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REMARKS ON COMPACT MAPPINGS

ULF RONNOW

In Sections 1 and 2 of this note simple proofs are given for two theo-
rems on compact mappings. Theorem 1 states a sufficient condition
for a mapping to be onto and may be considered as a generalization of
the Fundamental Theorem of Algebra. Theorem 2 deals with the inverse
images of points under compact mappings. Results related to Theorem 1
have been obtained previously, in particular by G.T.Whyburn [3,
Theorem 5.2, p. 5] and [4, Theorem 1.1, p. 78] and recently by M. Rein-
bach [2, Lemma 1, p. 1399]. However, these results neither contain nor
are contained in that of the present note. Reinbach’s lemma deals with
convergence spaces. In Section 3 this lemma and Theorem 1 below are
linked together by means of the notion of k-space introduced by J. R.
Kelley [1, pp. 230, 240]. The author is indebted to Mr. Anton Jensen
for suggesting the use of that notion in this context and for valuable
discussions.

NoraTioN AND DEFINITIONS. In the following 7', and 7, denote
topological spaces. All mappings are assumed to be continuous.

A mapping f is said to be open (closed) if it maps open (closed) sets
onto open (closed) sets.

A mapping f:T, - T, is said to be compact if f-}(C) is compact for
every compact set CcT',.

A mapping f: 7, - T, is said to be locally topological if every x € T'
possesses an open neighbourhood O(z) such that the restriction of f to
O(x) is a homeomorphism.

1.
Lemma 1. Let T, be a locally compact Hausdorff space. If f:T), - T,
18 @ compact mapping, then f is closed.

Proor. Let F<T,; be closed, and let z € f(F). If O(x) is an open
neighbourhood of  with compact closure, f-}O(x)) is closed and com-
pact in 7';, and we have
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4 = Fnf-Yf(F)n 0)) < {-(0@).

Hence Acf-Y(O(z)), which shows that A is compact. Consequently
f(A4) is compact and therefore closed. Since f(F)n O(zx) < f(4) and
AcF, we have

JF)NO() < f(4) c f(F).

Now, every neighbourhood of x intersects O(z) in a neighbourhood which
has points in common with f(F). Hence

zef(F)nO() c f(F),
which proves the lemma.

THEOREM 1. Let T, be a locally compact, connected Hausdorff space.
If f:T, - T, is a compact mapping such that f(T,) is open, then f(Ty)="T,.

Proor. From Lemma 1 it follows that f(7';) is closed. Hence f(7';)
is both open and closed in the connected space T',.

2

LemMA 2. Let T, be a Hausdorff space and T, a locally compact, con-
nected Hausdorff space. If f:T, -~ T, is a compact and locally topological
mapping, then, for each x € Ty, the set f~1(x) ts finite, and the number of
its points 18 constant on T,

Proor. {z}cT, is compact, and thus f-'(x) is compact in 7';. For
each y € f~1(x) there exists an open neighbourhood O(y) of y such that
f:0(y) > f(O(y)) is a homeomorphism. Since this open covering of
f~Y(z) by the neighbourhoods O(y) has a finite subcovering, f-1(z) must
be finite.

Let n(x), x € T,, denote the number of points in f-1(x), and let ny=
minn(z) be assumed at x,. Then there exists an open set U< T, such
that every y € f-!(x,) has an open neighbourhood O(y) which, by f, is
mapped homeomorphically onto U. Let V denote the set of those z € T',
for which f-1(x) contains more than n, points. Putting

¢=U ow,
yef-1(zo)
we have f(7,\G)2UnV since every point of V has at least one inverse
point outside @. Now f is closed (Lemma 1) and, since 7',\G is closed,

it follows that F(TAG) 2 TnV.

This implies 20¢ UnV. We can therefore conclude that the set of
points z € T', for which f-(x) consists of n, points is open.
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Clearly, V is open. For, if z € V, there exist an open set U< T, con-
taining z, and p (> n,) open, disjoint sets in 7, each of which is mapped
homeomorphically onto U. (Here we use that T, is a Hausdorff space.)
Since T, is connected, V must be empty.

TrEOREM 2. Let f: Ty — T, be a compact mapping of a Hausdorff space
T, into a locally compact Hausdorff space Ty. Let N denote the set of points
of T, at which f is not locally topological. If T,\f(N) is connected and
Y (N) is a proper subset of T,, then f(T)=T,, the set f~1(x) is finite
for every x € T,\ f(N), and the number of its points is constant on T\ f(NV).

Proor. The mapping
[ (TN D) > (TAFV))
satisfies the conditions of Lemma 2. Indeed, f(X) is closed because N
is closed in 7', (Lemma 1). Further, since T, is a locally compact Haus-

dorff space, T, is regular and thus 7T',\ f(N) locally compact. It follows
that the mapping in question is compact.

3.

A collection £~ of subsets of a topological space T' with the property
that KnAd € ¥ whenever K € 4" and 4 €T is closed will be called a
k-collection in 7.

Clearly, if f: T, - T, is a mapping, and X', is a k-collection in 7', then
the sets f(K,), K, € X', form a k-collection in T',.

A mapping f:T, - T, is said to be a k-mapping with respect to the
k-collections ", in T, and X', in T, if f(K,) e X', for K, € 4, and
JUK,) e A, for K,e A,

A topological space 7' is called a k-space with respect to the k-collec-
tion X" if a set A< T is closed if and only if AnK € ¢ for all K € X.

TaeoreM 3. If f:T, - T, 18 a k-mapping with respect to the k-collec-
tions Ay in Ty and A ', in T,, and Ty s a k-space with respect to A,
then f is closed.

Proor. Let A< T, be closed, and assume K € 4 ’,. Then

AnfYK)ex,, fAnfYK)=fA)nKeX,.
Hence f(A) is closed since 7', is a k-space with respect to ¢ ,.

Obviously, the collection of the compact subsets of a topological space
T is a k-collection.

Lemma 3. If T is a locally compact Hausdorff space, then T is a k-space
with respect to the collection of compact sets.



220 ULF RONNOW

ProoF. Assume that A< T has the property that AnC is compact
for each compact set C< 7. If » € 4, and C(x) is a compact neighbour-
hood of z, then C(x)nA is compact and therefore closed, which implies
that z € 4.

Clearly, Lemma 1 is a simple consequence of Theorem 3 and Lemma 3.

A space T in which convergence z, — x of a sequence (z,) to a point
z is defined, such that z, -, z,, > y imply =y and z, > = implies
that every subsequence converges to x, is called a convergence space.

The subsets of a convergence space 7' which are closed in the sense that
they contain the limit points of all convergent sequences contained in
them determine a topology in 7'.

A subset B of a convergence space 7' is said to be sequentially compact,
if every sequence in B contains a subsequence which converges to a
point in B.

The collection of sequentially compact subsets of a space T is a
k-collection.

Lemma 4. Let T be a convergence space, then T is a k-space with respect
to the collection of sequentially compact sets.

Proor. Assume that 4 <7 has the property that AnC is sequentially
compact for each sequentially compact set C. If a sequence (x,) con-
tained in 4 converges to z, then {z,}u{z} is sequentially compact, and
thus A n({r,}u{z}) is also sequentially compact. Hence, a subsequence
of (z,) converges to a point in 4 which must coincide with .

Now, it is easy to see, that Theorem 3 and Lemma 4 imply Lemma 1
in [2, p. 1399].
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