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NON-KOSZUL QUADRATIC GORENSTEIN
TORIC RINGS

KAZUNORI MATSUDA

Abstract
Koszulness of Gorenstein quadratic algebras of small socle degree is studied. In this paper, we
construct non-Koszul Gorenstein quadratic toric ring such that its socle degree is more than 3 by
using stable set polytopes.

Introduction

LetK be a field andS = K[x1, . . . , xn] a polynomial ring overK . LetR = S/I

be a standard graded K-algebra with respect to the grading deg xi = 1 for
all 1 ≤ i ≤ n, where I is a homogeneous ideal of S. Let R+ denote the
homogeneous maximal ideal of R. For an R-module M , we denote βR

ij (M) by
the (i, j)-th graded Betti number of M as an R-module.

The Koszul algebra was originally introduced by Priddy (note that he also
considered non-commutative algebras).

Definition 0.1 ([32]). A standard graded K-algebra R is said to be Koszul
if the residue field K = R/R+ has a linear R-free resolution as an R-module,
that is, all non-zero entries of matrices representing the differential maps in
the graded minimal free resolution of K are homogeneous of degree one. In
other words, βR

ij (K) = 0 holds if i �= j .

Example 0.2.
(1) Polynomial rings are Koszul (consider the Koszul complex).

(2) Let R = K[X]/(X2). Then R is Koszul since

· · · X−→ R
X−→ R −→ K −→ 0

is a linear R-resolution of K .

Since βR
2j (K) = 0 for all j > 2, hence Koszul algebras are quadratic,

where R = S/I is said to be quadratic if I is generated by homogeneous
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elements of degree 2. Every quadratic complete intersection is Koszul by Tate’s
theorem [38]. Moreover, R = S/I is Koszul if I has a quadratic Gröbner bases
by Fröberg’s theorem [11] and the fact that βR

ij (K) ≤ βR′
ij (K) for all i, j and

for all monomial order < on S, where R′ = S/in<(I). The notion of Koszul
algebra has played an important role in the research on graded K-algebras, and
various Koszul-like algebras have been introduced, e.g., universally Koszul [5],
strongly Koszul [14], initially Koszul [2], sequentially Koszul [1], etc.

Koszulness of toric rings of integral convex polytopes is studied. Let P ⊂
Rn be an integral convex polytope, i.e., a convex polytope each of whose
vertices belongs to Zn, and let P ∩ Zn = {a1, . . . , am}. Assume that Za1 +
· · · + Zam = Zn. Let K[X±1, t] := K[x1, x

−1
1 , . . . , xn, x

−1
n , t] be the Laurent

polynomial ring in n + 1 variables over K . Given an integer vector a =
(a1, . . . , an) ∈ Zn, we put Xat = x

a1
1 · · · xan

n t ∈ K[X±1, t]. The toric ring of
P , denoted by K[P ], is the subalgebra of K[X±1, t] generated by {Xa1 t, . . . ,

Xamt} over K . Note that K[P ] can be regarded as a standard graded K-algebra
by setting deg Xai t = 1. The toric ideal IP is the kernel of a surjective ring
homomorphism π : K[Y ] = K[y1, . . . , ym] → K[P ] defined by π(yi) = Xai t

for 1 ≤ i ≤ m. Then K[P ] ∼= K[Y ]/IP . It is known that IP is generated by
homogeneous binomials.

Note that the implications in Figure 1 hold. In addition, the following is
known.
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(1) Conca-De Negri-Rossi posed a conjecture that the defining ideal of
a strongly Koszul algebra has a quadratic Gröbner bases [6, Ques-
tion 13(1)]. This conjecture is true for the toric ring of edge polytope [18],
order polytope [14], stable set polytope [26] and cut polytope [34].

(2) A squarefree strongly Koszul toric ring is compressed [27, Theorem 2.1],
where K[P ] ∼= K[Y ]/IP is said to be compressed if

√
in<(IP ) =

in<(IP ) for any reverse lexicographic order < on K[Y ]. In particular, a
squarefree strongly Koszul toric ring is quadratic Cohen-Macaulay.

(3) Many toric rings associated with integral convex polytopes whose toric
ideals has a quadratic Gröbner bases are constructed (e.g., [3], [15], [17],
[19], [20], [21]). In other words, many Koszul toric rings associated with
integral convex polytopes are constructed.

(4) A quadratic algebra is not always Koszul (see [30, Example 2.1], [33,
Example 3] and [37, Theorem 3.1]). Note that both of these examples
are Cohen-Macaulay but are not Gorenstein.

On the other hand, Koszulness of Gorenstein quadratic algebras is
studied. For a standard graded K-algebra R = ⊕i≥0Ri with dim R = d,
we denote by

HR(t) =
∑

i≥0

dimK Rit
i = h0 + h1t + · · · + hst

s

(1 − t)d

the Hilbert series of R, where hs �= 0, and we say that h(R) := (h0, h1,

. . . , hs) is the h-vector of R and the index s is the socle degree of R.
It is known that h0 = 1 and if R is Gorenstein then hi = hs−i for all
0 ≤ i ≤ 
s/2� ([35, Theorem 4.4]). Conca-Rossi-Valla proved that if R

is a quadratic Gorenstein with h(R) = (1, n, 1) (in this case n ≥ 2 since
R is quadratic) then R is Koszul [7, Proposition 2.12].

The case for s = 3 is also studied. Let R be a quadratic Gorenstein
with h(R) = (1, n, n, 1) (in this case n ≥ 3 since R is quadratic). If
n = 3, then R is quadratic complete intersection, hence R is Koszul.
Conca-Rossi-Valla proved that R is Koszul if n = 4 [7, Theorem 6.15]
and Caviglia proved that R is Koszul if n = 5 in his unpublished master
thesis. The case for n ≥ 6 is still open.

In this note, we focus on (4). In Section 1, we remark about known result of
toric rings and toric ideals of stable set polytopes, and construct non-Koszul
quadratic Gorenstein toric rings by using stable set polytopes. In Section 2,
we present some questions.
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1. Stable set polytope and non-Koszul quadratic Gorenstein toric ring

The stable set polytope is an integral convex polytope associated with stable
sets of a simple graph.

Let G be a finite simple graph on the vertex set [n] = {1, 2, . . . , n} and let
E(G) denote the set of edges of G. Recall that a finite graph is simple if it
possesses no loops or multiple edges. We denote by G the complement graph
of G.

Given a subset W ⊂ [n], we define the (0, 1)-vector ρ(W) = ∑
i∈W ei ∈

Rn, where ei is the i-th unit coordinate vector of Rn. In particular, ρ(∅) is the
origin of Rn.

A subset W ⊂ [n] is said to be stable if {i, j} �∈ E(G) for all i, j ∈ W

with i �= j . Note that the empty set and each single-element subset of [n] are
stable. By definition, W is a stable set of G if and only if W is a clique of G.
Let S(G) denote the set of all stable sets of G. The stable set polytope of a
simple graph G, denoted by QG, is the convex hull of {ρ(W) | W ∈ S(G)}.
By definition, QG is a (0, 1)-polytope and K[QG] = K

[
t · ∏

i∈W xi | W ∈
S(G)

] ⊂ K[x1, . . . , xn, t]. Note that dim K[QG] = n + 1. Let K[Y ] =
K[yW | W ∈ S(G)] be the polynomial ring over K . Now we define a surjective
ring homomorphism π : K[Y ] → K[QG] by π(yW) = t · ∏

i∈W xi and let
IQG

= ker π .
To state known results of the toric ring K[QG] and the toric ideal IQG

of
the stable set polytope QG of a simple graph G, we introduce some classes of
graphs. About terminologies for the graph theory, see [8].

A cycle graph with length n, denoted by Cn, is a connected graph which
satisfies E(Cn) = {{1, 2}, {2, 3}, . . . , {n − 1, n}, {1, n}}. An odd cycle is a
cycle such that its length is odd.

A graph G is said to be perfect if the chromatic number of every induced
subgraph of G is equal to the size of the largest clique of that subgraph. A
graph G is perfect if and only if both G and G are (C2n+3, n ≥ 1)-free [4].

The comparability graph G(P ) of a partially ordered set P = ([n], <P ) is
the graph such that V (G(P )) = [n] and {i, j} ∈ E(G(P )) if and only if i <P j

or j <P i. A graph G is said to be comparability if G is the comparability graph
of some partially ordered set. Forbidden induced subgraphs of comparability
graphs are known (see [25, p. 13]).

A graph G is said to be bipartite if there exist V1, V2 with V1 ∪ V2 = V (G)

and V1 ∩ V2 = ∅ such that if {i, j} ∈ E(G) then either i ∈ V1 and j ∈ V2 or
i ∈ V2 and j ∈ V1. It is known that a graph G is bipartite if and only if G is
(C2n+1, n ≥ 1)-free.

A graph G is said to be almost bipartite (see [10, p. 87]) if there exists a
vertex v such that the induced subgraph G[n]\v is bipartite.
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Remark 1.1. The following facts are known.
(1) Let G be a perfect graph. Then K[QG] is Gorenstein if and only if all

maximal cliques of G have the same cardinality [31, Theorem 2.1(b)].

(2) Let G(P ) be the comparability graph of a partially ordered set P . Then
K[QG(P )] is Koszul since QG(P ) is equal to the chain polytope of P and
the toric ideal of a chain polytope has a squarefree quadratic initial ideal
(see [16, Corollary 3.1]).

(3) If G is almost bipartite, then K[QG] is Koszul since its toric ideal IQG

has a squarefree quadratic initial ideal (see [10, Theorem 8.1]).

(4) Let G be a graph such that G is bipartite. Then K[QG] is quadratic if
and only of it is Koszul [28, Corollary 3.4].

Hence, if K[QG] is quadratic but not Koszul, then G is neither a comparab-
ility graph nor almost bipartite, and G is not bipartite. From this fact and the
classifications of these graphs, we have:

Proposition 1.2. Let G be a graph on [n]. If K[QG] is non-Koszul quadratic
Gorenstein, then n ≥ 7, that is, dim K[QG] ≥ 8.

Proof. First, we assume that n ≤ 5. Then G is a comparability graph if G

is not C5. Since C5 is almost bipartite, we have that K[QG] is Koszul if n ≤ 5
from Remark 1.1(2) and (3).

Next, we assume that n = 6. If G is not connected, then G is a comparability
graph if G is not C5 ∪ K1. Since C5 ∪ K1 is almost bipartite, we have that
K[QG(P )] is Koszul.

Assume that G is connected. From the classifications of comparability and
almost bipartite graphs, G is one of the following (see [26, p. 10]):

G1 G2 G3 G4 G5

Then we can see that

• K[QG1 ] is not Gorenstein since h(K[QG1 ]) = (1, 7, 10, 3),

• K[QG2 ] is Koszul; indeed, we can check that the Gröbner bases of IQG2

with respect to the reverse lexicographic order induced by the ordering

y{3,6} > y∅ > y{1} >

· · · > y{6} > y{1,4} > y{2,4} > y{2,5} > y{2,6} > y{4,6} > y{2,4,6}

is quadratic,
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• G3 is C6, hence it is bipartite,

• K[QG4 ] is not Gorenstein since h(K[QG4 ]) = (1, 6, 8, 2),

• K[QG5 ] is Koszul since IQG5
= IQC5

and IQC5
has a quadratic Gröbner

bases.

Therefore we have the desired conclusion.

For each integer k ≥ 3, the complement of an odd cycle C2k+1, denoted
by C2k+1, is neither a comparability graph nor almost bipartite. Moreover,
we note that C2k+1 is not perfect and S(C2k+1) = {∅, {1}, {2}, . . . , {2k +
1}, {1, 2}, {2, 3}, . . . , {2k, 2k + 1}, {1, 2k + 1}}.

Let K[Y ] = K[y∅, y{1}, y{2}, . . . , y{2k+1}, y{1,2}, y{2,3}, . . . , y{2k,2k+1},
y{1,2k+1}]. Now we study the toric ring

K
[
QC2k+1

] ∼= K[Y ]

IQC2k+1

.

Proposition 1.3. We have the following:

(1) K
[
QC2k+1

]
is quadratic Cohen-Macaulay for all k ≥ 3;

(2) K
[
QC2k+1

]
is not Gorenstein for all k ≥ 4;

(3) K
[
QC7

]
is Gorenstein;

(4) IQC2k+1
possesses no quadratic Gröbner bases for all k ≥ 3.

Proof. (1) Note that α(C2k+1) = 2 and C2k+1 satisfies the odd cycle con-
dition (see [12, p. 167]). Hence, by applying G = C2k+1 to [28, Theorem 2.1],
we have that QC2k+1

is a normal polytope. Thus K
[
QC2k+1

]
is normal Cohen-

Macaulay from [36] and [23].
Next, we will determine generators of the toric ideal IQC2k+1

. By applying

G = C2k+1 to [28, Theorem 3.2], we have that IQC2k+1
= IPC2k+1

+ J , where
IPC2k+1

is the toric ideal of the edge ring of C2k+1 and J is generated by the
following 4k + 2 quadratic binomials:

y{i}y{i+1} − y∅y{i,i+1} (1 ≤ i ≤ 2k),

y{1}y{2k+1} − y∅y{1,2k+1},
y{i}y{i+1,i+2} − y{i+2}y{i,i+1} (1 ≤ i ≤ 2k − 1),

y{2k}y{1,2k+1} − y{1}y{2k,2k+1}, y{2k+1}y{1,2} − y{2}y{1,2k+1}.

Since C2k+1 is an odd cycle, IPC2k+1
= (0) from [28, Proposition 3.1]. Hence

K
[
QC2k+1

]
is quadratic. Therefore K

[
QC2k+1

]
is quadratic Cohen-Macaulay.
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(2) For an integral convex polytope P ⊂ Rn, we define

cone(P) := {(α, t) | α ∈ tP ∩ Zn, t ∈ Z≥0} ⊂ Rn+1

as the cone of P . By (1), we can regard cone(QC2k+1
) as a positive toroidal

monoid and K
[
QC2k+1

]
is the semigroup ring defined by cone(QC2k+1

). Hence,
from [35, Theorem 6.7] (see also [24, Corollary 5.11]), it is enough to show that
cone(QC2k+1

) has two minimal interior lattice points to prove that K
[
QC2k+1

]
is

not Gorenstein.
Assume that k ≥ 4. First, (1, 1, . . . , 1, k + 1) ∈ R2k+2 is a minimal interior

lattice point of cone(QC2k+1
) for all k ≥ 4. Moreover,

(2
1
, 1, 1, 2

4
, 1, 1, . . . , 2

2k−1
, 1, 1, k + 3) ∈ R2k+2 (k ≡ 1 mod 3),

(2
1
, 1, 1, 2

4
, 1, 1, . . . , 2

2k−3
, 1, 1, 2

2k

, 1, k + 3) ∈ R2k+2 (k ≡ 2 mod 3),

(2
1
, 1, 1, 2

4
, 1, 1, . . . , 2

2k−5
, 1, 1, 3

2k−2
, 1, 1, 1, k + 3) ∈ R2k+2 (k ≡ 0 mod 3)

are also minimal interior lattice points of cone(QC2k+1
). Therefore we have that

K
[
QC2k+1

]
is not Gorenstein for all k ≥ 4.

(3) Assume k = 3. From the proof of (1), we have that the toric ideal IQC7

of the toric ring K
[
QC7

]
is generated by the following 14 binomials:

y{1}y{2} − y∅y{1,2}, y{2}y{3} − y∅y{2,3}, y{3}y{4} − y∅y{3,4},
y{4}y{5} − y∅y{4,5}, y{5}y{6} − y∅y{5,6}, y{6}y{7} − y∅y{6,7},

y{1}y{7} − y∅y{1,7}, y{1}y{2,3} − y{3}y{1,2}, y{2}y{3,4} − y{4}y{2,3},
y{3}y{4,5} − y{5}y{3,4}, y{4}y{5,6} − y{6}y{4,5}, y{5}y{6,7} − y{7}y{5,6},

y{6}y{1,7} − y{1}y{6,7}, y{7}y{1,2} − y{2}y{1,7}.

Let S := K[Y ] and K
[
QC7

] ∼= S/IQC7
. By using Macaulay2 [13], we can see

that

0 → S(−11) → S(−9)14 → S(−7)36 ⊕ S(−8)21 → S(−6)126

→ S(−5)126 → S(−3)21 ⊕ S(−4)36 → S(−2)14 → S → S/IQC7
→ 0

is a minimal free S-resolution of S/IQC7
. Hence we have that K

[
QC7

] ∼= S/IQC7

is Gorenstein.
(4) Assume that there exists a monomial order < on K[Y ] such that the

Gröbner bases of IQC2k+1
with respect to < is quadratic. We may assume

that y{1}y{2,3} < y{3}y{1,2}. Then y{3}y{4,5} < y{5}y{3,4} since y{5}y{1,2}y{3,4} −
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y{1}y{2,3}y{4,5} ∈ IQC2k+1
and its initial monomial is y{5}y{1,2}y{3,4}. Since

y{7}y{3,4}y{5,6} − y{3}y{4,5}y{6,7} ∈ IQC2k+1
and its initial monomial is

y{7}y{3,4}y{5,6}, we have y{5}y{6,7} < y{7}y{5,6}. By repeating this argument,
we have

y{1}y{2,3} < y{3}y{1,2},
y{3}y{4,5} < y{5}y{3,4},

...

y{2k−1}y{2k,2k+1} < y{2k+1}y{2k−1,2k},
y{2k+1}y{1,2} < y{2}y{1,2k+1},

y{2}y{3,4} < y{4}y{2,3},
y{4}y{5,6} < y{6}y{4,5},

...

y{2k−2}y{2k−1,2k} < y{2k}y{2k−2,2k−1},
y{2k}y{1,2k+1} < y{1}y{2k,2k+1}.

These inequalities lead to a contradiction. Hence we have the desired conclu-
sion.

We can check that K
[
QC7

]
is not Koszul by using Macaulay2. For conveni-

ence, we introduce how to check that K
[
QC7

]
is not Koszul (see [37, p. 289]).

Let S = K[Y ], I := IQC7
and R := K

[
QC7

] ∼= S/I . We compute the
infinite resolution of K over R up to homological degree 3 by using command
LengthLimit. We must input S and I in advance.

i3 : R = S/I

o3 = R

o3 : QuotientRing

i4 = betti res(coker vars R, LengthLimit => 3)
             0  1   2   3
o4 = total : 1 15 119 687
          0: 1 15 119 686
          1: .  .   .   1

o4 : BettiTally

Hence we have βR
34(K) = 1. Thus R is not Koszul. Therefore we have

Corollary 1.4. The toric ringK
[
QC7

]
is non-Koszul quadratic Gorenstein.
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We can construct an infinite family of non-Koszul quadratic Gorenstein
toric rings by using stable set polytopes.

Proposition 1.5. Let k ≥ 1 be an integer. Let G be a graph on [2k + 7]
such that G = C7 ∪ K2 ∪ · · · ∪ K2 and the labeling of vertices is as follows:

5 4

2

1

7

36

9

8

· · ·

2k�6

2k�7

Then we have

(1) K[QG] is quadratic Gorenstein such that

HK[QG](t) = (1 + 7t + 14t2 + 7t3 + t4)(1 + t)k

(1 − t)2k+8
.

(2) K[QG] is not Koszul.

Proof. (1) By [28, Theorem 3.2], we have that the toric ideal IQG
is gen-

erated by the following binomials:

y{i}y{i+1} − y∅y{i,i+1} (1 ≤ i ≤ 6),

y{1}y{7} − y∅y{1,7}, y{i}y{i+1,i+2} − y{i+2}y{i,i+1} (1 ≤ i ≤ 5),

y{6}y{1,7} − y{1}y{6,7}, y{7}y{1,2} − y{2}y{1,7},
y{2i}y{2i+1} − y∅y{2i,2i+1} (4 ≤ i ≤ k + 3).

Let K[Y ] = K[yW | W ∈ S(G)]. Then K[QG] ∼= K[Y ]/IQG
. Note that

y = y∅, y{1} − y{2,3}, y{2} − y{3,4}, . . . , y{5} − y{6,7}, y{6} − y{1,7}, y{7} − y{1,2},
y{8} − y{9}, . . . , y{2k+6} − y{2k+7}, y{8,9}, . . . , y{2k+6,2k+7} is a regular sequence
of K[Y ]/IQG

. Hence we have

K[Y ]

IQG
+ (y)

∼= K[y{1}, y{2}, . . . , y{7}]
I7

⊗K

K[y{2i} | 4 ≤ i ≤ k + 3]

(y2
{2i} | 4 ≤ i ≤ k + 3)

.

Thus the Hilbert series of K[Y ]/IQG
+ (y) is (1+7t +14t2 +7t3 + t4)(1+ t)k .

Therefore we have the desired conclusion.
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(2) K
[
QC7

]
is a combinatorial pure subring (see [29]) of K[QG]. Since

K
[
QC7

]
is not Koszul, hence K[QG] is not Koszul by [29, Proposition 1.3].

Proposition 1.6. Let G be a graph. Let h(K[QG]) = (h0, h1, . . . , hs) be
the h-vector of K[QG]. If K[QG] is non-Koszul quadratic Gorenstein, then
h1 ≥ 7.

Proof. First, note that h1 = codim R = embdim R − dim R and
embdim K[QG] = #S(G) = 1 + n + #{W ∈ S(G) | #W ≥ 2}. Hence
h1 = #{W ∈ S(G) | #W ≥ 2}.

Assume that h1 ≤ 6. Let α(G) := max{#W | W ∈ S(G)}. Then we have
α(G) ≤ 3 since #{W ∈ S(G) | #W ≥ 2} > 6 if there exists W ∈ S(G) with
#W ≥ 4. Moreover, α(G) �= 1 since if α(G) = 1, then K[QG] is isomorphic
to a polynomial ring, hence K[QG] is Koszul. Thus α(G) = 2, 3.

Now let us consider the complement G of G. Then ω(G) = α(G) holds,
where ω(G) = max{#C | C is a clique of G}. Thus ω(G) = 2, 3. In addition,
we may assume that G has no isolated vertex. Indeed, if G has an isolated
vertex v, then K[QG] ∼= K[QG\v] ⊗K K[yv] and IQG

= IQG\v . From these
fact and [9, Proposition 3.1], we have that K[QG] is non-Koszul quadratic
Gorenstein if and only of K[QG\v] is non-Koszul quadratic Gorenstein.

Firstly, we assume that ω(G) = 3. Then G has a triangle. If G has two
distinct triangles, then #{W ∈ S(G) | #W ≥ 2} = #{C : clique of G, #C ≥
2} ≥ 7, a contradiction. Hence G has just one triangle. From the above argu-
ments, if K[QG] is non-Koszul quadratic Gorenstein and ω(G) = 3, then we
have the following:

• #V (G) = #V (G) ≥ 7 (by Proposition 1.2);

• #{C : clique of G, #C ≥ 2} = #{W ∈ S(G) | #W ≥ 2} ≤ 6;

• G has just one triangle.

Therefore, we have that G = K3 ∪ K2 ∪ K2. However, G is the comparability
graph of a partially ordered set such that its Hasse diagram is as follows:

hence K[QG] is Koszul by Remark 1.1(2), a contradiction.
Next, we assume that ω(G) = 2. From Remark 1.1(4), G is not bipartite.

Hence G has a C5 as an induced subgraph. From the above arguments, if
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K[QG] is non-Koszul quadratic Gorenstein and ω(G) = 2, then we have the
following:

• #V (G) = #V (G) ≥ 7 (by Proposition 1.2);

• #{C : clique of G, #C ≥ 2} = #{W ∈ S(G) | #W ≥ 2} ≤ 6;

• G has a C5 as an induced subgraph.

Therefore, we have that G = C5 ∪ K2. Then

K[QG] ∼= K[y∅, y{1}, y{2}, . . . , y{7}, y{1,2}, y{2,3}, y{3,4}, y{4,5}, y{1,5}, y{6,7}]
IQG

.

Now we can see that the Gröbner bases of the toric ideal IQG
with respect to

the reverse lexicographic order induced by the ordering

y{1,5} > y∅ > y{1} > y{2} >

· · · > y{7} > y{1,2} > y{2,3} > y{3,4} > y{4,5} > y{6,7}

is quadratic. Hence K[QG] is Koszul, but this is a contradiction.
Therefore, we have that h1 ≥ 7, the desired conclusion.

2. Questions

As the end of this paper, we present some questions.
First, we recall that the toric ringK

[
QC7

]
is non-koszul quadratic Gorenstein

and its h-vector is (1, 7, 14, 7, 1). Moreover, by Proposition 1.6, h1 ≥ 7 if
K[QG] is non-Koszul quadratic Gorenstein. Hence the following question is
interesting.

Question 2.1. Does there exist a non-Koszul quadratic Gorenstein algebra
R such that h(R) = (1, n1, n2, n1, 1) and n1 ≤ 6?

Note that, in this case n1 ≥ 4 since R is quadratic.
Let G be a graph on [n] and with E(G) its edge set. The edge ring of G,

denoted by K[G], is defined by

K[G] := K[xixj | {i, j} ∈ E(G)] ⊂ K[x1, . . . , xn].

The second question is

Question 2.2. Does there exist a graph G such that the edge ring K[G] is
non-Koszul quadratic Gorenstein?

In [30, Theorem 1.2], a criterion for the edge ring K[G] of G to be quadratic
is given. Moreover, in [22], a class of graphs with the property that the toric
ideal IG of the edge ring K[G] of G is quadratic but IG possesses no quadratic
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Gröbner bases is studied. A graph G is said to be (∗)-minimal if G satisfies
the above property and every induced subgraph H � G does not satisfy the
property. By the computation by using Macaulay2, we have that if G is (∗)-
minimal and the edge ring K[G] is non-Koszul quadratic Gorenstein, then
n ≥ 9.
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