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LINEARIZATION OF
PRODUCTS OF JACOBI POLYNOMIALS

EGIL A. HYLLERAAS

1. Introduction.

In dealing with eigenvalue problems one usually has to introduce an
auxiliary set of orthogonal functions as closely related to the true eigen-
functions as possible. A part of the technics is to evaluate integrals over
products of functions from the orthogonal set times some function ap-
pearing in the eigenvalue differential equation.

To fix the idea consider the differential equation

iz_ 2 -~z } =

(1.1) dx2+k +Aefxiy = 0.

The function e—%/x is called the Yukawa potential, and the equation
constitutes in nuclear physics a very difficult scattering problem. To
solve the problem one has to find solutions y(x) having the properties
¥(0)=0, y(x) - sin(kx +7) as * — oo, and to determine » which is called
the scattering phase shift.

Consider next the equation,

2
(1.2) 6%ia’—;—z—n2+Ae-"/a: y=0,
with boundary conditions y(0)=0, y(c0)=0. It constitutes an ordinary
Sturm-Liouville eigenvalue problem with discrete eigenvalues if A is
taken to be the eigenvalue parameter.

Moreover, if the eigenvalues 4, (x) were obtainable as analytical func-
tions of the parameter »x, the functions 4,( £ ¢k) could be used for setting
up an explicit formula for the scattering phase shift n=x(k,4).

Finally consider a related equation

1 P e 2

( 3) Cw_” +eT—j Yn = 0,

with

(1.3a) A, = (n+1)(n+1+2x%), n=012....
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The eigenfunctions y,(x) are polynomials in e-% times e—**(1 —e-%). Ap-
plying the functions for the purpose of solving (1.2) one has to evaluate
a double series of integrals

e—Z
— dx .
[ e

It is for this purpose that an expansion of products of the above poly-
nomials in terms of the same polynomials is desireable.

Put
(1.4) Yp = e¥(1—e %)z, E=e"7.

Then (1.3) turns into

(1.5) {51 5);—52+ [l+2x—(3+2n)£]— + n(n+2x+2)iz, =0.
Comparing with the hypergeometrical equation for Jacobi polynomials
(1.6) 2(1-2)yn + [g—(p+1)2ly, + nin+p)y, = 0,

it is seen that our z,(&) are Jacobi polynomials of degree n with param-
eter values ¢g=1+2x and p=2+2x.
The Jacobi polynomials themselves are defined for n >0 by the series

(n+p—1+v)
(1.7)  yu(x) = F(—n,n+p,q,7) =§0(_x)v(7:) v

()
v

For convenience we define y_;=0. Denoting the double set of product
functions by

(1.8) Ynm = YuYm

the linear form

p+1>q9g>0.

n+m

=N—m
is desired.

2. Historical notes and indication of general results.

Inspecting the mathematical litterature it appears that very little can
be found about the problem. In Whittaker and Watson [7, p. 331] an
example is given for Legendre ‘“‘coefficients”, i.e., for ordinary Legendre
polynomials P,(z). It refers to the work of J. C. Adams [1, p. 63] from
1878.
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It is true that our problem is equivalent to evaluating certain integrals
over triple products of hypergeometric functions. In this field something
more has been found, however nothing of the kind equivalent to our
problem. A reference list is given at the end of the present paper to
show the extent of our inspections (Ferrers [2, p. 56], Gaunt [3, p. 192],
Hobson [4, p. 87], Neumann [5, part 2, p. 91], Todhunter [6]).

The Legendre polynomials P, (&) and also the generalized polynomials
P{™(&) may be described in two ways as Jacobi polynomials. The sim-
plest way is to put £=2x—1 and consider the polynomials functions of
the variable , 0 <x<1. Then it is found that the

CaseI: p=29-1,

comprises all polynomials under the general name of Gegenbauer poly-
nomials of which all ordinary and associated Legendre polynomials and
even the Tschebyscheff polynomials are only particular cases.

Moreover, quite generally in the above Case I a linearization according
to equ. (1.9) is possible in the elementary sense that a two term recur-
rence formula for the coefficients of the expansion will permit to establish
the formulae in explicit form. Hence, our main problem can be solved
for an extensive class of important functions.

Case II: p = 2¢,

for which the same results are true, does not comprise so well-known
functions. However, in many physical applications they may be of
comparable importance. In particular, for x=0 the polynomials of our
equ. (1.5) fall into that category.

The other way of expressing Legendre or, more generally, Gegenbauer
polynomials, in terms of Jacobi polynomials is to consider even poly-
nomial functions of the new variables =£2 or 2 =1—£2. In this wayitis
found that there are still two cases:

Case ITI: ¢ = }
Case IV: ¢ = p+1%

for which elementary expansions are possible.

Apart from the above special cases it is found that one has to be satis-
fied with an implicit procedure based upon a three-term recurrence
formula for the expansion coefficients of equ. (1.9).

no restriction on p, apart from (1.7)

3. General formulae for Jacobi polynomials.

In the course of the investigation we shall frequently need some general
formulae. These are:



192 EGIL A. HYLLERAAS

Recurrence formula :

(3.1)

(n+q)(n+p) n(n+p—q)
[¥n1—Ya] — @t p)en—11p) (%0 —Yn-1] -

-2 —_
Yn = Cnt+p)n+l+p)

Differential formula:

n(n+ p) n+q [ 1+ n+p—q[ 1
2n+p 2n+l+p yn+1 yn 2n—l+p yn yn—l .

(3.2) 2(1-2)y, =

In the special cases I and II the formulae are seen to become consider-
ably simpler which is not surprising from what has been said above.

In this section we shall also give the values of the lowest and highest
coefficients of the expansion (1.9). The latter can be found simply from
the values of the highest coefficients of y,, y,, and y,,,,,. The result is

(2n+p—1) (2m+p—l> (n+m+q—1)

(3.3) n m n+m
. C = .
nm (n+q——1> (m+q——1) (2n+2m+p—1)
n m n+m

To determine c,,_,,, m =n, we need the orthonormal relation

1
(3.4) J’ 2 Y1 —z)p-tyy de = N6, ,
0

_ nlg-D)E(r+p—g)!
(n+p—1)! (n+q—1)! (2n+p)’

(3.5) N,

which is fairly easily obtainable from the equivalent definition of the
polynomials

(3.6) Yu(z) = _g_:l).'_ 21-9(1 —z)2-P ﬁ an+a-1(] — gyrp—a
" (n+q—1)! dan
From the obvious equation
1
(3.7) Nosonm = [#4H1= )0y, iy da,
0
writing (2n +p—1 )
_ n n!(g—1)! (n+p—g)!
n (n+q—-l) (2n+p)!
n

and comparing the coefficients of 2™ in y,_,y,, and y,, it is found that
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(2m+p—1>

(3.8) oy = m _ n!(2n—2m+p)! (n+p—g)!

. n—m (m+q—'1) (n—m)! 2n+p)! (m—m+p—gq)!
m

(2m+p—1) (n) (n+p-—q)
_ m m m
- (m+q——l) <2m) <2n+p '
m m 2m )
In the general case of arbitrary p and ¢ only a few additional coeffi-

cients like ¢, ,,,_, and ¢,,_,,,, could be determined from the above triple
product integral method. We therefore turn to a widely different method.

4. The differential equation for the product function.
In addition to (1.6) we need the differentiated equation .
(4.1) z(1-2)y, + [g+1-(p+3)2]y, + [(n+p)—(p+ 1]y, = 0.

Combining the 2. and 3. order equations both for y, and y, we arrive
at the equation

(4.2)  LyY,p + [n(n+p)—m(m+p)] (1 = 2)[YpYm—Ym¥nul = O,

where L, is a third order differential operator

(4.2a) Ly = a?(1—x)2y'"' +
+3[g—(p+Vzlx(l —x) ¥y +
+lg—(p+1)2][2¢—1—2pz] y' +
+[2n(n+p)+ 2m(m+p)— (p+1)2] y' +
+[n(n+p)+m(m+p)l(2¢—1-2pz) y .

The appropriate first order differential operator for removing the last
term of equ. (4.2) is

(4.3)

d d
Ly = 2291 —2)? P+l — 20"} (1 —2)P~? = g(l—2x)— + [¢g—1—(p—1)x].
dx dx

We shall, however, prefer the second order operator
(4.4) L d L 1-x) @ 1)z] d (p-1)
. = — = — —_— — x _— — 5
2 =Ly = a(l=2) 7 + [g—(p+ 1)zl == — (P

which has the eigenvalues — (% +1)(n+p—1) when applied to the poly-
nomials y,,(x).
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We need write neither the fourth nor the fifth order differential
equation for Y,,. It is simpler to evaluate the third order differential
expression Lgy, for any of the functions entering the expansion (1.9).
Then the equation to be solved with respect to the expansion coefficients
¢ is

' n+m

d
45) X ofLLsy,+[n(n+p)—m(m+p)P =2yl = 0.

k=n—m

Consider first, using (3.1) and (3.2),

d ’
(4.6) J;x(l—x)?/k = z(1-2)y;, + (1-22)y,;

(k+q)(k+p)(k+2)

k(k+p—q)(k+p—2)

_ (k+q)k+p)k+2)  (k+p-@k(k+p—2)
k) 2k+14p) " T T @h—14p)2ktp)

 @g—1-p)k+ Dk +p—1)
h—1+p)2Zk+1tp) U*

{_ (k+ 91 (k+DP—9)Yx—1
2l @k+p)(2k+1+p) (2k—1+p)(2k+p)

(29—1-p)ys }
2k—1+p)2k+1+p)°

The latter expression is obtained by considering the eigenvalues of L,
with respect t0 ¥y.1, Yi—1, Yr> €qu. (4.4). Putting the operator L, outside
in equ. (4.5), it can be dropped, since all its eigenvalues are different
from zero (except for k=0, p=1 and k=1, p=0, cases which might be
considered separately).

We now apply equ. (4.2a) together with (4.1) and (1.6) to y, to obtain

(4.7) Ly, = [20(n+p)+ 2m(m+p) — k(k+ p)](1 —z)y;, +
+[n(n+ p)+m(m+ p) — k(k+ p)1(29 — 1 — 2px)y;, .

Again, using (3.1) and (3.2)
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(4.8) Lgyy = [n(n+p)+m(m+p)—k(k+p)l(29— 1)y, +
(k+p)* (k+q)
(2k+p)(2k+1+p)
kKk+p—q)
(2k— 1+ p)(2k +p)
2
— D D (24 4 2om+ 40— (4 D W -
_ K(k+p-9q)
(2k — 1+ p)(2k + p)
(29—1-p)(k+p)
2(2k+ 1+ p)
(29— 1—p)k?
 2(2k—1+p)
+ (1=p)(2¢ — 1 —p)[n(n+p) + m(m+ p) + k(k + p)]ys -

[2(n+3p)2+2(m + 3p)2 — (K + P) 2N Yp+1 — i) +

[2(n+ 3p)*+ 2(m + $p)* — K*)(Yr — Yr—1)

[2(n + }p)*+ 2(m + §p)* — K*lYp—1 +

[2(n + §p)*+ 2(m + §p)* — (b + p)?*ly, —

[2(n+ 3p)*+ 2(m + 3p)* — K*Jy,, +

We now replace equ. (4.5) by
(4.9) S alalye = 0,

d
Lyy, = Lyyy + [n(n+p)—m(m+p)2Ly* 7 — )Yy »
and obtain by means of (4.6) and (4.8)

(4.10)
I = e = P4 (0 =
- et e AR~ (1
St o (4B = (e D+ )= (=l —
Sy et )= R~ (=gt

+(2¢ — 1 = p)(1 —p)[n(n + p) +m(m + p) — k(k + p)]ys -
We now observe that as
(k+p)? = (k+12+(2k+1+p)(p-1),

(4.11)
k? = (k—1+p)?*—(2k—1+p)p-1),
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and :
(4.12) n(n+ p) +m(m + p) — k(k + p)
= {(n+m+p)*+(n—m)*—(k+p)*— k],
Ly, may be written in two different forms of which we shall only re-
peat the terms containing y,, namely,

2g—1—
(4.10a) —2—(2qk—+-1—;% [(n-+m+p)2— (k+p)2I[(k+ 1)2— (n—m)2ly; —
— 7P (g et p)— (k- 1+ p)I(RE — (0= m)?]
2(2%k—1+p) P P Ui
29—1-p

T 2%k+1+p) [(n +m+ p)2— (k+ 1)2][(k+ p)2 — (n —m)?]y, —

_ 2q-1-p
2(2k—1+p)

From (4.9), (4.10) and (4.10a) the following recurrence formula is obtained :

[(n+m+p)® - E2][(k — 1+ p)* — (n—m)*]y, .

(4.13)
St = (= 1 I L) (01—
e A (o P 1) ()
e L+ = P 1) (=)l —
20722 [t mt )= (k= 1+ IR — (= m)Pley = O,

T 2%—1+p

together with an alternative formula using the last expression in (4.10a).

5. Gegenbauer, Tschebyscheff and Legendre polynomials.

From one of the known coefficients ¢,_,, or ¢, ., the other coefficients
in (1.9) can be computed by means of the above 3-term recurrence
formula. We first consider the simplest

Case I: 29 = p+1, Gegenbauer type .

The recurrence formula is greatly simplified and can be written

Cera _ (AmApP—(k+p)? (k+pf—(n—m)* 2k+4+p

O T tmtpr— (k2R (br2f—(n-mP  Ztp
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Since ¢,_,,_; =0, it follows that c,_,, .ax+1=0, and we shall therefore use
it in the form

Cn-m+ak+2 _ (n+p+k)(m—k)
Co-miz (Mt ipt+k+1)m+ip—k—1)
.(n—m+%p+k)(k+:}p) n—m+ip+2k+2
(m—m+Ek+1)(k+1) n—m+3p+2k

(5.2)

The explicit expression for the coefficients becomes

(5.3) (k+§p—1)(m—k+%p)(n—m+k+%p—l)(n+k+p—l)

. _ k m—k n—m+k n+k
”ﬂ”k_ ()T
m n n+k
n—m+ip+2k
T ntipHk

The end coefficients
<m+m}p—— 1) (n—m+§p)

m n-—m
(5.4) cn = ’

S

(’In+%p-—l) (n+m+p—l)

m n+m
C =
RN
m n+m

are seen to be the same as those obtained from (3.8) and (3.4) putting
g=3(p+1) and using auxiliary equations of the type

22m(p—1)! (m+$(p—1))! (m+4p—1)!
5.5 2m+p—1)! = :
69 mrp=1) (kp-1)! (lp-1)!

The simplest expressions for the coefficients are obtained for even
integral p, that is, for the Tschebyscheff (p=0) and associated poly- -
nomials:

p= 0, Cp—m+2k = %(6ko+akm) ’
n—m+2k+1

=2 ¢, =
D n—m+2k (m+1)(’n+l)

(5.6)

In both cases the equation

m
(6.7) zcn—m+2lc =1
k=0
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is easily seen to hold. For arbitrary p-values it can be shown that

m m~1
(5.8) zcn—mﬂk = zcn—(m-l)-:»zk =...=1
k=0 k=0

and, hence, that (5.7) is generally valid, but we shall omit this proof.
For odd integral p we have the next simplest case which comprises
the Legendre and associated polynomials. In particular for p=1 we have

Pm(é)Pn(E) =k§06n—m+2kpn—m+2k(£) s
9 NI IEY aiew
On-me2k = (n+k—:}) T ntitk
n+k

and this is the only linearization formula for Jacobi polynomials formerly
known.
For orientation we add the case

(5.9a) p =3,
_ (k-;c-%) (m'r;-li-llc-%) (n;T;—I:-Z%) n—m+ 3+ 2k
Cnomak = (n+l]zi§) C(m+ D(m+2)(n+ 1)(n+2)

n+

6. Simplified Jacobi polynomials of the non-symmetric type.
In this section we consider

Case II: 2¢ =p.

The simplification of the recurrence formula for the Gegenbauer type
of polynomials is due to their symmetry properties. The polynomials
are alternatively symmetric and antisymmetric with respect to the
midpoint z=} of their fundamental region 0<xz=<1. Therefore the
products y,,y, must be expressed linearly by either symmetric or anti-
symmetric polynomials y, ..o

But this is not the only type of simplified polynomials with a two-
term recurrence formula for the coefficients of the linear expansion of
their products. There is another type as announced above, which is
almost equally simple.

If in (4.13) we put 29 = p, we obtain the somewhat simplified recurrence
formula
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(6.1a)
- - 2
(n+m+211:)ilffp = {{e—1+p)2—(n—m)o,_s + [k~ (n—m)%e,} —
k+1)2—(n—m)?
- l(ipm) {[(n+m -+ p)— (o p)ey + [(n mo+ P2 (e + 1oz} = O.

Next we write the alternative formula as announced by equ. (4.10a),
however with & replaced by k+ 1. The result is

(6.1b)

k 2__(n—m)2

: +2pIZ+ I(me) {[(n+m+p)2—(k+p)e+ [(n+m+p)2— (k+1)%ep 1} —
_(n+m+p)—(k+2)

Soasrp PR ()l (b4 2P~ (v mlegg) = 0.

It is easily seen that for non-vanishing pre-factors the {}-brackets of
(6.1a) and (6.1b) are all zero if a single one is zero.

Now since ¢,_,,_,=0, the first {} of (6.1a) vanishes for k=n—m.
Similarly since c,, ,,,.1 =0, the last bracket of (6.1a) vanishes for k=n +m.
We therefore obtain the alternating recurrence formulae

Ci+1 (m+m+pP—(k+p)?  cpyp  (k+p+1)°—(n—m)®

O e = TrAmt R DT oy (b2 ()t

Replacing £ by n—m+ 2k, we may write

(6.3a) Cn—m+2k+1 _ (n+p+k)m—k)

Cnmize A3+ +E)(m+p—1)—k)

(6.3b)

Cpmizirs _ _ (n+PHE)(m—k)(n—m+3(p+1)+k)(}(p+1)+E)
Cnomize (M 3@+ D) +E)(m+Ep-1)—k)n—m+1+k)k+1)

From these expressions and the known end coefficients the following
explicit formulae are obtained

(6.4) Cn—m+2k =
(k+§(]f;—1)) (m—lcnjf(lgo—l)) (n_mntk;f]f—l)) (n+l;:1]:-1)

(m+p—-l) (n+p—1) (n+k+1}(p—l)> ’

m n n+k
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(6.4a) Cn-m+2k+1 =
e s e g [ sy
h (m+p—1) (n+p—-1) (n+k+§(p+ 1))
m n n+k+1

The simplest expressions are here obtained for odd integral p. In
particular

(68) p=1 Chmm=1  Cppmigra= -1,
(658) p=3, o,y =2t moktDn-omiltl)ntl+2)
(m+1)(m+2)(n+1)(n+ 2)
c _ Gkt l)m—k)n—m+k+1)(n+k+3)
nome (m+1)(m+2)(n+1)(n+2) )
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