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ON POLYGONS OF ORDER = IN PROJECTIVE
n-SPACE, WITH AN APPLICATION TO
STRICTLY CONVEX CURVES

FR. FABRICIUS-BJERRE

In this paper we shall be concerned with open and closed polygons
of order n in the real projective space R". Such polygons were first
treated by D. Derry [2].

In Section 1 geometric and analytical conditions that an open polygon
7 be of order n are given, and it is shown that there exist hyperplanes
which have no points in common with z. In the next section we con-
sider open polygons in the affine space and introduce the concept of
monotone sequences of points. In Section 3 the closed polygons are
treated, and in Section 4 it is proved that if a hyperplane H has at
least n points in common with a strictly convex curve, then these
points are the vertices of a polygon of order n—1, i.e. form a mono-
tone sequence of points in H.

1. Open polygons of order n.

1.1. In the real projective space R®, n =2, let m points P,,P,,...,P,,
be given. If consecutive points are joined by segments, we obtain an
open polygon with the vertices P,,P,,...,P, and the sides P,P, P,P,,
«o,Pp_1P,. The polygon may be closed by addition of one of the
segments joining P,, and P,.

If a hyperplane H has points in common with the side P;P,,,, there
are the following possibilities: H can intersect the side in a vertex or
in an interior point of the side (a sidepoint), or H can contain the segment
P,P,.,. In the last case we shall say that H has the points P; and P, ,
in common with the polygon, disregarding the interior points of the side.

An open or closed polygon = is called a polygon of order » provided
it satisfies

1° the d¢mension condition: the polygon = is not contained in a hyper-
plane, and
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2° the order condition: no hyperplane has more than » points in com-
mon with 7.

A polygon of order = is denoted x,. From 1° it follows, that the
polygon has at least n+ 1 vertices.

1.2. An open polygon P,P,...P, can be represented by coordinates
in the following way. The vertex P,, t=1,2,...,m, is determined by a

vector x;=(x0x1,...,2,") and the side P,P;,, by the parametric
equation
(1) T = A&+ Piira s

where the homogeneous parameters 4; and u,;, for all the points on the
side, either have the same sign or opposite signs. We normalize the
vectors x; and the parameters A, and u; in the following way. The
homogeneous vector x, is chosen arbitrarily. Next the vector x, is chosen
so that the parameters 4, and , for the points on the side P, P, have the
same sign. Then z; is chosen so that the parameters 4, and u, for the
points on the side P,P; have the same sign. In this manner we continue
until all the vectors are normalized. Finally we normalize the parameters
A; and u; choosing all of them positive and with the sum A;+ pu;=1.

Assume mzn+1. To each set of n+1 vertices P;,P,,...P;
there is attached a determinant formed by corresponding coordinate
vectors:

(2) D(tg,89, .« 38 4q) = [0, @y - - - x,-nﬂl .

It vanishes if and only if the n+1 points are linearly dependent i.e.
are contained in a hyperplane.

1.3. An open polygon = of order » can be characterized by two dif-
ferent conditions, a purely geometric one and a coordinate condition:

THEOREM l1.1. An open polygon 7 with at least n+ 1 vertices has order n
if and only if no hyperplane through n vertices of the polygon has other
points in common with .

THEOREM 1.2. An open polygon x with at least n+ 1 vertices has order n
if and only if the determinants D have the same sign for all increasing
sequences of indices 1, <ty < ... <,y

To prove the theorems we consider the three statements:

A. An open polygon with at least n+ 1 vertices has order =.

B. No hyperplane through n vertices of the polygon has other points
in common with the polygon.

C. All the determinants D(¢,,1%,, . . .,%,;) have the same sign.
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If we can show that
A=>B=(C= 4,

Theorems 1.1 and 1.2 will be proved.
It is obvious that 4 = B. To show that B => C we verify that

3) signD(1,2,...,n,n+1) = signD(iy,%g, . . ., 00, 0041)

for any sequence of increasing indices ¢; <t,< ... <%,;.
Consider first the determinants

(4) D(1,2,...,n,m+1) and D(1,2,...,n,%,.,),
where ¢,,,>n+ 1. The hyperplane
(5) @y @y ... 2, 2| =0

has only the vertices P,,P,,...,P, in common with the polygon m.
Putting x=Ax, ., + ux,., we get

(6) AD(1,2,...,n,n+1)+uD(1,2,...,0,m+2) = 0.

None of the two determinants in (6) is equal to zero, and they must

have the same sign since the hyperplane (5) does not intersect the side

P, .P,... Analogously we find that the last determinant in (6) has

the same sign as the determinant D(1,2,...,n,m2+3), and continuing

in this manner we see that the two determinants in (4) have the same sign.
Next we consider the determinants

(7) DL2....,n-1,n,,,) and D(1,2,...,n—1,%,,%,,),
where ¢, >n. The hyperplane

(8) [y g oo Xpy xx,-”+l| =0

has only the points Py, P,,...,P, ;,P;  in common with the polygon
and, consequently, no points in common with the sub-polygon
P,P,,,...P,. Exactly as above it is seen that the two determinants
in (7) have the same sign, and continuing in this manner we finally find
that the equation (3) is true.

Now it only remains to prove that C' = 4. Since the determinants
D are different from zero, any » + 1 vertices in x are linearly independent,
i.e. the dimension condition 1° is satisfied.

To show that the order condition 2° holds, we choose on the polygon
the ordered sequence of #+1 points @,,@,, .. .,Q,,, determined by the
n+1 vectors y;,Ys, - - -, Yns+1- Lhe points @, are either points on different
sides of m or vertices, which are not endpoints of those sides. Conse-
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quently, each y, is either an z; (corresponding to a vertex of =) or a
linear combination, with positive coefficients, of two consecutive vectors
x; and w;,, (corresponding to a sidepoint on 7). The determinant

D' = ly195 . Yyl

may be decomposed into a sum of determinants of type (2) with positive
coefficients, and these determinants cannot all vanish because at least
n+ 1 different vectors x; must occur in the expression for D’. Hence
D’ is different from zero, and the n+1 points @, cannot be situated
in a hyperplane. Thus the order condition is satisfied, and we have
proved that C' = 4. This finishes the proof of Theorems 1.1 and 1.2.

1.4. We now turn to the last theorem on open polygons of order n:

THEOREM 1.3. For every open polygon of order n there exist hyperplanes
which have no point in common with it.

Let the vertices of =, be denoted P,,P,,...,P,, m2n+1. We con-
sider the hyperplane H which contains the n vertices P, P,,...,P, and
consequently the sub-polygon P,...P,. Since x, has order n the hyper-
plane H has only the vertex P, in common with the side P,P, ,, and no
point in common with the sub-polygon P,_,...P,,.

We now consider another hyperplane H’ which passes through a point
P’; on the complementary segment of the side P,P,, a point P’, on the
complementary segment of the side P,P,, and so on, finally a point P’,
on the complementary segment of the side P, P, ;. The points P’; are
chosen in the “neighbourhood” of the points P; such that the n points
P’; are linearly independent, and furthermore such that H' has no point
in common with the sub-polygon P,,...P,. However, the hyperplane
H' has no point in common with the polygon P,...P,,, either. For,
otherwise, H' would contain the whole polygon P,...P,,,, which is
impossible, since the n+1 vertices P,,P,,...,P,,, are linearly inde-
pendent. Consequently, the hyperplane H’ has the desired property.

2. Monotone sequences of points.

2.1. In the affine space of n dimensions we consider a polygon 7
with the vertices Py, P,,...,P,, m2n+1. If we add a “first coordinate’
z%=1 to the affine coordinates (z;!,z2 ...,z,") of P, we obtain coor-
dinate vectors x; which satisfy the conditions of normalization in Section
1.2 so that the sides P,P,,, are determined by equation (1), where A,
and u; are positive with the sum 1.
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With these coordinates of z; in the expression (2), the sign of the
determinant D(iy,%,, .. .,1,,,) indicates the orientation of the affine space
determined by the n+1 points P;,P,,...,P; o taken in this order.

In his paper [4], J. Hjelmslev has called a sequence of points Py, P,,

.., P, in the affine space a monotone sequence if any n+ 1 of the points,
taken in the natural order, determine the same orientation of the space,
i.e. the determinants D have the same sign for any choice of increasing

indices. As a consequence of Theorem 1.2 we get

THEOREM 2.1. A sequence of points P,,P,,...,P, in the affine R is
monotone if and only if the polygon with the sides P,P,,P,P,,...,P, P,
has order n.

2.2. From Theorem 1.3 it follows that, by a suitable choice of a hyper-
plane at infinity any open polygon of order », can be placed in an affine
space, and in this space the vertices form a monotone sequence. Hence
we introduce in the projective space the notion of monotone sequence
of points in the following way:

A sequence of points Py, P,,...,P,, m=n+1, in a projective R", i8
called monotone, if the points in this order are the vertices of some open
polygon of order n.

As a consequence of Theorem 1.2 we find that a necessary and sufficient
condition that a sequence of points Py, P,,...,P, be monotone is that
it is possible to normalize their coordinate vectors z;,z,,...,%, such
that the determinants D(i,%,, . . .,%,,;) have the same sign for all sets

of increasing indices. The sides P,P,,P,P,,...,P,,_,P,, must then be
chosen in accordance with (1), the parameters 4; and u; being positive
with the sum 1.

If m =n+ 1, the only condition for monotonicity is that D(1,2,...,n+1)
%0, i.e., the n+1 points are linearly independent. No matter how we
choose the sides of the polygon and how we arrange the points, the
polygon will have order n.

3. Closed polygons of order n.
3.1. Corresponding to Theorem 1.1 for open polygons, we shall prove
for closed polygons

THEOREM 3.1. A closed polygon m with at least n+ 2 vertices (n+ 2 sides)
has order n if and only if no hyperplane through n vertices of the polygon
has other points in common with it.



226 FR. FABRICIUS-BJERRE

It is obvious that the above condition that a closed polygon be of
order n is necessary. The condition is also sufficient which may be seen
as follows.

The dimension condition 1° is clearly satisfied. To show that the
order condition holds, we assume the existence of a hyperplane H having
at least n+ 1 points in common with z. If the number of points of
intersection is exactly n+ 1, there is at least one side in n which has
at most one endpoint, but no other points in common with H. This
side may be thought of as removed. If there are more than n+ 1 points
of intersection we remove an arbitrary side. In both cases an open
polygon remains having at least n+ 1 points in common with the hyper-
plane H, and for which the condition in Theorem 3.1 is satisfied. In
virtue of Theorem 1.1 the open polygon has order n; this implies that
the hyperplane H cannot exist. Thus the closed polygon has order =.

It may be noted that the theorem is not true if = has exactly n+1
vertices and sides, say the 3-side of odd order in the plane or the 4-side
of even order in the usual space.

3.2, If an arbitrary side in a closed polygon of order n is removed
we get an open polygon of order n. Conversely, an open polygon of
order n with the vertices P,,P,,...,P,, may be closed by the addition
of one of the segments P, P, without increasing its order.

Let H denote a hyperplane having no points in common with the
open polygon x,. The hyperplane intersects one of the segments P, P,
and has thus one point in common with one of the closed polygons
PP,,...,P,,P, and no point in common with the other. Now, the
minimum and maximum numbers of points which a hyperplane has in
common with a closed polygon have the same parity, and since the
maximum number, the order of the closed polygon, must be either =
or n+ 1, there are two possibilities:

If » is an even number and we close 7, by the segment which has no
point in common with H we get a closed polygon of even order, i.e.
of order n, while the order increases to n + 1 if we use the complementary
segment. If » is an odd number the polygon will be closed without
increase of order by the addition of the segment which intersects H,
while the order increases to n+1 if the other segment is used.

It is then obvious that for n» even, and only in this case, a closed
polygon of order n may be considered as situated in an affine space R".

3.3. In § 2 we have called a sequence of points P,,P,,...,P, a mono-
tone sequence if the points are the vertices of some open polygon of
order n. If the polygon is closed by the addition of one of the segments
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P,,P;, without increase of order, and we remove another side P,_,P;
of the polygon, we obtain a new open polygon of order n. It then follows
that if P,,P,,...,P,, is a monotone sequence of points in the projective
R this property will be unchanged if we choose any of the points as
the first point of the sequence, preserving the cyclic order of the points.

4. Strictly convex curves.

4.1. The notion of strict convexity has been introduced by M. Barner
[1]. In the projective R" a closed, » times differentiable curve is called
strictly convex if, for any n —1 points of the curve, there exists at least
one hyperplane having these, but no other points in common with the
curve. The definition is easily extended to open curves.

In a recent paper [3] the author has stated some properties of plane
strictly convex curves among which we recall the following. Let a line {
have the points P,,P,,...,P,, m=2, in common with a curve ¢ of
bounded order, the points being taken in the order determined by the
parametrization of the curve. By the chord belonging to the arcP,P;.,
we shall mean that one of the two segments P,P,,, whose union with
the arcP,P,,, is a closed curve of even order. It is shown that if ¢ is
strictly convex, the chords P,P,,P,P,,...,P, _,P, (and, if ¢ is closed,
in addition P, P,;) make up an open or closed polygon of order 1, i.e.
a segment P,P,, or the whole line /, according as the curve ¢ is open or
closed. In the following this theorem will be generalized to curves in
spaces of arbitrary dimensions.

4.2. Let a hyperplane H have the points P,,P,,...,P,, mZn, in
common with the strictly convex curve ¢, the points being taken in
the order determined by the parametrization of the curve. The curve ¢
may be open or closed, and we assume that ¢ is of bounded order, i.e.
any hyperplane has at most finitely many points in common with the
curve. As for plane curves, the chord P,P,,, is defined as that segment
P,P,,, which together with the arcP,P,,, forms a closed curve of even
order. A hyperplane which intersects the chord has at least one point
in common with the corresponding arc, and the number of intersections
will be odd if the hyperplane does not contain any tangent to the curve.

The chords P,P,,P,P,,...,P,_,P,, and, if ¢ is closed, in addition
P, P,, form a polygon 7z in the hyperplane H. It will be proved that
7 has order n— 1.

We consider simultaneously the two cases where ¢ (and @) is open
and where ¢ is closed and & has at least n + 1 vertices, whereas we after-
wards treat the special case where c is closed and n has exactly n vertices
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(and n sides). In the first cases we may apply the analogous Theorems
1.1 and 3.1 with »—1 instead of =.

We consider in H a linear subspace R"-2%, containing n—1 vertices
of the polygon . This subspace cannot contain a new vertex. Otherwise
no hyperplane through the given n — 1 vertices, having only these points
in common with the curve, could exist, which contradicts the assumption
that c is strictly convex. If R”-2 had an interior point S of a chord in
common with 7, every hyperplane through the n—1 vertices and 8
would have at least one more point in common with the curve (situated
on the arc corresponding to the chord), contrary to the definition of
strictly convex curves. From Theorems 1.1 and 3.1 it follows that the
polygon = (in H) has order n — 1 since no B*-2 in H through n — 1 vertices
has other points in common with the polygon.

There only remains the case where ¢ is closed and = has n vertices.
The order of # must be either »—1 or »n, and from the definition of
chords it follows that the order of = and the order of ¢ have the same
parity. But since c is strictly convex, the order of ¢ has the same parity
as the number n— 1, and consequently = has the order n —1. Thus we
have proved

TrEorEM 4.1. If a hyperplane H has the points Py, P,,...,P,, m=n,
tn common with a strictly convex curve of bounded order in R™, the chords
PP, P,P,,...,P, P, (and if ¢ ts closed, in addition P,P,) form a
polygon of order n— 1.

4.3. Using the concept of monotone sequence in R (cf. § 2) we find
from Theorem 4.1 that the common points of a hyperplane H and a
strictly convex curve ¢ of bounded order always form a monotone sequence
in H, and that the sides of the corresponding polygon of order n—1
are chords belonging to the curve.

We may then, as in the plane, say that the curve c is linearly monotone
along the hyperplane H, and if we call a curve, as a whole, linearly
monotone if it is linearly monotone along any hyperplane having at
least n points in common with the curve, we can give Theorem 4.1
the same formulation as Theorem 4.1 in the paper [3] quoted:

THEOREM 4.2. Any strictly convex curve of bounded order in R™ 1is
linearly monotone.

For plane curves the converse problem, whether a linearly monotone
curve is strictly convex, has been solved [3]. For curves in spaces of 3
or more dimensions this problem remains unsolved.
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ApDED IN PROOF: It has been drawn to the authors attention that
Theorem 1.2 for polygons in an affine space has been proved by Schoen-
berg and Whitney [5, p. 142].
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