NOTE ON RAMANUJAN'S FUNCTION $\tau(n)$

O. KOLBERG

The function $\tau(n)$ is defined by

$$\sum_{1}^{\infty} \tau(n) x^{n} = x \prod_{1}^{\infty} (1 - x^{n})^{24}.$$

It is well known that for certain moduli the residue of $\tau(n)$ can be expressed by the function $\sigma_k(n)$, the sum of the k-th powers of the divisors of n. The strongest results obtained in this direction are the following:

- (1) $\tau(8n+1) \equiv \sigma_{11}(8n+1) \pmod{2^{11}}$,
- $(2) \tau(8n+3) \equiv 1217\sigma_{11}(8n+3) (\text{mod } 2^{13}) ,$
- (3) $\tau(8n+5) \equiv 1537\sigma_{11}(8n+5) \pmod{2^{12}}$,
- (4) $\tau(8n+7) \equiv 705\sigma_{11}(8n+7) \pmod{2^{14}}$,
- (5) $\tau(3n+1) \equiv \sigma_{11}(3n+1) \pmod{3^5}$,
- (6) $\tau(3n+2) \equiv 53\sigma_{11}(3n+2)$ (mod 3⁶),
- (7) $\tau(n) \equiv 5n^2\sigma_7(n) 4n\sigma_9(n) \pmod{5^3} \text{ if } (n,5) = 1,$
- (8) $\tau(n) \equiv n\sigma_3(n) \pmod{7},$
- (9) $\tau(n) \equiv 0 \pmod{23} \text{ if } (n/23) = -1,$
- (10) $\tau(n) \equiv \sigma_{11}(n) \pmod{691} ,$

where (n/p) is Legendre's symbol. The congruences (1)–(6) were proved in [3], (7) is due to Bambah and Chowla [1], (8) to Wilton [5], (9) to Hardy [2], and (10) to Ramanujan [4].

The object of this note is to prove the congruence

(11)
$$\tau(n) \equiv n\sigma_{9}(n) \pmod{7^{2}} \text{ if } (n/7) = -1.$$

We put

$$P = 1 - 24 \sum \sigma(n)x^n$$
, $Q = 1 + 240 \sum \sigma_3(n)x^n$, $R = 1 - 504 \sum \sigma_5(n)x^n$,

where $\sigma(n) = \sigma_1(n)$, and the sums are taken from 1 to ∞ . It is known (cf. [4]) that

$$\begin{array}{lll} 1 + 480 \sum \sigma_7(n) x^n &= Q^2 \;, \\ 1008 \sum n \, \sigma_5(n) x^n &= Q^2 - PR \;, \\ 1584 \sum n \, \sigma_9(n) x^n &= 3Q^3 + 2R^2 - 5PQR \;, \\ 1728 \sum \tau(n) x^n &= Q^3 - R^2 \;. \end{array}$$

172 O. KOLBERG

Combining these equations, and noticing that $R \equiv 1 \pmod{7}$, we easily verify the congruence

(12)
$$7 + \sum \{n\sigma_{\theta}(n) + 13\tau(n)\}x^{n}$$

$$\equiv 7Q(1 + 4\sum \{\sigma_{7}(n) - n\sigma_{5}(n)\}x^{n}) \pmod{7^{2}}.$$

Now, if (n,7)=1 we have

$$n\sigma_5(n) = n^6\sigma_{-5}(n) \equiv \sigma(n) \pmod{7}$$
.

Since $\sigma_7(n) \equiv \sigma(n) \pmod{7}$ for all n, we get

$$\sigma_7(n) - n\sigma_5(n) \equiv \begin{cases} 0 & (\text{mod } 7) & \text{if } (n,7) = 1 \\ \sigma(n) & (\text{mod } 7) & \text{if } (n,7) = 7 \end{cases}.$$

Thus, returning to (12) we obtain

(13)
$$7 + \sum \{n\sigma_{9}(n) + 13\tau(n)\}x^{n}$$

$$\equiv 7(1 + 2\sum \sigma_{3}(n)x^{n})(1 + 4\sum \sigma(7n)x^{7n}) \pmod{7^{2}}.$$

Further, if (n,7)=1, we have

$$\sigma_3(n) = n^3 \sigma_{-3}(n) \equiv n^3 \sigma_3(n) \pmod{7}$$
,

and hence

(14)
$$\sigma_3(n) \equiv 0 \pmod{7} \quad \text{if } (n/7) = -1.$$

From (13) and (14) we conclude that

$$n\sigma_9(n) + 13\tau(n) \equiv 0 \pmod{7^2}$$
 if $(n/7) = -1$,

which implies (11), cf. (8) and (14).

ADDED IN PROOF: In connection with formula (8) it may be noticed that D. H. Lehmer has shown that

$$(n^3 - 1)\tau(n) \equiv 30n\sigma_{15}(n) + 16n\sigma_{9}(n) - (12n^4 - 15n)\sigma_{3}(n) \pmod{7^2}.$$

REFERENCES

- R. P. Bambah and S. Chowla, Congruence properties of Ramanujan's function τ(n), Bull. Amer. Math. Soc. 53 (1947), 950-955.
- 2. G. H. Hardy, Ramanujan, Cambridge, 1940.
- 3. O. Kolberg, Congruences for Ramanujan's function $\tau(n)$, Univ. Bergen Arbok Naturvit Rekke 1962.
- S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), 159-184.
- J. R. Wilton, Congruence properties of Ramanujan's function τ(n), Proc. London Math. Soc. (2) 31 (1930), 1-10.