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TERNARY RECURSIVE ARITHMETIC

H. E. ROSE

1. Introduction.

Recursive arithmetics are free variable formalisations of parts of the
elementary theory of natural numbers, in which the only methods of
function definition are recursion and composition (that is, definition by
explicit substitution). In a recent paper [1], Alonzo Church described a
formalisation of recursive arithmetic in which single axioms of composi-
tion and recursion took the place of an infinity of such axioms in earlier
codifications. Church’s system, however, postulates axioms of the propo-
sitional calculus and of mathematical induction, and it is the object of
the present paper to eliminate these axioms in the manner of Good-
stein [2].

Goodstein’s formulation of primitive recursive arithmetic is a free
variable pure equation calculus in which all propositions take the form

A=2B

where A and B are function signs. The axioms of this codification are
infinite in number and consist of the recursive definitions of each func-
tion of the system. On the other hand, Church’s formalisation admits
the connectives of the sentential calculus, variables for propositions and
variables for functions with one or two argument places and, as a con-
sequence of this, has a finite axiom basis. Professor Goodstein suggested
that we should try to find to what extent these opposed approaches may
be reconciled within a single codification; the system, called Ternary
Recursive Arithmetic — TRA, described in this paper is the outcome of
this suggestion. Essentially, we shall show that, if we add to the primitive
basis of Church’s formalisation variables for functions with three argu-
ment places (and the rules for operating them), the propositional vari-
ables and the axioms and rules of the sentential calculus are redundant.
The variables for functions having three argument places are introduced
into TRA because it is necessary to be able to derive the properties of
some three variable equations, for instance — associativity of addition,
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in the early stages of the development and, as the proof schemas (lab
elled E and F) are stated in terms of numerical function variables,
they can be applied only to functions or equations between functions.
Church’s system did not need this concept as its proof schemas (induction)
are stated in terms of propositional variables (and there is no limit
upon the number of numerical variables contained in a particular
proposition).

The codification TRA presented in this paper is a slightly improved
version of the one discussed briefly in [3], the main change being that
only one recursion axiom is required (previously there were two). This
paper is the one that was to have appeared in the Annales de I’Ecole
Normale, Paris.

2, The basis of Ternary Recursive Arithmetic.

Ternary Recursive Arithmetic is a codification of primitive recursive
arithmetic as a logic-free equation calculus (that is, one in which the
sentential calculus, or similar logical structure, is not taken as primitive)
with function variables in which there are two basic entities — functions
and terms. The functions have one, two or three argument places and
are defined by recursion or composition and the terms are defined
explicitly, from these functions, but have no function signs (names)
attached to them. As with Church’s formulation this device gives primi-
tive recursive arithmetic without function variables a finite axiom basis.

The primitive symbols of Ternary Recursive Arithmetic are (a) in-
finite lists of numerical variables a,b,c,a,,b,, ..., 1-function variables
f:g.h, ..., 2-function variables f’,g’,A',..., and 3-function variables
f.g9",k",...; (b) the constant functors s, o, 7, j and k; (c) the functor
connectives R, C, (', C''; (d) the numerical constant 0; (e) the connec-
tive =; and (f) brackets, commas and parentheses. In practice the
primes ’ and "’ indicating the kind of function being used will be omitted
as this will be obvious from the contents of the brackets following the
function sign. We begin by defining the functors.

(i) A 1-functor is one of the following: — the constant functors s, 0 or ¢;
a l-function variable standing alone; C'’f where f is a 2-functor.

(ii) A 2-functor is one of the following: -— the constant functor j; a
2-function variable standing alone; C'pfgh where p is a 3-functor,
f and g are 1-functors and % is a 2-functor.

(iii) A 3-functor is one of the following: — the constant functor k;
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a 3-function variable standing alone; Cpfgh where p, f, g and h are
3-functors; Rfgh where f and g are 2-functors and & is a 3-functor.

A 1-function is a symbol of the form f(a) where f is a 1-functor and a
is a numerical variable, similarly a 2-function has the form g(a,b) (g is a
2-functor) and a 3-function has the form k(a,b,c) (h is a 3-functor). A
term is one of the following: —

(i) the numerical constant 0,

(ii) a numerical variable standing alone,

(iii) f(A4) where f is a 1-functor and A4 is a term,

(iv) f(4,B) where f is a 2-functor and 4 and B are terms,

(v) f(4,B,C) where f is a 3-functor and 4, B and C are terms.
(The italic capital letters 4,B,C,... will always represent terms.) The
expression

A =B,

where A and B are terms, is called an equation. This is the only way in

which terms may be connected and the purpose of the system is to derive

new equations from the axioms by applying the axiom schemas. The
expression A=B+ C=D is called a schema or metatheorem and states
that if A =B is a theorem then C=D is also a theorem.

The axiom schemas of Ternary Recursive Arithmetic, labelled E, F,

T, U, V and W, are as follows. (s(a) will usually be written sa.)

E. f(sa,b,c)=f(a,b,c) F f(a,b,c)=f(0,b,c), where f is a 3-functor.

F. f(0,6)=g(0,b), f(sa,b)=C"hsif(ab), g(sa,b)=C"hsig(a,b)t f(a,b)=

g(a,b), where f and g are 2-functors, h is a 3-functor, ¢ is the successor

function and ¢ is defined by axiom 2.

A=B, A=C} B=C, where A, B and C are terms.

A=BVFf(4,b,c)=f(B,b,c), where f is a 3-functor, 4 and B are terms

and b and ¢ are numerical variables.

V. If an equation involving a numerical variable @ is represented by
P(a) and the result of replacing all occurrences of a by 4 (a term)
in P(a) is denoted by P(A), then P(a) | P(4). (ais a meta-variable).

W. If an equation involving a function variable f is represented by Pf,
the result of replacing all occurrences of f by g (a functor) in Pf is
denoted by Pg and g belongs to the same class of functors as f,
then Pf } Pg. (f is a meta-variable.)

Finally the axioms are given as follows.

o(a)=0.

i(a)=a.

. j(a,b)=a.

. k(a,b,c)=a.

=R

o 1O
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. Rfgh(0,b,c)=f(b,c).
. Rfgh(sa,b,c)=g(Rfgh(a,b,c),h(a,b,c)).
. Cpfgh(a,b,c)=p(f(a,b,c),9(a,b,c),k(a,b,c)).
. C'pfgh(a,b) =p(f(a),9(b), h(a,b)).
. C"f(a)=£(0,a).

In these axioms f, g, h and p are function variables.

© X TS ;

3. The simplest properties.

In the remaining sections of this paper we shall develop TRA to the
point where we can show that it is a codification of that part of primitive
recursive arithmetic which does not involve function variables. The
essential step in this work is the introduction of the notion of an ordered
pair: that is, the definition of three functions w(a,b), m,;a and m,a having
the properties

mw(a,b) =a and  muw(a,b) =b.

Once this has been achieved we can readily show that to every primitve

recursive function f(a,,a,,...,a,) there corresponds a 1-functor f*, be-
longing to TRA, such that
F(@1 g, -, 0_1,0,) = f*(w(ay,wl(ay, . .., 0(a,4,0,)...)));

i.e. there is (at least) one term of TRA corresponding to every primitive
recursive function. [This follows by a simple inductive argument which
will be omitted here.]

We begin by deriving the basic properties of equality.

1. a=a.

This is derived by taking ¢(a) for 4, a for B and a for C in axiom schema
T and applying axiom 2 twice.
2. A=BFB=A.

By 1 and axiom schema V we derive 4 =4, and 2 follows by taking 4
for C in axiom schema T.

3. A=B B=CFA=C.

Applying 2 the hypotheses give B=A4, B=C and 3 is deduced by T.
We define now some initial functions which will lead us to the new
composition rules.

4. Rfjk(a,b,c) = f(b,c),

where f is a 2-functor and j and k are defined by axioms 3 and 4. Applying
axiom 6 and W we have
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Rfjk(sa,b,c) = j(Rfjk(a,b,c),k(a,b,c))
= Rfjk(a,b,c)
by axiom 3, 3 and V; and hence by E
Rfjk(a,b,c) = Rfjk(0,b,c)
and theorem 4 follows by axiom 5, W and 3.
DErFiNtTION. k' > Rjjk.

[In the expression X — Y the arrow indicates that X is an abbreviation
for Y ; this is simply a typographical convention.]

5. k'(a,b,c) = b.
Taking j for f in 4 this follows from axiom 3 by V.
6. C'k'ofj(a,b) = f(b),

where f is a 1-functor and o is defined by axiom 1.
We have by axiom 8,

C'k'ofj(a,b) = k'(o(a),f(b),j(a,b))
and 6 follows from 5 by V.
DErFINITION. j§' > C'K04j.
7. 7'(a,b) = b.
Taking ¢ for f in 6 this follows from axiom 2 by V.
DeriNiTION. k" — Rj'jk.
8. k"(a,b,c) = c.

This is an immediate consequence, by V, of 4 and 7.
Some variants of the axiom schemas E and U can be proved now.

E.  f(sa,b)=f(a,b) F f(a,b)=£(0,b),
where f is a 2-functor.
DeriniTIiON. f' - CRfjkkEE'.
From this, we have by axiom 7, V, 4 and 3,
J'(@,b,¢) = f(a,b)
and the hypothesis gives, by V and 3,
f'(sa,b,c) = f'(a,b,c),

hence by E, f’(a,b,c)=f"(0,b,c); applying V and 3 to this the conclusion
of E’ follows.
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U,. A=Btf(a,A,b)=f(a,B,b),

where f is a 3-functor.

We have, by axiom 7, theorems 5 and 8, and V,
fla,A,b) = Cfk'kk''(A,a,b),

U, follows from this by U, V and 3 applied to Cfk'kk”. By exactly
similar arguments the following can also be deduced.

U,. A=Btf(a,b,A)=f(a,b,B).
U A=B ¥ f(4,b)=f(B,b).
U/. A=BFf(a,4)=f(a,B).
U”.  A=BFf(4) = f(B).

Using the results derived so far eight new composition rules may be
introduced now.

DerintTiON. Cy0pfgh — C'CCpRfjkRgjkRhjkkk’ k' 01’
9. Caspfgh(a,b) = p(f(a,b),9(a,b),h(a,b)).
(a) By 4, U, Uy, U, and V we have
CpRfjkRgjkRhjk(a,b,c) = p(Rfjk(a,b,c),jok(a,b,c),thlc(a,,b,c))
= p(f(b,c),g(b,c),h(b,c))
and, from this by E and V, follows
CpRfjkRgjkRhjk(0,b,c) = p(f(b,c),g(b,c),h(b,¢)) .
(b) From axioms 3, 7 and 8, theorems 5 and 8, by V and W, we derive
C'Cxkk'' k' 0ij(a,b) = O’xlclc"lc'(o(a),i(b),j(a,b)) = z(0,a,b) .

Hence, taking CpRfjkRgjkRhjk for = in (b), 9 follows from (a) by 3.
Very similar arguments give the remaining composition rules.

DxFiNtTION. C,8fgh —~ CRfjkkgh.
10. Causfgh(a,b,c) = f(g(a,b,c),h(a,b,c)).
DerinrTION. Cy3f9 — CRC'K ofjjkkky.
11. Cysf9(a,b,c) = f(g(a,b,0)).
DerFINITION. Cy0fgh — C3uRfjkjgh.
12. Cysfgh(a,b) = f(g(a,b),h(a,b)).
DEFINTTION. Chafg - C3C'k'ofjjg.
13. C1afg(a,b) = f(9(a,b)).
DEFINTTION. Cypfgh — C"'CyypC'k of jC'k'0gjC'k'okj.
14, CyPfoh(a) = p(f(a),g(a),h(a)).  [Derived by E'.]
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DeriniTION. Oy fgh — Cgy Rfjkigh.
15. Corfgh(a) = f(g(a),h(a)).
DeriNiTION. Oy, fg — C,0)C'F ofjig.
16. Cunfyg(a) = f(g(a).
Definition by recursion for 2-functions is given by the
DEeFINITION. R'fgh — O3,RC,,C'k'of)j'jgC Rhjkkkk'jj' C 505,
We have, by 12, 7, 6; 4, 5; 11, 3, 7

(i) C25C'k'ofjj'j(b,c) = C'K'ofj(c,b) = f(b),

(i1) CRhjkkkE (a,b,¢c) = Rhjk(a,a,b) = h(a,b),

(iii) Oszxjj'0120j(“:b) = %(a,b,0),

hence, if x stands for RCy,C'k'ofjj’jgCRhjkkkk’, by V (putting 0 for ¢)
x(0,b,0) = f(b) by (i),
%(sa,b,0) = g(x(a,b,0),k(a,b)) by (i) .

Thus by (iii)

17a. R'fgh(0,b) = f(b) .

17b. R'fgh(sa,b) = g(R'fgh(a,b),h(a,b)) .

Similarly 1-function recursion is given by
DrrINITION. R"fgh — C''Cy0R'C,, fogCoesC k' ohjjjs"s.

18a. R"'fgh(0) = f(0) .

18b. R"'fgh(sa) = g(R"fgh(a),h(a)) .

These two equations follow in a similar manner to 17a and 17b.
To end these preliminary results we derive some variants of the axiom
schemas E and F.

E". f(sa) = f(a) Ff(a) = f(0).

This follows by applying E’ to Cy,fj(a,b) and using 3, 13 and V. The
following schemas may be deduced from F by taking particular functors
for h: (a) taking Cyfkk’ for b we have, by axiom 8, 5, 9, U and V,
g(sa,b)=f(sa,b) and so

G. f(0,6) = 9(0,b), f(sa,b) = g(sa,b) | f(a,b) = g(a,b);

(b) taking C,;pk’’ for b we have, by axiom 8, 10, U and V,

F,. £(0,0) = ¢(0,b), f(sa,b) = Z’(f(a»b)), g(sa,b) = p(g(a’:b))
I_f(a,b) = g(a:b);
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and (c) taking C,,qk’’k’ for h we have, by axioms 7 and 8,4, 5,8, Uand V,

FZ' f(o’b) = g(O,b), f(sa,b) = q(f(a”b)’b), g('ga’>b) = q(g(a,b)b)
Ff(a,b) = g(a,b) .

In a similar manner we deduce

F. f(0) = g(0), f(sa) = p(a.f(a), g(sa) = p(a,g(a))
Ff(a) = g(a)

and
G J(0) = g(0), f(sa) = g(sa) Ff(a) = g(a) .

4. Addition and modified subtraction.

We shall define now addition and modified subtraction and derive
their basic properties. The derivations will be given in outline only; the
schemas T, U, V and W, and the theorems 2 and 3 will be used tacitly.

For the sake of convenience we shall usually apply U (or its variants)
without first explicitly stating the definition of the functor involved, it
is always possible to do this in the work to come. We note also that
the order of the variables in a function, f say, is now immaterial; for
we may define a new function g having the same value as f but with its
variables in any desired order.

We begin with the definition of the addition function d(a,b).

DEFINITION. 8, — C,,8).
19. 8,(@,b) = s(a).
DEFINITION. 8, »> C,8)'".
20. 8o(a,b) = s(d) .
DEFINITION. d - R'is,j.
21. d(0,b) = b.
22, d(sa,b) = s(d(a,b)) .
DEFINITION. d, - Cydio.
23. dy(b) = d(b,0) .
24, d,b) = b.
This is derived by F’, for, using 19 to 23 and axiom 2,
d,(0) = d(0,0) = 0,
d,(sb) = d(sb,0) = s(d(b,0)) = 8,(b,ds(D)),
#0) = 0 and i(sh) = s,(b,i(d)) .
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DEFINITION. d' — Cyydjs,.
25. d'(a,b) = d(a,sb) .
DEFINITION. d'’ — C,ds,j’.

26. d"(a,b) = d(sa,b) .
217, d(a,sb) = d(sa,b) .

By F,, for by 21, 22, 25 and 26, we have
d(0,b) = d(0,5b) = s(b), d"(0,b) = d(s(0),b) = s(b) ,
d'(sa,b) = d(sa,sb) = s(d(a,sb)) = s(d'(a,b)) and
d"(sa,b) = d(ssa,b) = s(d(sa,b)) = s(d"(a,b)).

DEFINITION. d* — Cyodj’y.
28. d*(a,b) = d(b,a).
29. d*(a,b) = d(a,b) .
We have, by 28, 21, 23 and 24,
d*(0,b) = d(b,0) = b,
and, by 28, 25, 26 and 27,
d*(sa,b) = d(b,sa) = d(sb,a) = s(d(b,a)) = s(d*(a,b)),

thus we deduce 29 by F, from these equations, 21 and 22.
d(a,b) will now be written a+b, 28 and 29 give

30. a+b=b+a.

The predecessor function p(a) and the modified subtraction function
e(a,b) are given by the following definitions.

DeFINITION. D > R"0j'1.
31. p(0) = 0.
32. p(sa) = a.
DEFINITION. e — Cp0R'1C1,pjji'7.
33. e(a,0) =a.
34. e(a,sb) = p(e(a,b)) .
These two theorems follow from the axioms, 12, 13 and 7.

DerFINITION. f— C)ope.
35. f(a,b) = p(e(a,b)).
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DEFINITION. f’ — Cp0eCiop]j'.

36. f'(a,b) = e(p(a),b) .

37. p(e(a,b)) = e(p(a),b) .

This is given by F, and 33 to 36, as
£(@,0) = p(e(@,0) = p(a), f'(@,0) = e(p(a),0) = p(a) ,
f(a,sb) = p(e(a,sb)) = p(p(e(a,b))) = p(f(a,b)) and
f'(@,b) = e(p(a),sb) = p(e(p(a),b)) = p(f'(a,b)).

We shall now write 1 for $(0) and a+b for e(a,b), and we have, by 34,

38. pa)=a =1,

and by 37

39. (@a=1)=b= (@a=b)~1.

DeriNtTION. 1 > Cy380.

40. l(a) = 1. By E”.

41, sa~sb = a=b. By 34, 39 and 32.
42, a-a =0. ByE"”, 41 and 33.
43. 0-a =0 ByE"’and33.

44, l-sa = 0. By 4l and 43.

DEFINITION. ¢ — CygeCogdkk’ Condk'k" .
45. g(a,b,c) = (a+c¢)=(b+c).

46. (@a+c)=(b+c) = a=b. By E applied to g(a,b,c), 22 and 41.
47. (@a+b)=b = a. By 46, 21 and 33 .

48. (@+b)~a =5b. By 47 and 30.

49. b=(a+b) = 0. By 46, 21 and 43.

We shall now prove a+ (b+c)=(a+b)+c, it is not possible to derive
this directly as F is not yet available for 3-functions.

50. l1+(@a=1) =a+(l=a).

This is derived by first defining two functors % and &', so that h(a)=
1+(a+1) and A'(@¢)=a+(1+a), and then deriving h(a)=~h'(a) by G’
and some previously proved results.

51. (@=1)+(b+1) = (a+(1=a))+b. By 27 and 50 .



TERNARY RECURSIVE ARITHMETIC 211

52, l1-(@=b) =0F(@=b)+(b+c) = a+c.
We have by U, U, and 24
1=-(a=b) =0F (a=b)+(b+c)
= ((a=b)+(1=(a=b))) +(b+0)
= ((a=b)=1)+((b+c)+1) by 51.
= (@a=sb)+(sb+c) by 34, 22.

Hence, if we define h*(a,b,c) to be (a=~b)+(b+c), we derive, by E, 21
and 33, h*(a,b,c)=a+c and 52 follows.

53. a+(b+c) = (@a+b)+c.

For, by 47 and 44, 1=((sa+b)=b)=0 and hence 52 gives
((sa+b)=b)+(b+c) = (sa+b)+c

and, by 47, 22, 30 and U”,

p(s(a+(®+0)) = p(s((a+b)+¢))
53 is given by 32.
Finally in this section we shall derive a+(b~a)=>b+ (a=b), some
subsidiary results are required first.

54, (a=1)+(1=(1+a) =a.

For, if we define g(a) to be (a=1)+(1=(1-+a)), then ¢(0)=0 by 43
and 42, and ¢(sa)=sa by 41 and 44 and the result follows by G'.

DEFINITION. ¢' - Cy0djCosej’s.
55a. q'(a,b) = a+(b=a).
56a. q'(a,8b) = s(¢'(a~1,b)).
As ¢'(0,b)=b (21, 33 and 55a), ¢’(0,sb)=s(¢q'(0-1,b)), and
q'(sa,8b) = sa+(b+a) = 8(¢'(a,b)) by 41 and 27

= 8(q'(sa~1,b)) by 41,
56a is given by G.

57a. q'(@b) = ¢@a=1,b=-1)+ (1= (1=(a+d)).

As ¢'(a,0)=a, we have by 54 ¢'(a,0)=¢'(a=1,0)+ (1=(1=(a+ 0))). Fur-
ther, as 1= (1= (a+sb))=1 (by 22 and 44), 56a gives

q'(a,sb) = q’(a#l,sb*l)—i—(l4(1+(a+sb))) .

From these two equations 57a follows by G.
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DEFINITION. ¢* — RC1,0jdC13C 5,€lC 51€liCgad Cogek’ kC opek’ k.
58. q*(0,a,b) = 0.
59, q*(sc,a,b) = q*(c,a,b)+ (1 = (1 =((@a=c)+ (b~ c)))) .
60a. q'(a=c,b=c)+g*(c,a,b) = ¢'(a,b) .
57a gives q'(a=c,b-c)+q*(c,a,b)
= [¢(@+0)~1, B=c)=T)+ (1=(1 é((a,Ac)+(b+c))))}+q*(c,a,b)
= ¢'(a+sc,b—-sc)+q*(sc,a,b) ,
and 60a now follows by E.
61a. q'(a,b) = (@ =b)+g*(b,a,b). By 60a as ¢'(a,0) = a.
DEFINITION. ¢ — Caudj’Cooejy’.
55D. q"(a,b) = b+(a=b).

Theorems 56b, 57b, 60b and 61b have the same form (and derivation)
as the corresponding ones above, with the single exception that ¢’
replaces ¢’ at all occurrences of ¢'.

62. a+(b-a) =b+(a=b). By 6laand 61b.

5. Further theorems. The pairing function.

In this section we shall show that the basic theorems of primitive
recursive arithmetic are provable in TRA and introduce and derive the
properties of the pairing function w(a,b). The theorems and principle
definitions will be stated as before, but the derivations will only be
indicated by giving a list of the main theorems upon which they depend.
We begin with the modulus function.

DEFINITION. % — CydCyyej’je.
63. u(a,b) = (b-a)+(a—=b).
We shall write |a,b| for u(a,b).

64. |@,0] = a. By 33, 43.
65. la,b| = |b,a|. By 30.
66. la,al = 0. By 42.

67. la+c,b+c¢| = |a,b]. By 46.
68. A-B=0,B-A=0FA =B. Byé62.
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69. |A4,B| =0+ A = B. By 63, 68.
70. A =BF|4,B =0. By 42, 63.
71. A+C =B+CtA = B. By 10, 67, 69.

H. (0,b,¢) = 9(0,b,c), f(sa,b,c) = f(a,b,c)+h(b,c),
g(sa,b,c) = g(a,b,c) +h(b,c)  f(a,b,c) = g(a,b,c),

where f and g are 3-functors and % is a 2-functor.
This is proved by applying E to |f(a,b,c), g(a,b,c)|, for by 67

|f(sa,b,¢), g(sa,b,c)| = |f(a,b,c)+h(b,c), g(a,b,c)+h(b,c)|
= |f(a,b,¢), g(a,b,c)| .

Multiplication is given by the following

DrrFINITION. ™M — R'odj’.
72. m(0,b) = 0.
73. m(sa,b) = m(a,b)+b.
We shall write m(a,b) as a-b.
74. a-0=0. ByE" 72 173, 24.

75. a-sb =a-b+a. By H, 30, 53, 72, 73 .

76. ab=0b-a. ByH,72-75.

71. a(b+c) = ab+a-c. ByH, 72,73, 30, 53 .
78. a-(b-c) = (a-b)-c. ByH, 72,173,175, 76.
79. a-(1-a) =0. ByG, 72, 74, 44 .

80. b:(1-a) =b=-a-b. ByG, 44, 49, 75.

81. a(b=1) =ab-a. ByG, 43,41, 47.

Mathematical induction is introduced by the following schema.

I £(0,b,c) = 0, (1=f(a,b,c))f(sa,b,c) = O F f(a,b,c) = 0.

DErFINITION. f* - RC1ljmCyqeC 5lkf.

This gives f*(0,b,c)=1 and f*(sa,b,c)=f*(a,b,c)-(1~f(a,b,c)), from
which we derive by E, 80 and 76 (and the hypotheses),

f*(sa,b,c) = f*(1,b,c) = 1
and hence
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f*(@,b,0)- (f(a,b,0)-(1=f(a,b,0))) = f(a,b,0),
the conclusion of I is given now by 79 and 74.
G*. f(0,b,c) = ¢(0,b,c), f(sa,b,c) = g(sa,b,c) F f(a,b,c) = g(a,b,c),

where f is a 3-functor. By I, 69 and 70.
The substitution theorem.

82. 1=(@a+b) = (1=a)=b. By G, 33, 20, 44, 43 .
83. (1=a)=b)-a=0. ByG,33,44.
84. (1=la,b])-(1=(a=b)) = (1=|a,b). By 80, 83, 82, 63.

85. (I=c):-fla+c,b) = (1=c)-f(a,b),
where f is a 2-functor. By G* and 44.
86. (1=la,b])-f(a,c) = (1+]a,b])-f(b,c) .
By 85 and 84 we have

(1=la,b)-f(a+(b=a),c) = (1=|a,b])-f(a,c)
and, using 65

(1=1a,b))-f(b+(a=b).c) = (1=|a,b])-f(b,0)
and 86 follows by 62.
87. I(1+¢)-a, (1+-¢)'b] = (1=¢)'|a,b]. By G*, 44 .
88. (1=]a,b]):|f(a,c),f(b,c)] = 0. By 87, 69, 86.

86 and 88 are versions of the substitution theorem, they enable us to
prove the following uniqueness rule J.

J. £(0,8,¢) = g(0,b,c), f(sa,b,c) = p(f(a,b,c),h(a,b,c)),
g(sa,b,c) = p(g(a,b,c),h(a,b,c)) F f(a,b,c) = g(a,b,c),

where f, g, b are 3-functors and p is a 2-functor.
We apply I to |f(a,b,c),g(a,b,c)|, for
(1=1|f(a,b,¢),9(a,b,c)l)" |f(sa,b,¢),9(sa,b,0)]
= (1+|f(a,b,c),9(a,b,c)])- Ip(f(a,,b,c), k(a,b,¢)), p(g(a,b,¢),h(a,b,c))|
=0
by 88, J follows from I by 69 and 70.

89. a=(b+c) = (a=b)=-c. By, 34,39.
90. a-(b=c) = a-b-a-c. Byd, 81, 34, 89.
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91. a-lb,c| = |la-b,a-c|. By 90.
92. (@+b)=c = (@=c)+(b=(c~a)).
For by 62, 53 and 89,
c+(@+b)=c) = c+((@=c)+ (b= (c-a)))
and 92 is given by 71.
93. (1=(sb-a)) = (1=(b+~a))~(1=(a=b)). By 92,89.
94. (1=(sb=a))-(1=la,b]) = 0. By 85, 62, 64, 67, 89, 43 .
95. (1=la,b])-1f(c,a),g(b)] = (1=la,b])-|f(c,b),9(b)]. By 86, 91.
96. A=0 (1-4)B=0+B=0. ByU,73.
97. (1-4)-B=0, (1-B)-C =0F(1-4)-C = 0.
By 78, 76, 62, 77, 47 .
98. (1-4)-B=0F(1+4-C)-B-C = 0. By G*, 89, 90, 43.
We are now ready to define the pairing function w(a,b).
DEFINITION. ¢ - R"0ds.
99. #0) = 0.
100. t(sa) = ta)+sa.
DEeFINITION. w — CpdC,,tdj’.
101. w(a,b) = t(a+b)+b.
DEFINITION. v - R"005,djCys6C15ljCosuuC1513,5's.
102. v(0) = 0.
103. v(sa) = v(a)+ (l—zlt(s(v(a))),sa,[) .
(1 is defined in 40, % in 63 and s, in 19.)
104, (1=[o(t@)),a]) (1 = (b+a))-|v(t(a) +b),a| = 0.
Let F(a,b)=0 stand for this equation, then by 23
(1+F(a,b))-F(a,sb)
= (1=F(a,b))- (1=|p(t(a),a])- (1 = (b =a)) =~ (1= (a=D)))-
. lv(t(a) +b)+ (1 - lt(a(v(t(a)+b))),t(a) +3b ),a1
= (1=-F(a,b))- (1=|o(t(a)),a]) - (1= (sb ~a))-|a+ (1= |t(sa),#(a) + sb]),a]
by 95, 98, 90, 43
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= (1 F(a,b))- (1=|e(t(a)),a]) - (1 = (sb=a))- (1= |a,b])
by 64, 67, 100 and 94 .

104 follows now by I and 79.

105. v(t(@)) = a.

For by 103, 100, 95 and 66
(1=|v(s(a) +a),a|) - [o(t(sa)),5a| = O

and so 105 is given by I from this, 104, 97 and 102,

106. v(w(a,b)) = a+b. By 104, 105.

DEFINITION. my — Cy,eiCy;tv.
107. my(a) = a=i(v(a)).
108. my(w(a,b)) = b. By 106, 47 .

DEFINITION. m; — Cyevm,.

109. my(a) = v(a)-my(a) .

110. my(w(a,b)) = a. By 108, 106, 47 .
111, t(v(@))~a = 0.

112. sa=1t(s(v(a))) = 0.

These two results are derived by considering the two cases ¢(s(v(a))) =sa
(which implies v(sa)=s(v(a))) and 1-|¢(s(v(a))),sa|=0 (which implies
v(sa) =v(a)) and applying I and some theorems already proved.

113. w(my(a),my(a)) = a. By 111, 112.

The theorems 108, 110 and 113 show that the correspondence between
numbers and pairs of numbers, defined by w(a,b) is unique.
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