NON-KOSZUL QUADRATIC GORENSTEIN TORIC RINGS

KAZUNORI MATSUDA

Abstract

Koszulness of Gorenstein quadratic algebras of small socle degree is studied. In this paper, we construct non-Koszul Gorenstein quadratic toric ring such that its socle degree is more than 3 by using stable set polytopes.

Introduction

Let K be a field and $S=K\left[x_{1}, \ldots, x_{n}\right]$ a polynomial ring over K. Let $R=S / I$ be a standard graded K-algebra with respect to the grading $\operatorname{deg} x_{i}=1$ for all $1 \leq i \leq n$, where I is a homogeneous ideal of S. Let R_{+}denote the homogeneous maximal ideal of R. For an R-module M, we denote $\beta_{i j}^{R}(M)$ by the (i, j)-th graded Betti number of M as an R-module.

The Koszul algebra was originally introduced by Priddy (note that he also considered non-commutative algebras).

Definition 0.1 ([32]). A standard graded K-algebra R is said to be Koszul if the residue field $K=R / R_{+}$has a linear R-free resolution as an R-module, that is, all non-zero entries of matrices representing the differential maps in the graded minimal free resolution of K are homogeneous of degree one. In other words, $\beta_{i j}^{R}(K)=0$ holds if $i \neq j$.

Example 0.2.
(1) Polynomial rings are Koszul (consider the Koszul complex).
(2) Let $R=K[X] /\left(X^{2}\right)$. Then R is Koszul since

$$
\ldots \xrightarrow{X} R \xrightarrow{X} R \longrightarrow K \longrightarrow 0
$$

is a linear R-resolution of K.
Since $\beta_{2 j}^{R}(K)=0$ for all $j>2$, hence Koszul algebras are quadratic, where $R=S / I$ is said to be quadratic if I is generated by homogeneous

Figure 1
elements of degree 2. Every quadratic complete intersection is Koszul by Tate's theorem [38]. Moreover, $R=S / I$ is Koszul if I has a quadratic Gröbner bases by Fröberg's theorem [11] and the fact that $\beta_{i j}^{R}(K) \leq \beta_{i j}^{R^{\prime}}(K)$ for all i, j and for all monomial order $<$ on S, where $R^{\prime}=S /$ in $_{<}(I)$. The notion of Koszul algebra has played an important role in the research on graded K-algebras, and various Koszul-like algebras have been introduced, e.g., universally Koszul [5], strongly Koszul [14], initially Koszul [2], sequentially Koszul [1], etc.

Koszulness of toric rings of integral convex polytopes is studied. Let $\mathscr{P} \subset$ \mathbb{R}^{n} be an integral convex polytope, i.e., a convex polytope each of whose vertices belongs to \mathbb{Z}^{n}, and let $\mathscr{P} \cap \mathbb{Z}^{n}=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right\}$. Assume that $\mathbb{Z} \mathbf{a}_{1}+$ $\cdots+\mathbb{Z} \mathbf{a}_{m}=\mathbb{Z}^{n}$. Let $K\left[X^{ \pm 1}, t\right]:=K\left[x_{1}, x_{1}^{-1}, \ldots, x_{n}, x_{n}^{-1}, t\right]$ be the Laurent polynomial ring in $n+1$ variables over K. Given an integer vector $\mathbf{a}=$ $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$, we put $X^{\mathbf{a}} t=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}} t \in K\left[X^{ \pm 1}, t\right]$. The toric ring of \mathscr{P}, denoted by $K[\mathscr{P}]$, is the subalgebra of $K\left[X^{ \pm 1}, t\right]$ generated by $\left\{X^{\mathbf{a}_{1}} t, \ldots\right.$, $\left.X^{\mathbf{a}_{m}} t\right\}$ over K. Note that $K[\mathscr{P}]$ can be regarded as a standard graded K-algebra by setting $\operatorname{deg} X^{\mathbf{a}_{i}} t=1$. The toric ideal $I_{\mathscr{P}}$ is the kernel of a surjective ring homomorphism $\pi: K[Y]=K\left[y_{1}, \ldots, y_{m}\right] \rightarrow K[\mathscr{P}]$ defined by $\pi\left(y_{i}\right)=X^{\mathbf{a}_{i}} t$ for $1 \leq i \leq m$. Then $K[\mathscr{P}] \cong K[Y] / I_{\mathscr{P}}$. It is known that $I_{\mathscr{P}}$ is generated by homogeneous binomials.

Note that the implications in Figure 1 hold. In addition, the following is known.
(1) Conca-De Negri-Rossi posed a conjecture that the defining ideal of a strongly Koszul algebra has a quadratic Gröbner bases [6, Question 13(1)]. This conjecture is true for the toric ring of edge polytope [18], order polytope [14], stable set polytope [26] and cut polytope [34].
(2) A squarefree strongly Koszul toric ring is compressed [27, Theorem 2.1], where $K[\mathscr{P}] \cong K[Y] / I_{\mathscr{P}}$ is said to be compressed if $\sqrt{\mathrm{in}_{<}\left(I_{\mathscr{P}}\right)}=$ $\mathrm{in}_{<}\left(I_{\mathscr{P}}\right)$ for any reverse lexicographic order $<$ on $K[Y]$. In particular, a squarefree strongly Koszul toric ring is quadratic Cohen-Macaulay.
(3) Many toric rings associated with integral convex polytopes whose toric ideals has a quadratic Gröbner bases are constructed (e.g., [3], [15], [17], [19], [20], [21]). In other words, many Koszul toric rings associated with integral convex polytopes are constructed.
(4) A quadratic algebra is not always Koszul (see [30, Example 2.1], [33, Example 3] and [37, Theorem 3.1]). Note that both of these examples are Cohen-Macaulay but are not Gorenstein.

On the other hand, Koszulness of Gorenstein quadratic algebras is studied. For a standard graded K-algebra $R=\oplus_{i \geq 0} R_{i}$ with $\operatorname{dim} R=d$, we denote by

$$
H_{R}(t)=\sum_{i \geq 0} \operatorname{dim}_{K} R_{i} t^{i}=\frac{h_{0}+h_{1} t+\cdots+h_{s} t^{s}}{(1-t)^{d}}
$$

the Hilbert series of R, where $h_{s} \neq 0$, and we say that $h(R):=\left(h_{0}, h_{1}\right.$, \ldots, h_{s}) is the h-vector of R and the index s is the socle degree of R. It is known that $h_{0}=1$ and if R is Gorenstein then $h_{i}=h_{s-i}$ for all $0 \leq i \leq\lfloor s / 2\rfloor([35$, Theorem 4.4]). Conca-Rossi-Valla proved that if R is a quadratic Gorenstein with $h(R)=(1, n, 1)$ (in this case $n \geq 2$ since R is quadratic) then R is Koszul [7, Proposition 2.12].

The case for $s=3$ is also studied. Let R be a quadratic Gorenstein with $h(R)=(1, n, n, 1)$ (in this case $n \geq 3$ since R is quadratic). If $n=3$, then R is quadratic complete intersection, hence R is Koszul. Conca-Rossi-Valla proved that R is Koszul if $n=4$ [7, Theorem 6.15] and Caviglia proved that R is Koszul if $n=5$ in his unpublished master thesis. The case for $n \geq 6$ is still open.

In this note, we focus on (4). In Section 1, we remark about known result of toric rings and toric ideals of stable set polytopes, and construct non-Koszul quadratic Gorenstein toric rings by using stable set polytopes. In Section 2, we present some questions.

1. Stable set polytope and non-Koszul quadratic Gorenstein toric ring

The stable set polytope is an integral convex polytope associated with stable sets of a simple graph.

Let G be a finite simple graph on the vertex set $[n]=\{1,2, \ldots, n\}$ and let $E(G)$ denote the set of edges of G. Recall that a finite graph is simple if it possesses no loops or multiple edges. We denote by \bar{G} the complement graph of G.

Given a subset $W \subset[n]$, we define the $(0,1)$-vector $\rho(W)=\sum_{i \in W} \mathbf{e}_{i} \in$ \mathbb{R}^{n}, where \mathbf{e}_{i} is the i-th unit coordinate vector of \mathbb{R}^{n}. In particular, $\rho(\emptyset)$ is the origin of \mathbb{R}^{n}.

A subset $W \subset[n]$ is said to be stable if $\{i, j\} \notin E(G)$ for all $i, j \in W$ with $i \neq j$. Note that the empty set and each single-element subset of $[n]$ are stable. By definition, W is a stable set of G if and only if W is a clique of \bar{G}. Let $S(G)$ denote the set of all stable sets of G. The stable set polytope of a simple graph G, denoted by \mathscr{Q}_{G}, is the convex hull of $\{\rho(W) \mid W \in S(G)\}$. By definition, \mathscr{Q}_{G} is a $(0,1)$-polytope and $K\left[\mathscr{Q}_{G}\right]=K\left[t \cdot \prod_{i \in W} x_{i} \mid W \in\right.$ $S(G)] \subset K\left[x_{1}, \ldots, x_{n}, t\right]$. Note that $\operatorname{dim} K\left[\mathscr{Q}_{G}\right]=n+1$. Let $K[Y]=$ $K\left[y_{W} \mid W \in S(G)\right]$ be the polynomial ring over K. Now we define a surjective ring homomorphism $\pi: K[Y] \rightarrow K\left[\mathscr{Q}_{G}\right]$ by $\pi\left(y_{W}\right)=t \cdot \prod_{i \in W} x_{i}$ and let $I_{\mathscr{Q}_{G}}=\operatorname{ker} \pi$.

To state known results of the toric ring $K\left[\mathscr{Q}_{G}\right]$ and the toric ideal $I_{\mathscr{D}_{G}}$ of the stable set polytope \mathscr{Q}_{G} of a simple graph G, we introduce some classes of graphs. About terminologies for the graph theory, see [8].

A cycle graph with length n, denoted by C_{n}, is a connected graph which satisfies $E\left(C_{n}\right)=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\},\{1, n\}\}$. An odd cycle is a cycle such that its length is odd.

A graph G is said to be perfect if the chromatic number of every induced subgraph of G is equal to the size of the largest clique of that subgraph. A graph G is perfect if and only if both G and \bar{G} are ($C_{2 n+3}, n \geq 1$)-free [4].

The comparability graph $G(P)$ of a partially ordered set $P=\left([n],<_{P}\right)$ is the graph such that $V(G(P))=[n]$ and $\{i, j\} \in E(G(P))$ if and only if $i<_{P} j$ or $j<_{P} i$. A graph G is said to be comparability if G is the comparability graph of some partially ordered set. Forbidden induced subgraphs of comparability graphs are known (see [25, p. 13]).

A graph G is said to be bipartite if there exist V_{1}, V_{2} with $V_{1} \cup V_{2}=V(G)$ and $V_{1} \cap V_{2}=\emptyset$ such that if $\{i, j\} \in E(G)$ then either $i \in V_{1}$ and $j \in V_{2}$ or $i \in V_{2}$ and $j \in V_{1}$. It is known that a graph G is bipartite if and only if G is ($C_{2 n+1}, n \geq 1$)-free.

A graph G is said to be almost bipartite (see [10, p. 87]) if there exists a vertex v such that the induced subgraph $G_{[n] \backslash v}$ is bipartite.

Remark 1.1. The following facts are known.
(1) Let G be a perfect graph. Then $K\left[\mathscr{Q}_{G}\right]$ is Gorenstein if and only if all maximal cliques of G have the same cardinality [31, Theorem 2.1(b)].
(2) Let $G(P)$ be the comparability graph of a partially ordered set P. Then $K\left[\mathscr{Q}_{G(P)}\right]$ is Koszul since $\mathscr{L}_{G(P)}$ is equal to the chain polytope of P and the toric ideal of a chain polytope has a squarefree quadratic initial ideal (see [16, Corollary 3.1]).
(3) If G is almost bipartite, then $K\left[\mathscr{Q}_{G}\right]$ is Koszul since its toric ideal $I_{\mathscr{D}_{G}}$ has a squarefree quadratic initial ideal (see [10, Theorem 8.1]).
(4) Let G be a graph such that \bar{G} is bipartite. Then $K\left[\mathscr{Q}_{G}\right]$ is quadratic if and only of it is Koszul [28, Corollary 3.4].

Hence, if $K\left[\mathscr{Q}_{G}\right]$ is quadratic but not Koszul, then G is neither a comparability graph nor almost bipartite, and \bar{G} is not bipartite. From this fact and the classifications of these graphs, we have:

Proposition 1.2. Let G be a graph on $[n]$. If $K\left[\mathscr{Q}_{G}\right]$ is non-Koszul quadratic Gorenstein, then $n \geq 7$, that is, $\operatorname{dim} K\left[\mathscr{2}_{G}\right] \geq 8$.

Proof. First, we assume that $n \leq 5$. Then G is a comparability graph if G is not C_{5}. Since C_{5} is almost bipartite, we have that $K\left[\mathscr{Q}_{G}\right]$ is Koszul if $n \leq 5$ from Remark 1.1(2) and (3).

Next, we assume that $n=6$. If G is not connected, then G is a comparability graph if G is not $C_{5} \cup K_{1}$. Since $C_{5} \cup K_{1}$ is almost bipartite, we have that $K\left[\mathscr{Q}_{G(P)}\right]$ is Koszul.

Assume that G is connected. From the classifications of comparability and almost bipartite graphs, G is one of the following (see [26, p. 10]):

Then we can see that

- $K\left[\mathscr{Q}_{G_{1}}\right]$ is not Gorenstein since $h\left(K\left[\mathscr{Q}_{G_{1}}\right]\right)=(1,7,10,3)$,
- $K\left[\mathscr{2}_{G_{2}}\right]$ is Koszul; indeed, we can check that the Gröbner bases of $I_{\mathscr{Q}_{G_{2}}}$ with respect to the reverse lexicographic order induced by the ordering

$$
\begin{aligned}
& y_{\{3,6\}}>y_{\emptyset}>y_{\{1\}}> \\
& \quad \ldots>y_{\{6\}}>y_{\{1,4\}}>y_{\{2,4\}}>y_{\{2,5\}}>y_{\{2,6\}}>y_{\{4,6\}}>y_{\{2,4,6\}}
\end{aligned}
$$

is quadratic,

- $\overline{G_{3}}$ is C_{6}, hence it is bipartite,
- $K\left[\mathscr{2}_{G_{4}}\right]$ is not Gorenstein since $h\left(K\left[\mathscr{Q}_{G_{4}}\right]\right)=(1,6,8,2)$,
- $K\left[\mathscr{2}_{G_{5}}\right]$ is Koszul since $I_{\mathscr{Q}_{G_{5}}}=I_{\mathscr{Q}_{C_{5}}}$ and $I_{\mathscr{D}_{C_{5}}}$ has a quadratic Gröbner bases.

Therefore we have the desired conclusion.
For each integer $k \geq 3$, the complement of an odd cycle $C_{2 k+1}$, denoted by $\overline{C_{2 k+1}}$, is neither a comparability graph nor almost bipartite. Moreover, we note that $\overline{C_{2 k+1}}$ is not perfect and $S\left(\overline{C_{2 k+1}}\right)=\{\emptyset,\{1\},\{2\}, \ldots,\{2 k+$ $1\},\{1,2\},\{2,3\}, \ldots,\{2 k, 2 k+1\},\{1,2 k+1\}\}$.

Let $K[Y]=K\left[y_{\emptyset}, y_{\{1\}}, y_{\{2\}}, \ldots, y_{\{2 k+1\}}, y_{\{1,2\}}, y_{\{2,3\}}, \ldots, y_{\{2 k, 2 k+1\}}\right.$, $\left.y_{\{1,2 k+1\}}\right]$. Now we study the toric ring

$$
K\left[\mathscr{Q}_{\overline{C_{2 k+1}}}\right] \cong \frac{K[Y]}{I_{\mathscr{D}_{\overline{C_{2 k+1}}}}}
$$

Proposition 1.3. We have the following:
(1) $K\left[\mathscr{Q}_{\overline{C_{2 k+1}}}\right]$ is quadratic Cohen-Macaulay for all $k \geq 3$;
(2) $K\left[\mathscr{2}_{\overline{C_{2 k+1}}}\right]$ is not Gorenstein for all $k \geq 4$;
(3) $K\left[\mathscr{Q}_{\overline{C_{7}}}\right]$ is Gorenstein;
(4) $I_{2_{\overline{2_{2 k+1}}}}$ possesses no quadratic Gröbner bases for all $k \geq 3$.

Proof. (1) Note that $\alpha\left(\overline{C_{2 k+1}}\right)=2$ and $C_{2 k+1}$ satisfies the odd cycle condition (see [12, p. 167]). Hence, by applying $G=\overline{C_{2 k+1}}$ to [28, Theorem 2.1], we have that $\mathscr{Q}_{\overline{C_{2 k+1}}}$ is a normal polytope. Thus $K\left[\mathscr{Q}_{\overline{C_{2 k+1}}}\right]$ is normal CohenMacaulay from [36] and [23].

Next, we will determine generators of the toric ideal $I_{2_{\overline{C_{2 k+1}}}}$. By applying $G=\overline{C_{2 k+1}}$ to [28, Theorem 3.2], we have that $I_{\mathscr{D}_{\overline{C_{2 k+1}}}}=I_{\mathscr{P}_{2_{2 k+1}}}+J$, where $I_{\mathscr{P}_{C_{2 k+1}}}$ is the toric ideal of the edge ring of $C_{2 k+1}$ and J is generated by the following $4 k+2$ quadratic binomials:

$$
\begin{aligned}
& y_{\{i\}} y_{\{i+1\}}-y_{\emptyset} y_{\{i, i+1\}} \quad(1 \leq i \leq 2 k), \\
& y_{\{1\}} y_{\{2 k+1\}}-y_{\emptyset} y_{\{1,2 k+1\}}, \\
& y_{\{i\}} y_{\{i+1, i+2\}}-y_{\{i+2\}} y_{\{i, i+1\}} \quad(1 \leq i \leq 2 k-1), \\
& y_{\{2 k\}} y_{\{1,2 k+1\}}-y_{\{1\}} y_{\{2 k, 2 k+1\}}, \quad y_{\{2 k+1\}} y_{\{1,2\}}-y_{\{2\}} y_{\{1,2 k+1\}} .
\end{aligned}
$$

Since $C_{2 k+1}$ is an odd cycle, $I_{\mathscr{P}_{2 k+1}}=(0)$ from [28, Proposition 3.1]. Hence $K\left[\mathscr{Q}_{\overline{C_{2 k+1}}}\right]$ is quadratic. Therefore $K\left[\mathscr{D}_{\overline{C_{2 k+1}}}\right]$ is quadratic Cohen-Macaulay.
(2) For an integral convex polytope $\mathscr{P} \subset \mathbb{R}^{n}$, we define

$$
\operatorname{cone}(\mathscr{P}):=\left\{(\alpha, t) \mid \alpha \in t \mathscr{P} \cap \mathbb{Z}^{n}, t \in \mathbb{Z}_{\geq 0}\right\} \subset \mathbb{R}^{n+1}
$$

as the cone of \mathscr{P}. By (1), we can regard cone $\left(\mathscr{Q}_{\overline{C_{2 k+1}}}\right)$ as a positive toroidal monoid and $K\left[\mathscr{Q}_{\overline{C_{2 k+1}}}\right]$ is the semigroup ring defined by cone $\left(\mathscr{Q}_{\overline{C_{2 k+1}}}\right)$. Hence, from [35, Theorem 6.7] (see also [24, Corollary 5.11]), it is enough to show that cone $\left(\mathscr{Q}_{\overline{C_{2 k+1}}}\right)$ has two minimal interior lattice points to prove that $K\left[\mathscr{Q}_{\overline{C_{2 k+1}}}\right]$ is not Gorenstein.

Assume that $k \geq 4$. First, $(1,1, \ldots, 1, k+1) \in \mathbb{R}^{2 k+2}$ is a minimal interior lattice point of cone $\left(\mathscr{Q}_{\overline{C_{2 k+1}}}\right)$ for all $k \geq 4$. Moreover,

$$
\begin{aligned}
& (\underset{1}{(2,1,1,2,1} \underset{4}{2}, 1, \ldots, \underset{2 k-1}{2}, 1,1, k+3) \in \mathbb{R}^{2 k+2} \quad(k \equiv 1 \bmod 3) \\
& (2,1,1, \underset{4}{2}, 1,1, \ldots, \underset{2 k-3}{2}, 1,1,2,1, k+3) \in \mathbb{R}^{2 k+2} \quad(k \equiv 2 \bmod 3) \\
& (2,1,1, \underset{4}{2}, 1,1, \ldots, \underset{2 k-5}{2}, 1,1, \underset{2 k-2}{3}, 1,1,1, k+3) \in \mathbb{R}^{2 k+2} \quad(k \equiv 0 \bmod 3)
\end{aligned}
$$

are also minimal interior lattice points of cone $\left(\mathscr{Q}_{\overline{C_{2 k+1}}}\right)$. Therefore we have that $K\left[\mathscr{Q}_{\overline{C_{2 k+1}}}\right]$ is not Gorenstein for all $k \geq 4$.
(3) Assume $k=3$. From the proof of (1), we have that the toric ideal $I_{2_{\overline{C_{7}}}}$ of the toric ring $K\left[\mathscr{D}_{\overline{C_{7}}}\right]$ is generated by the following 14 binomials:

$$
\begin{array}{cc}
y_{\{1\}} y_{\{2\}}-y_{\emptyset} y_{\{1,2\}}, \quad y_{\{2\}} y_{\{3\}}-y_{\emptyset} y_{\{2,3\}}, & y_{\{3\}} y_{\{4\}}-y_{ø} y_{\{3,4\}}, \\
y_{\{4\}} y_{\{5\}}-y_{\emptyset} y_{\{4,5\}}, \quad y_{\{5\}} y_{\{6\}}-y_{\emptyset} y_{\{5,6\}}, & y_{\{6\}} y_{\{7\}}-y_{ø} y_{\{6,7\}}, \\
y_{\{1\}} y_{\{7\}}-y_{\emptyset} y_{\{1,7\}}, \quad y_{\{1\}} y_{\{2,3\}}-y_{\{3\}} y_{\{1,2\}}, \quad y_{\{2\}} y_{\{3,4\}}-y_{\{4\}} y_{\{2,3\}}, \\
y_{\{3\}} y_{\{4,5\}}-y_{\{5\}} y_{\{3,4\}}, \quad y_{\{4\}} y_{\{5,6\}}-y_{\{6\}} y_{\{4,5\}}, \quad y_{\{5\}} y_{\{6,7\}}-y_{\{7\}} y_{\{5,6\}}, \\
y_{\{6\}} y_{\{1,7\}}-y_{\{1\}} y_{\{6,7\}}, \quad y_{\{7\}} y_{\{1,2\}}-y_{\{2\}} y_{\{1,7\}} .
\end{array}
$$

Let $S:=K[Y]$ and $K\left[\mathscr{Q}_{\overline{C_{7}}}\right] \cong S / I_{\mathscr{D}_{\overline{C_{7}}}}$. By using Macaulay 2 [13], we can see that

$$
\begin{aligned}
0 \rightarrow & S(-11) \rightarrow S(-9)^{14} \rightarrow S(-7)^{36} \oplus S(-8)^{21} \rightarrow S(-6)^{126} \\
& \rightarrow S(-5)^{126} \rightarrow S(-3)^{21} \oplus S(-4)^{36} \rightarrow S(-2)^{14} \rightarrow S \rightarrow S / I_{\mathscr{D}_{\overline{c_{7}}}} \rightarrow 0
\end{aligned}
$$

is a minimal free S-resolution of $S / I_{2_{\overline{C_{7}}}}$. Hence we have that $K\left[\mathscr{Q}_{\overline{C_{7}}}\right] \cong S / I_{\mathscr{D}_{\overline{C_{7}}}}$ is Gorenstein.
(4) Assume that there exists a monomial order $<$ on $K[Y]$ such that the Gröbner bases of $I_{2_{\overline{C_{2 k+1}}}}$ with respect to $<$ is quadratic. We may assume that $y_{\{1\}} y_{\{2,3\}}<y_{\{3\}} y_{\{1,2\}}$. Then $y_{\{3\}} y_{\{4,5\}}<y_{\{5\}} y_{\{3,4\}}$ since $y_{\{5\}} y_{\{1,2\}} y_{\{3,4\}}-$
$y_{\{1\}} y_{\{2,3\}} y_{\{4,5\}} \in I_{2_{\overline{C_{2 k+1}}}}$ and its initial monomial is $y_{\{5\}} y_{\{1,2\}} y_{\{3,4\}}$. Since $y_{\{7\}} y_{\{3,4\}} y_{\{5,6\}}-y_{\{3\}} y_{\{4,5\}} y_{\{6,7\}} \in I_{2_{\overline{C_{2 k+1}}}}$ and its initial monomial is $y_{\{7\}} y_{\{3,4\}} y_{\{5,6\}}$, we have $y_{\{5\}} y_{\{6,7\}}<y_{\{7\}} y_{\{5,6\}}$. By repeating this argument, we have

$$
\begin{aligned}
y_{\{1\}} y_{\{2,3\}} & <y_{\{3\}} y_{\{1,2\}}, \\
y_{\{3\}} y_{\{4,5\}} & <y_{\{5\}} y_{\{3,4\}}, \\
& \vdots \\
y_{\{2 k-1\}} y_{\{2 k, 2 k+1\}} & <y_{\{2 k+1\}} y_{\{2 k-1,2 k\}}, \\
y_{\{2 k+1\}} y_{\{1,2\}} & <y_{\{2\}} y_{\{1,2 k+1\}}, \\
y_{\{2\}} y_{\{3,4\}} & <y_{\{4\}} y_{\{2,3\}}, \\
y_{\{4\}} y_{\{5,6\}} & <y_{\{6\}} y_{\{4,5\}}, \\
& \vdots \\
y_{\{2 k-2\}} y_{\{2 k-1,2 k\}} & <y_{\{2 k\}} y_{\{2 k-2,2 k-1\}}, \\
y_{\{2 k\}} y_{\{1,2 k+1\}} & <y_{\{1\}} y_{\{2 k, 2 k+1\}} .
\end{aligned}
$$

These inequalities lead to a contradiction. Hence we have the desired conclusion.

We can check that $K\left[\mathscr{D}_{\overline{C_{7}}}\right]$ is not Koszul by using Macaulay2. For convenience, we introduce how to check that $K\left[\mathscr{Q}_{\overline{C_{7}}}\right]$ is not Koszul (see [37, p. 289]).

Let $S=K[Y], I:=I_{2_{\overline{C_{7}}}}$ and $R:=K\left[\mathscr{Q}_{\overline{C_{7}}}\right] \cong S / I$. We compute the infinite resolution of K over R up to homological degree 3 by using command LengthLimit. We must input S and I in advance.

```
i3 : R = S/I
o3 = R
o3 : QuotientRing
i4 = betti res(coker vars R, LengthLimit => 3)
            0}114
o4 = total : 1 15 119 687
            0: 1 15 119 686
            1: . . . 1
o4 : BettiTally
```

Hence we have $\beta_{34}^{R}(K)=1$. Thus R is not Koszul. Therefore we have
Corollary 1.4. The toric ring $K\left[\mathscr{D}_{\overline{C_{7}}}\right]$ is non-Koszul quadratic Gorenstein.

We can construct an infinite family of non-Koszul quadratic Gorenstein toric rings by using stable set polytopes.

Proposition 1.5. Let $k \geq 1$ be an integer. Let G be a graph on $[2 k+7]$ such that $\bar{G}=C_{7} \cup K_{2} \cup \cdots \cup K_{2}$ and the labeling of vertices is as follows:

Then we have
(1) $K\left[\mathscr{2}_{G}\right]$ is quadratic Gorenstein such that

$$
H_{K\left[2_{G}\right]}(t)=\frac{\left(1+7 t+14 t^{2}+7 t^{3}+t^{4}\right)(1+t)^{k}}{(1-t)^{2 k+8}}
$$

(2) $K\left[\mathscr{Q}_{G}\right]$ is not Koszul.

Proof. (1) By [28, Theorem 3.2], we have that the toric ideal $I_{\mathscr{2}_{G}}$ is generated by the following binomials:

$$
\begin{aligned}
& y_{\{i\}} y_{\{i+1\}}-y_{\emptyset} y_{\{i, i+1\}} \quad(1 \leq i \leq 6), \\
& y_{\{1\}} y_{\{7\}}-y_{\emptyset} y_{\{1,7\}}, \quad y_{\{i\}} y_{\{i+1, i+2\}}-y_{\{i+2\}} y_{\{i, i+1\}} \quad(1 \leq i \leq 5), \\
& y_{\{6\}} y_{\{1,7\}}-y_{\{1\}} y_{\{6,7\}}, \quad y_{\{7\}} y_{\{1,2\}}-y_{\{2\}} y_{\{1,7\}}, \\
& y_{\{2 i\}} y_{\{2 i+1\}}-y_{\emptyset} y_{\{2 i, 2 i+1\}} \quad(4 \leq i \leq k+3) .
\end{aligned}
$$

Let $K[Y]=K\left[y_{W} \mid W \in S(G)\right]$. Then $K\left[\mathscr{Q}_{G}\right] \cong K[Y] / I_{\mathscr{D}_{G}}$. Note that $\mathbf{y}=y_{\emptyset}, y_{\{1\}}-y_{\{2,3\}}, y_{\{2\}}-y_{\{3,4\}}, \ldots, y_{\{5\}}-y_{\{6,7\}}, y_{\{6\}}-y_{\{1,7\}}, y_{\{7\}}-y_{\{1,2\}}$, $y_{\{8\}}-y_{\{9\}}, \ldots, y_{\{2 k+6\}}-y_{\{2 k+7\}}, y_{\{8,9\}}, \ldots, y_{\{2 k+6,2 k+7\}}$ is a regular sequence of $K[Y] / I_{2_{G}}$. Hence we have

$$
\frac{K[Y]}{I_{\mathscr{D}_{G}}+(\mathbf{y})} \cong \frac{K\left[y_{\{1\}}, y_{\{2\}}, \ldots, y_{\{7\}}\right]}{I_{7}} \otimes_{K} \frac{K\left[y_{\{2 i\}} \mid 4 \leq i \leq k+3\right]}{\left(y_{\{2 i\}}^{2} \mid 4 \leq i \leq k+3\right)}
$$

Thus the Hilbert series of $K[Y] / I_{2_{G}}+(\mathbf{y})$ is $\left(1+7 t+14 t^{2}+7 t^{3}+t^{4}\right)(1+t)^{k}$. Therefore we have the desired conclusion.
(2) $K\left[\mathscr{2}_{\overline{C_{7}}}\right]$ is a combinatorial pure subring (see [29]) of $K\left[\mathscr{Q}_{G}\right]$. Since $K\left[\mathscr{Q}_{\overline{C_{7}}}\right]$ is not Koszul, hence $K\left[\mathscr{Q}_{G}\right]$ is not Koszul by [29, Proposition 1.3].

Proposition 1.6. Let G be a graph. Let $h\left(K\left[\mathscr{Q}_{G}\right]\right)=\left(h_{0}, h_{1}, \ldots, h_{s}\right)$ be the h-vector of $K\left[\mathscr{2}_{G}\right]$. If $K\left[\mathscr{Q}_{G}\right]$ is non-Koszul quadratic Gorenstein, then $h_{1} \geq 7$.

Proof. First, note that $h_{1}=\operatorname{codim} R=\operatorname{embdim} R-\operatorname{dim} R$ and embdim $K\left[\mathscr{Q}_{G}\right]=\# S(G)=1+n+\#\{W \in S(G) \mid \# W \geq 2\}$. Hence $h_{1}=\#\{W \in S(G) \mid \# W \geq 2\}$.

Assume that $h_{1} \leq 6$. Let $\alpha(G):=\max \{\# W \mid W \in S(G)\}$. Then we have $\alpha(G) \leq 3$ since $\#\{W \in S(G) \mid \# W \geq 2\}>6$ if there exists $W \in S(G)$ with $\# W \geq 4$. Moreover, $\alpha(G) \neq 1$ since if $\alpha(G)=1$, then $K\left[\mathscr{L}_{G}\right]$ is isomorphic to a polynomial ring, hence $K\left[\mathscr{2}_{G}\right]$ is Koszul. Thus $\alpha(G)=2,3$.

Now let us consider the complement \bar{G} of G. Then $\omega(\bar{G})=\alpha(G)$ holds, where $\omega(\bar{G})=\max \{\# C \mid C$ is a clique of $\bar{G}\}$. Thus $\omega(\bar{G})=2$, 3. In addition, we may assume that \bar{G} has no isolated vertex. Indeed, if \bar{G} has an isolated vertex v, then $K\left[\mathscr{Q}_{G}\right] \cong K\left[\mathscr{Q}_{G \backslash v}\right] \otimes_{K} K\left[y_{v}\right]$ and $I_{\mathscr{V}_{G}}=I_{\mathscr{Q}_{G \backslash v}}$. From these fact and [9, Proposition 3.1], we have that $K\left[\mathscr{Q}_{G}\right]$ is non-Koszul quadratic Gorenstein if and only of $K\left[\mathscr{Q}_{G \backslash v}\right]$ is non-Koszul quadratic Gorenstein.

Firstly, we assume that $\omega(\bar{G})=3$. Then \bar{G} has a triangle. If \bar{G} has two distinct triangles, then $\#\{W \in S(G) \mid \# W \geq 2\}=\#\{C$: clique of $\bar{G}, \# C \geq$ $2\} \geq 7$, a contradiction. Hence \bar{G} has just one triangle. From the above arguments, if $K\left[\mathscr{Q}_{G}\right]$ is non-Koszul quadratic Gorenstein and $\omega(\bar{G})=3$, then we have the following:

- $\# V(\bar{G})=\# V(G) \geq 7$ (by Proposition 1.2);
- $\#\{C$: clique of $\bar{G}, \# C \geq 2\}=\#\{W \in S(G) \mid \# W \geq 2\} \leq 6$;
- \bar{G} has just one triangle.

Therefore, we have that $\bar{G}=K_{3} \cup K_{2} \cup K_{2}$. However, G is the comparability graph of a partially ordered set such that its Hasse diagram is as follows:

hence $K\left[\mathscr{Q}_{G}\right]$ is Koszul by Remark 1.1(2), a contradiction.
Next, we assume that $\omega(\bar{G})=2$. From Remark 1.1(4), \bar{G} is not bipartite. Hence \bar{G} has a C_{5} as an induced subgraph. From the above arguments, if
$K\left[\mathscr{2}_{G}\right]$ is non-Koszul quadratic Gorenstein and $\omega(\bar{G})=2$, then we have the following:

- $\# V(\bar{G})=\# V(G) \geq 7$ (by Proposition 1.2);
- $\#\{C$: clique of $\bar{G}, \# C \geq 2\}=\#\{W \in S(G) \mid \# W \geq 2\} \leq 6$;
- \bar{G} has a C_{5} as an induced subgraph.

Therefore, we have that $\bar{G}=C_{5} \cup K_{2}$. Then

$$
K\left[\mathscr{2}_{G}\right] \cong \frac{K\left[y_{6}, y_{\{1\}}, y_{\{2\}}, \ldots, y_{\{7\}}, y_{\{1,2\}}, y_{\{2,3\}}, y_{\{3,4\}}, y_{\{4,5\}}, y_{\{1,5\}}, y_{\{6,7\}}\right]}{I_{\mathscr{Q}_{G}}} .
$$

Now we can see that the Gröbner bases of the toric ideal $I_{2_{G}}$ with respect to the reverse lexicographic order induced by the ordering

$$
\begin{aligned}
y_{\{1,5\}}>y_{\emptyset}>y_{\{1\}}> & y_{\{2\}}> \\
& \cdots>y_{\{7\}}>y_{\{1,2\}}>y_{\{2,3\}}>y_{\{3,4\}}>y_{\{4,5\}}>y_{\{6,7\}}
\end{aligned}
$$

is quadratic. Hence $K\left[\mathscr{2}_{G}\right]$ is Koszul, but this is a contradiction.
Therefore, we have that $h_{1} \geq 7$, the desired conclusion.

2. Questions

As the end of this paper, we present some questions.
First, we recall that the toric ring $K\left[{ }_{2} \overline{\bar{C}_{7}}\right]$ is non-koszul quadratic Gorenstein and its h-vector is ($1,7,14,7,1$). Moreover, by Proposition 1.6, $h_{1} \geq 7$ if $K\left[\mathscr{2}_{G}\right]$ is non-Koszul quadratic Gorenstein. Hence the following question is interesting.

Question 2.1. Does there exist a non-Koszul quadratic Gorenstein algebra R such that $h(R)=\left(1, n_{1}, n_{2}, n_{1}, 1\right)$ and $n_{1} \leq 6$?

Note that, in this case $n_{1} \geq 4$ since R is quadratic.
Let G be a graph on $[n]$ and with $E(G)$ its edge set. The edge ring of G, denoted by $K[G]$, is defined by

$$
K[G]:=K\left[x_{i} x_{j} \mid\{i, j\} \in E(G)\right] \subset K\left[x_{1}, \ldots, x_{n}\right] .
$$

The second question is
Question 2.2. Does there exist a graph G such that the edge ring $K[G]$ is non-Koszul quadratic Gorenstein?

In [30, Theorem 1.2], a criterion for the edge ring $K[G]$ of G to be quadratic is given. Moreover, in [22], a class of graphs with the property that the toric ideal I_{G} of the edge ring $K[G]$ of G is quadratic but I_{G} possesses no quadratic

Gröbner bases is studied. A graph G is said to be $(*)$-minimal if G satisfies the above property and every induced subgraph $H \subsetneq G$ does not satisfy the property. By the computation by using Macaulay2, we have that if G is $(*)$ minimal and the edge ring $K[G]$ is non-Koszul quadratic Gorenstein, then $n \geq 9$.

Acknowledgements. The author wish to thank Professor Takayuki Hibi for his financial support. He also deeply grateful to the referee for his/her careful reading, useful suggestions and helpful comments. He was partially supported by JSPS KAKENHI 17K14165.

REFERENCES

1. Aramova, A., Herzog, J., and Hibi, T., Shellability of semigroup rings, Nagoya Math. J. 168 (2002), 65-84.
2. Blum, S., Initially Koszul algebras, Beiträge Algebra Geom. 41 (2000), no. 2, 455-467.
3. Chappell, T., Friedl, T., and Sanyal, R., Two double poset polytopes, SIAM J. Discrete Math. 31 (2017), no. 4, 2378-2413.
4. Chudnovsky, M., Robertson, N., Seymour, P., and Thomas, R., The strong perfect graph theorem, Ann. of Math. (2) 164 (2006), no. 1, 51-229.
5. Conca, A., Universally Koszul algebras, Math. Ann. 317 (2000), no. 2, 329-346.
6. Conca, A., De Negri, E., and Rossi, M. E., Koszul algebras and regularity, in "Commutative algebra", Springer, New York, 2013, pp. 285-315.
7. Conca, A., Rossi, M. E., and Valla, G., Gröbner flags and Gorenstein algebras, Compositio Math. 129 (2001), no. 1, 95-121.
8. Diestel, R., Graph theory, fourth ed., Graduate Texts in Mathematics, vol. 173, Springer, Heidelberg, 2010.
9. Ene, V., Herzog, J., and Hibi, T., Koszul binomial edge ideals, in "Bridging algebra, geometry, and topology", Springer Proc. Math. Stat., vol. 96, Springer, Cham, 2014, pp. 125-136.
10. Engström, A., and Norén, P., Ideals of graph homomorphisms, Ann. Comb. 17 (2013), no. 1, 71-103.
11. Fröberg, R., Determination of a class of Poincaré series, Math. Scand. 37 (1975), no. 1, 29-39.
12. Fulkerson, D. R., Hoffman, A. J., and McAndrew, M. H., Some properties of graphs with multiple edges, Canad. J. Math. 17 (1965), 166-177.
13. Grayson, D. R., and Stillman, M. E., Macaulay2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/.
14. Herzog, J., Hibi, T., and Restuccia, G., Strongly Koszul algebras, Math. Scand. 86 (2000), no. 2, 161-178.
15. Hibi, T., Distributive lattices, affine semigroup rings and algebras with straightening laws, in "Commutative algebra and combinatorics (Kyoto, 1985)", Adv. Stud. Pure Math., vol. 11, North-Holland, Amsterdam, 1987, pp. 93-109.
16. Hibi, T., and Li, N., Chain polytopes and algebras with straightening laws, Acta Math. Vietnam. 40 (2015), no. 3, 447-452.
17. Hibi, T., and Matsuda, K., Quadratic Gröbner bases of twinned order polytopes, European J. Combin. 54 (2016), 187-192.
18. Hibi, T., Matsuda, K., and Ohsugi, H., Strongly Koszul edge rings, Acta Math. Vietnam. 41 (2016), no. 1, 69-76.
19. Hibi, T., Matsuda, K., Ohsugi, H., and Shibata, K., Centrally symmetric configurations of order polytopes, J. Algebra 443 (2015), 469-478.
20. Hibi, T., Matsuda, K., and Tsuchiya, A., Gorenstein Fano polytopes arising from order polytopes and chain polytopes, preprint arXiv:1507.03221 [math.CO], 2015.
21. Hibi, T., Matsuda, K., and Tsuchiya, A., Quadratic Gröbner bases arising from partially ordered sets, Math. Scand. 121 (2017), no. 1, 19-25.
22. Hibi, T., Nishiyama, K., Ohsugi, H., and Shikama, A., Many toric ideals generated by quadratic binomials possess no quadratic Gröbner bases, J. Algebra 408 (2014), 138-146.
23. Hochster, M., Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318-337.
24. Ishida, M.-N., Torus embeddings and dualizing complexes, Tôhoku Math. J. (2) 32 (1980), no. 1, 111-146.
25. Mancini, F., Graph modification problems related to graph classes, Ph.D. thesis, University of Bergen, 2008.
26. Matsuda, K., Strong Koszulness of toric rings associated with stable set polytopes of trivially perfect graphs, J. Algebra Appl. 13 (2014), no. 4, 1350138, 11 pp.
27. Matsuda, K., and Ohsugi, H., Reverse lexicographic Gröbner bases and strongly Koszul toric rings, Math. Scand. 119 (2016), no. 2, 161-168.
28. Matsuda, K., Ohsugi, H., and Shibata, K., Toric rings and ideals of stable set polytopes, preprint arXiv:1603.01850 [math.AC], 2016.
29. Ohsugi, H., Herzog, J., and Hibi, T., Combinatorial pure subrings, Osaka J. Math. 37 (2000), no. 3, 745-757.
30. Ohsugi, H. and Hibi, T., Toric ideals generated by quadratic binomials, J. Algebra 218 (1999), no. 2, 509-527.
31. Ohsugi, H., and Hibi, T., Special simplices and Gorenstein toric rings, J. Combin. Theory Ser. A 113 (2006), no. 4, 718-725.
32. Priddy, S. B., Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39-60.
33. Roos, J.-E., and Sturmfels, B., A toric ring with irrational Poincaré-Betti series, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 2, 141-146.
34. Shibata, K., Strong Koszulness of the toric ring associated to a cut ideal, Comment. Math. Univ. St. Pauli 64 (2015), no. 1, 71-80.
35. Stanley, R. P., Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57-83.
36. Sturmfels, B., Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996.
37. Sturmfels, B., Four counterexamples in combinatorial algebraic geometry, J. Algebra 230 (2000), no. 1, 282-294.
38. Tate, J., Homology of Noetherian rings and local rings, Illinois J. Math. 1 (1957), 14-27.

KITAMI INSTITUTE OF TECHNOLOGY

KITAMI
HOKKAIDO 090-8507
JAPAN
E-mail: kaz-matsuda@mail.kitami-it.ac.jp

