f (0) = f (2) = 0 and f (1) = f (3) =
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1. Let R := A ��f J . Clearly, f −1(J ) = {0, 2} and, by Theorem 4.1(2),
gr(�(R)) = ∞.

Example 4.8. Let A := Z, B := Z6, J = 2B, and f : A −→ B be the
canonical ring homomorphism. Let R := A ��f J . Clearly, f −1(J ) = 2A,
J = {0, 2, 4} and (C5) holds. By Theorem 4.1(3), gr(�(R)) = 4. Moreover,
Z�(J ) = {3}. Hence Z(R)� = E1 ∪ E2 ∪ E3 = {(0, 2), (0, 4)} ∪ {(6n + k, 0) |
n ∈ Z�, k = 0, 2, 4} ∪ {(6n + k, 3) | n ∈ Z�, k = 1, 3, 5}. By Theorem 3.1,
diam(�(R)) = 2.

The next two examples show that the domain assumption in assertions (2)
and (3) of Theorem 4.1 are not superfluous.

Example 4.9. For assertion (2) of Theorem 4.1, let A := Z4 and let B :=
Z2[X]/(X2). Let J := (x) = {0, x} (i.e., |J | = 2), where x denotes the
class of X mod (X2), and f : A −→ B be the ring homomorphism defined
by f (0) = f (2) = 0 and f (1) = f (3) = 1. Let R := A ��f J . Clearly,
f −1(J ) = {0, 2} (i.e., |f −1(J )| = 2), f (A) + J = B, and it is easy to check
that Z(R)∗ = {(0, x), (2, 0), (2, x)} and (0, x) − (2, 0) − (2, x) − (0, x) is a
cycle in �(R); that is, gr(�(R)) = 3 < ∞. Notice that diam(�(R)) = 1.

Example 4.10. For assertion (3) of Theorem 4.1, consider the amalgama-
tion R := A ��f J of Example 4.7. Clearly, A is not a domain, |J | > 3 (in
fact, infinite), (C5) holds (since B is a domain) whilst gr(�(R)) = ∞.

The next example shows that the injectivity assumption in Proposition 4.4
is not superfluous.

Example 4.11. Let A := Z4, B := Z2 ×Z2, J := 0 ×Z2, and f : A −→ B

be the ring homomorphism defined by f (0) = f (2) = 0 and f (1) = f (3) =
1. Let R := A ��f J . Clearly f −1(J ) = {0, 2} and f (A) + J = B. Also, we
have

Z(R)� = {x := (0, (0, 1)), y := (1, (1, 0)),

z := (2, (0, 0)), u := (2, (0, 1)), v := (3, (1, 0))}.
Since xy = xz = xv = 0 and zu = 0 are the only connected vertices, there is
no cycle in �(R). Consequently, both A and f (A) + J are non-domains with
gr(�(R)) = ∞. Notice that diam(�(R)) = 3.



190 S. KABBAJ AND A. MIMOUNI

REFERENCES

1. Anderson, D. D., Commutative rings, in “Multiplicative ideal theory in commutative algebra”,
Springer, New York, 2006, pp. 1–20.

2. Anderson, D. D., and Naseer, M., Beck’s coloring of a commutative ring, J. Algebra 159
(1993), no. 2, 500–514.

3. Anderson, D. F., and Livingston, P. S., The zero-divisor graph of a commutative ring, J.Algebra
217 (1999), no. 2, 434–447.

4. Anderson, D. F., and Mulay, S. B., On the diameter and girth of a zero-divisor graph, J. Pure
Appl. Algebra 210 (2007), no. 2, 543–550.

5. Axtell, M., Coykendall, J., and Stickles, J., Zero-divisor graphs of polynomials and power
series over commutative rings, Comm. Algebra 33 (2005), no. 6, 2043–2050.

6. Axtell, M., and Stickles, J., Zero-divisor graphs of idealizations, J. Pure Appl. Algebra 204
(2006), no. 2, 235–243.

7. Beck, I., Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208–226.
8. D’Anna, M., A construction of Gorenstein rings, J. Algebra 306 (2006), no. 2, 507–519.
9. D’Anna, M., Finocchiaro, C. A., and Fontana, M., Amalgamated algebras along an ideal, in

“Commutative algebra and its applications”, Walter de Gruyter, Berlin, 2009, pp. 155–172.
10. D’Anna, M., Finocchiaro, C. A., and Fontana, M., Properties of chains of prime ideals in an

amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 1633–1641.
11. D’Anna, M., and Fontana, M., The amalgamated duplication of a ring along a multiplicative-

canonical ideal, Ark. Mat. 45 (2007), no. 2, 241–252.
12. D’Anna, M., and Fontana, M., An amalgamated duplication of a ring along an ideal: the

basic properties, J. Algebra Appl. 6 (2007), no. 3, 443–459.
13. DeMeyer, F., and Schneider, K., Automorphisms and zero divisor graphs of commutative

rings, in “Commutative rings”, Nova Sci. Publ., Hauppauge, NY, 2002, pp. 25–37.
14. Dorroh, J. L., Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38 (1932), no. 2,

85–88.
15. Lucas, T. G., The diameter of a zero divisor graph, J. Algebra 301 (2006), no. 1, 174–193.
16. Maimani, H. R., and Yassemi, S., Zero-divisor graphs of amalgamated duplication of a ring

along an ideal, J. Pure Appl. Algebra 212 (2008), no. 1, 168–174.
17. Mulay, S. B., Cycles and symmetries of zero-divisors, Comm. Algebra 30 (2002), no. 7,

3533–3558.
18. Nagata, M., Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Inter-

science Publishers, John Wiley & Sons, New York-London, 1962.

DEPARTMENT OF MATHEMATICS AND STATISTICS
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN 31261
SAUDI ARABIA
E-mail: kabbaj@kfupm.edu.sa

amimouni@kfupm.edu.sa


