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CONGRUENCES FOR THE COEFFICIENTS
OF THE MODULAR INVARIANT j(7)

0. KOLBERG

The modular invariant j(t) is defined by

3 oo

j(r) =z (1 + 240 ? aa(n)x") ]:I (1 —an)-24, z = exp(2nit),

where

an) = 3 dx.

din
The coefficients in the expansion

(o)

J(r) = 3 e(n)an

-1

have remarkable divisibility properties. Thus Lehner [5] [6] has shown
that

(1.1) ¢(2%n) = 0 (mod23a+8) |
(1.2) ¢(3%) = 0 (mod32a+3) ,
(1.3) c(5%n) = 0 (mod5e+),
(1.4) c(7n) = 0 (mod77),

for arbitrary positive integers a, n. He proved also that, if a=1,2,3, and
n >0, then
(1.5) ¢(11%s) = 0 (mod11%).

It is not known whether (1.5) is valid for a>3. The congruence (1.1)
has been somewhat improved by the author [2], we have, in fact

(1.6) c(29n) = —2%+8 39-14.(n) (mod 23a+13) |

for a>0, n odd. It is probable that (1.2)-(1.4) can be sharpened in a
similar way, but this will not be considered here. Especially, (1.6) proves
Lehner’s conjecture that 234+8 ig the exact power of 2 dividing ¢(29).
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Newman [10] has deduced an interesting congruence connecting c¢(n)
and Ramanujan’s function z(n), viz.

(1.7) ¢(13n) = —1(n) (mod13), n>0.
The function 7(n) is defined by

E t(n)a® = o [ (1—an)%.

1 1

Now, if p is a prime we have (Mordell [7])

(1.8) 7(pn) = t(p)r(n)—pr(n/p),

with z(n/p)=0 if (»,p)=1. By means of this, Newman obtains congru-
ences involving ¢(n) only, for example

¢(91n) = 0 (modl13) if (n,7)=1.

There also exist certain congruences for c¢(n) (modp®) with (n,p)=1.
Thus, Lehmer [4] proved that

(1.9) e(5n+2) = 0 (mod5),

and for powers of 2 the author [2] has obtained the results (as usual,
we write o(n) instead of o,(n))

(1.10) c(8n+1) = 200,(8n+1)  (mod27),
(1.11) ¢(8n+3) = 1o(8n+3) (mod 23)
(1.12) ¢(8n+5) = —120,(8n+5) (mod2?).

In the following we shall deduce other congruences of this type, viz.

(1.13) ¢(3n+1) = 540(3n+1) (mod3%),

(1.14) ¢(n) = 10no(n) (mod52), (»/5) = —1,

(1.15) c(n) = 2noy(n) (mod7), (n[7) =1,

(1.16) ¢(n) = —2n2%04(n)— 3ns04(n) (modll), (n/11) =1,

(1.17)  ¢(n) = —51(n)—3n30;(n)— 2ntoy(n) (mod13), (»[13) = —1,

where (n/p) is Legendre’s symbol. Especially, for the respective moduli
we can find constants a, b such that c(ean+b)=0. Thus, (1.17) implies \

c(20-33-72-13n 4 28-32-5:7) = 0 (mod13),

since 7(n) and oy(n) are multiplicative, and (7)=03(8)=05(9)=0
(mod 13).
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For prime moduli > 13 there seem to be no congruences similar to
(1.9)—(1.17). However, it is possible to deduce certain results akin to
Newman’s formula (1.7): Let

[oe]

S w(mpan = 2+ TT (1—am),
k 1

so that 7,(n)=7(n). Then for n>0 we have

(1.18) c(17n) = Tty (170) (modl17),
(1.19) ¢(19n) = 474(19n) (mod19),
(1.20) ¢(23n) = 137,4(23n) (mod23).

These congruences are special cases of a more general result which can
be stated as follows:

THEOREM 1. Let p be a prime =13, and put

P p—1
r=|—|, t = —,
12 (p—1,12)

Then there exist constants a, not all =0 (modp), such that

(1.21) asc(pn) Eé:lakrk,(pn) (mod p), n>0.

Now consider the determinant
d = |t(pn), kn=12,...7.
Obviously, by Theorem 1 we get:

CoroLLARY. If d==0 (modp), then there is a unique congruence of the
Jorm

(1.22) c(pn) = é:lbk'rk,(pn) (mod p), n>0.

Putting p=17, 19, 23 and evaluating, we easily obtain (1.18)—(1.20).
Newman’s congruence (1.7) also follows from the corollary, since 7(13n) =
7(13)7(n) (mod13), cf. (1.8). The numerical values necessary for the
computation can be found in tables given by Newman [9], Watson [12],
and van Wijngaarden [13].

According to a theorem of Newman [8] the functions 7,(n), k=2,3,...,
satisfy identities similar to (1.8), but with a greater number of terms.
Therefore, by (1.18)-(1.20) and corresponding results for p > 23, it should
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be possible to deduce new congruence properties of ¢(z); but the required
identities are not yet explicitly known.

It is an open question whether a congruence of the form (1.22) exists
for arbitrary p. There may be values of p such that ¢,=0 (modp)
for any set of numbers a,, satisfying (1.21). A result akin to theorem 1,
involving the partition function instead of ¢(n), was proved in [3], and in
that case such ‘‘exceptional” primes do actually occur, the first one
being p=23.

2.
We now turn to the proofs of (1.13)-(1.17). Let

[e <]
¢r, s = Z n'o,_,(n)z"™ ,
1

(2.1) P=1-240,,, Q=1+2400,, R =1-5040,;.

It is well known, cf. Ramanujan [11], that if » and s are non-negative
integers of opposite parity, then @, , can be expressed as a polynomial
in P, @, R. Especially

(2.2) 144800, , = @2,

(2.3) 1-2640, , = QR,

(2.4) 691+ 655200, ,, = 441Q3 + 250R?
(2.5) 1-240, 1, = Q2R .

Also, putting 6 =xd/dx we have
(2.6) 0P = (P2-Q)/12, 4Q = (PQ—-R)/3, OR = (PR-@%/2.

We shall not write down the expressions for @, ,, r>0, needed in the
following. In fact, since 0P, ,=®P,,; .1, these formulae are easily
deduced from (2.1)—(2.6).

Further, we define o
F=oxl](1—-amx.

1

It is known (cf. [11]) that
(2.7) Q3—R? = 1728F .
We also notice the simple result 6F =PF, which follows directly from
(2.6) and (2.7). Finally, we remark that in this notation j(z) can be
written
(2.8) J=4(r) = @3F' = R?F-1+1728.
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Now, to prove (1.13) we proceed as follows: From the definition of R
we get R?=2R—1 (mod3%), and hence, by (2.8)
j—27 = (2R-1)F-1 (mod3%).

The congruences refer to the coefficients of the power series in . Further,
by straightforward computation it is easily verified that

2R—1 = 2P34 864P®, ,— 17280, ,— 1,
$F-1 = (= PS—12P®, ,+ 24, )1,

Combining, we obtain
(2.9)  j—27+(28°+ 1)F-1 = 3(70, 3 — 3P®, ,)F-1 (mod3?).
Since ¢(3n+2)=0 (mod3) we have
(2.10) Dy, =Dy3 (mod3).
We also need the congruence
(2.11) F =&, (mod3),

which follows from the well-known result F=®,; (mod3?) due to
Bambah and Chowla [1]. Using now (2.9)-(2.11) together with the
obvious congruence P=1 (mod3), we obtain

8(6+1)j+6(6+1)(263+1)F-1
= 3%+ 1){P(P®D, ,— D, 5)F-1} (mod 3%)
= 330+ 1){(PDy,5— Dy, 3)F-1} (mod3?)
= 3330, — (P—1)(PPy, ,— Py 5) }F~1 (mod3¥)
= 33D, , (mod3?),
and hence

e(3n+1) = 540(3n+1)—{23n+1)3+1}7_,(3n+1) (mod3%).

Thus, it remains only to prove that 7_,(3n+1)=0 (mod3?). In fact,
since (1—2")2"=(1—a%")? (mod3?%), we have by a well-known identity
of Jacobi
21T (1 —23*)-%(1—2")® (mod33)

1

_21 T_y(n)™

3 (= 1)%(2n + 1)ztn-D@+2) ﬁ (1—2%)-? (mod3%) .
0 1

Obviously, in the power series expansion of the last expression the co-
efficient of #3"+1 vanishes, and this completes the proof of (1.13).
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Similarly, we see that =1 (mod5), and hence @2=2Q—1 (mod 52%),
@*=3Q —2 (mod52). Using this, we find
j=(3Q—-2)F1 (mod5?),

96F (8% + 262+ 5)F-1
= 55P%+ 30P%2Q + 8PR + 3Q2%+ 176 P2+ 16Q + 480
= —4(P—R)2+4R*+10P%(3P2+1)—3Q+2 (mod52).

Further, since d°=d (mod5) we have @, ;=®, ; (mod5), and therefore
P—R=0 (mod5), R?=Q3-1728F=3Q—3F—2 (mod52), P2=R?=
2F +1 (mod5). It follows that

(0*+282+5)F-1 = (—Q+9)F-1—5F -7 (mod5?).
Noticing that @, ,=(Q — P?)/288=2—2P*=F (mod5) we thus obtain

J—4 = 100, ,—3(6*+ 202+ 5)F-1 (mod5?),
which yields

¢(n) = 10no(n)— 3(n*+2n%+5)7_y(n) (mod52), =>0.
Finally, by means of Euler’s ‘“‘pentagonal theorem” we get

o]

§ T_y(n)ar = 21 [] (1 —257)-% (1—2") (mod 52)
-1 1

§ ( — l)nx(n+1)(3n—2)/2 ﬁ (l —_ z5n) -5 (mod 52) s
—00 1

and (1.14) follows.

The proofs of (1.15)—(1.17) are simpler, because of the prime moduli.
In the first case, from (2.1) and (2.2) we obtain R=1, @Q?=P, F=
(@*—R?)[1728=1-PQ, P?=P2Q*=F2—2F+1 (mod7). By means of
this it is easily verified that

j+3 = 2¢1,4+3(63_1)F—1 (m0d7) 5

which implies (1.15).
Similarly, we have QR=1, 53— 4R*=P, PQ=Q(R?*+5F)=R+ 5QF,
PR=R((®+4F)=Q%*+4RF (modll); and a simple calculation yields

J+4 =49, —20P, ;+4D; ¢ —55(6°—1)F-! (mod1l).
This proves (1.16) because
07(n) = nlo_y(n) = nloy(n) (modll), (n/11) =1.

For the modulus 13 we shall give some more details: First, by (2.4)
and (2.5) we get 6Q3—5R*=1, Q?R=P. It follows that @3=5F+1,
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R*=6F+1, P’=Q'R®=Q(4F?-2F+1), PQ=Q@Q*R=R(5F+1), PR=
Q2R2=Q%*6F +1).
Further we find, using the congruence for P2
(F-1+5F) = 2P Q)F1+5QF = QF1-4Q .
Applying the operator 4, inserting for PQ, and replacing 6Q by 69, ,
we get S(F-1+5F) = —RF-14 R+ 20, , .

Continuing in this way, and noticing that j=@Q3F-1=F-14 5, we obtain
the congruence

j=4= —5F+@, 1— 5D, o+ 5By — B, ,—6(3°+ 1)(F-1+5F) (mod13),

and (1.17) follows in the same way as (1.16).

3.

It remains to prove theorem 1. For this purpose we use a somewhat
different technique. First, we need a well-known recursion formula for
Dy or+1- In fact, putting

Sy = —(2k+2)By i1+ Po i
where B,=1/6, B,= —1/30, ... denote Bernoulli numbers, we have (cf.

Ramanujan [11]) for k& even and >4

i%c__—l—%)l—()%ctf—;) k+3 = (];) SsSp-1+ (Z) SsSk—3+ ...+ (kf2) S;_1Ss -

It follows that
PSpe = D Q'R

4u+6v=p—1
where «,, are rational numbers not containing p in the denominator.
On the other hand we have (all congruences are modulo p)
PSpz = —P(2p—2)"'By1+9Po,p2 = 0By = — 1,

cf. the well known formula

k-1

S (" ) B,=0.

=0 14

Comparing the two expressions for pS,_, we get a congruence involving
only @ and R. Inserting for @3 and R? from (2.8), we see that the result
can be written in the form
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) QG p=12r+5
(3.1) Fr= () p=12r47
(

QRf(j) p = 12r+11,

where f(j)=f,(j) is a polynomial in j of degree r with integral coeffi-
cients. Remembering the definition of ¢, we obtain

f)

P
3.2 pt = |0 .
(3:2) (- 1728)f(j)*

JHI—1728)%f (4)°.

From (2.6) and (2.8) we get §j= — Q2RF-1, and hence
0o ) n_ (P _ @y
J(j—1728)° J¥j—1728) JNj—1728)%
Inserting this into (3.1) and combining with (3.2) we find
ljs’(j — 1728)%f(j)~*-2
-1 =

. j8r—k+2(j — 1728)6r+2f(j)—3k—2
Fkt(é?) l j8'+4(j _ 1728)6r—-k+2f(j)—2k—2

er-—2k+6(j — 1728)67—3k+4f(j)—6k—2

for an arbitrary integer k. Now let k take the values 0,1,...r. It
follows that % = (()8)2gu(i)%5
where ¢,(j) is a polynomial in j of degree (r+1)p—kt—1. Further,
putting £=0 and multiplying by j we get

J = (f()%) P95 ,

where g_,(j) is a polynomial of degree (r+1)p. Now, if (m,p)=1 we
have jm-14j =d(mP-2j™). We conclude that, for k= —1,0,...r

r+1

gx(D) Y = (j) + ElAkmj’””“ﬁj .

m=

ki(j) being a polynomial with integral coefficients. Hence, by suitable
choice of a; we obtain a congruence of the form

a-15+3 e = (F(7)) 2 o).

Considering now the power series expansion of the right-hand side, we
see that the coefficient of 2" is =0, and this proves the theorem.
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