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ON THE EXPONENTIAL FORMULAS OF
SEMI-GROUP THEORY

KAI LAI CHUNG!

The purpose of this paper is to present a simple unified approach
to a group of theorems in semi-group theory called the ‘‘exponential
formulas”, due to Hille, Phillips, Widder and D. G. Kendall [1, p. 354].
A more general and apparently new formula is arrived at, which includes
some known cases. It turns out that these formulas are in essense sum-
mability methods which are best comprehended from the point of view
of elementary probability theory. They are all in the spirit of S. Bern-
stein’s proof of Weierstrass’s approximation theorem, the same idea
being present in M. Riesz’s proof of Hille’s first exponential formula
(see [1, p. 314]). Whereas the details here are just a little simpler than
in [1], it seems of some interest to exhibit the general pattern and to
reduce the proofs to routine verifications. The reader who is not ac-
quainted with the language of probability should have no difficulty in
translating everything into the language of classical analysis. But the
probability way of thinking is really germane to the subject.

2.

We employ the standard terminology of probability theory to be
found in any introductory text, e.g. [2]. For any random variable (r.v.)
B, E(B) is its mean (or mathematical expectation), V() is its variance:

V() = E{[p—E(p)*} = E(p*) - [EB)I .

Integrals with respect to the basic probability measure will be denoted
by {...dP. Thus E(p)={,8dP where 2 is the whole probability space.

Let {B,} be afamily of (real-valued)r.v.’sindexed by A, which may depend
on a real parameter £ Finally, g(t), — oo <t < oo, is a (strongly) measur-
able function of ¢ with range in a Banach space, and ||g(¢)| is its norm.
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LemvMma 1. Suppose that

(i) as A - o, B, converges in probability to &;
(ii) for some r>1, E{|jg(B,)l"} is bounded in A;
(iii) g(¢) vs (strongly) continuous at t=E¢.
Then we have '
(1) llim E{llgB)—g(®l} = 0.

Furthermore, if {B,} depends on the parameter & and if the assumptions (i),
(ii) and (iii) kold uniformly for & in a set, then the conclusion (1) also holds
uniformly in this set.

REMARK. (1) implies
g(¢) = lim E{g(B))} -

In this form we must consider r.v.’s with range in a Banach space.

Proor oF LEmMmaA 1. Although the lemma is a simple exercise in prob-
ability theory we give its proof here. For any 6 >0,

E{||9(I31)—9(§)”}§[ J + f ]Ilg(ﬂa)—g(f)lldP-

|Ba—¢l<8  |Ba—¢l>0

Given ¢ >0, there exists by (iii) a 6> 0 such that

sup |lg¢)—g(é)l = .
|t—¢|<o

Having fixed 8, we have by Hoélder’s inequality:

(2) f lg(B) =gl dP = P{IB;~&|> 8}~ E{llg(B) —g(&)I7Y,
|62—¢1>0
which tends to zero as A — oo, by (i) and (ii). This proves (1). The
uniformity supplement is obvious from the proof.
We can now recast M. Riesz’s proof of Hille’s first exponential formula
as follows, treating here as in the sequel only the ‘‘strong case”, since
the ‘“‘uniform case” is exactly similar.

TaEOREM 1. Let {T'(t),t=0} be a semi-group on X which is strongly
continuous in t € [x, ), and let £€>x20. Then we have for every x € X:

®3) T(§)z = lim exp {(§ — o) (T(n) —I)[n} T(x)x ,

n—>0

uniformly for & in any finite interval.
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Proor. Let >0, and
A= (§-a)n.

Let 8, have a Poisson distribution 7(«x,7; 1), namely:
P{B,=x+nn} =e*i?n!, n=012....
It is known from elementary probability theory that

EB,) =0+ln=¢E,
V(i) = = (§—a)y.

Hence we have by Chebyshev’s inequality :
P{|p,— & >0} = V(B)))6* = (§—o)n/d?

and consequently g, converges in probability to & as 7 -~ 0 or 1 - .
For a fixed z in X, let

fit) = TO)z-TEz, t=a.

It is known from semi-group theory (see [1, p. 314]) that there exists
an M >0 such that |7'(¢)|| < M+ for t = x. Hence

IF@)IF = 4 M2 || M*,
E{|\f (BI}

IA

© An
4 M2 |x|Pe S — MAxtnn)
n=on!

4 M2+2 ||| exp {A( M2 — 1)} .
Since
lim A(M?*—1) = (§—o) lim (M —1)/n = 2(—«) logM ,

7n—>0 n—>0

E{||f(8,)|?} is bounded in A, and uniformly so for £ in any finite interval.
Hence Lemma 1 is applicable. Since

oo An
S =P T(a)e
n=0MN!

exp{—AM +AT(n)} T(x)x,

E{T(B,)x}

(8) follows.
Next, we give a proof of D. G. Kendall’s formula (see [1, p. 316]).

THEOREM 2. Let {T(¢),t20} be a semi-group on X which is strongly
continuous in [0,1], and T(0)=1 (identity). Then we have for every x € X :
4) Tz = lim {(1-I+&T(1/n)} "2,

n—>oo

uniformly for & in [0,1].
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Proor. Let {#,,n2=1} be r.v.’s with the binomial distribution B(n,£),
namely:

Ppa=t} = ()-8t B=01,..n
It is known that

Hence B,/n converges in probability to & as n — oo, uniformly for & in
[0,1]. Furthermore, since ||7||< M for some constant M by the uniform
boundedness theorem, we have

E{|TBn/n)?} = M2.
Thus Lemma 1 is applicable. We have

B{T(Bufn) =} = ()IS%WWL

é ( ) (L=&I)n* (ET(1/n))ex
(- + Tz

Hence (4) follows.

3.

From now on let {T'(t),t=0} be a strongly continuous semi-group on
X such that |7'(¢)|| is bounded as ¢ | 0. Then there exist positive constants
M and w such that

(4) IT@#) < Me*t, 0<t<oo;
and the resolvent operator has the representation
(6) mm=ﬁmem, > w.

0
See [1, p. 321]. In fact, for what follows it will suffice to assume instead
of (5) the strong continuity of 7'(¢) in (0,c0) and that (||7(t)x||"dt < oo
for some 7> 1.

Let e,,A> 0, be the exponential distribution function with parameter A:

l1—e ¥, =0,
elt) = 0, t<0.

Let {7,(4); k=1,2,...} be independent r.v.’s all having the distribution
function e;, and let
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n
(7) ) =0, o) =27A, n=12....
k=1
It is known that

() E(t,(A) = 1/, V(ti(d)) = 1/32;

E(o, () = nf,  V(o,(A) = nf22.

LemMmA 2. For A>w, we have
E{T(a } [AR(Z)

Proor. Clearly for each £k,

B{T (v, (W)} = f Ae#T(5)dt = AR(A) .
0

Since the 7,(4)’s are independent, so are the 7'(7)(4))’s as operator-valued
r.v.’s, and we have

E {T(an(}.))} =FK L]’:[l T(rk(}.))} = I;liIIE{T(tk(l))} = [AR(A)]™ .

We give an alternative proof. It is known, and easily shown by induc-

tion on 7 that
t

(9) Plo, (M) <t} f—— 1)'le—“’ds, £20.
0
Hence we have

E{T(0,0)} = [ A" re-(t) di

) (n—1)!
_ ( —_ 1)"_11”13(”‘1)(),) _ n
= o~ BRI,

the last equation being a property of the resolvent operator.

The next theorem is the semi-group version of the Post—Widder
theorem [1, p. 224, p. 352].

TrEOREM 3. We have for every £>0, and x€ X:
T (§)x = lim [(n/E)R(n[é)]"x ,

uniformly for & in any finite interval.

Proor. For each =, let 7,;,1 <k =<n, be independent r.v.’s all having
the distribution function e;, with A=n/&; and let ¢, = >%_; 7. Then by (8)

E(an) =§, V(an) = 62/'”' .
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Hence o, converges to & probability as n — o, uniformly for ¢ in any
finite interval. Next, by (5) and (9),

(lt)n—l

B{|T(c,) 2} j e |[Tt)zP dt

X sn—l
f oy & I elRai ds
0

22 %

< (]M “i’|)|' J gn—1e-(1-2wlhs g
n — .

0

= M2|jz|?(1 - 2wé/n)—".

This is bounded in n, uniformly for & in any finite interval. Hence
Lemma 1 is applicable and we have by Lemma 2,

T x = lim E{T(c,)x} = 11m [(n/.f;' R(njé)]rx .

n—>00

REMARK. The original Widder theorem for a numerically valued function
g is sharper than Theorem 3 in two respects: (1) g is assumed only to be
(substantially) in L, (2) the conclusion holds for & in the Lebesgue
set of g. Our method here applies when g is in L* for some r>1; cf.
condition (ii) of Lemma 1. This is an essentially stronger uniform
integrability condition and accounts largely for the simplification of
proof. The conclusion for a Lebesgue set under this assumption, however,
can be easily obtained by calculating the maximum probability density
of o,. Similar remarks apply to Phillips’s Theorem 4 below.

4.

The next probability concept needed is that of the sum of a random
number of random variables, but in a rather trivial form.

LemMA 3. Let {r},k=1} be independent, identically distributed r.v.’s,
On=2Xr_1Tx; and let v be a non-negative integer-valued r.v. independent of
the v,’s. If 7, and v have finite variances, then

E(o,) = E(v) E(7y),
V(e,) = E®)V(v)+ V(») E(v)?.

Proor. We have
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E(s) = 3 Plp=n} E(s,) = 3 Plr=n}nE(n) = E6)E(x);
n=0
V(o) = E(0,*)— E(s,)* = EP{W n} E(o,?) — E(o,)?

Ply=n} (V(0,)+ B0, - (o)

8 nMs

= 2 Py=n}{nV(r))+n* E(r1)*} — E()* E(z,)?

n=0
= E@)V(r) + {E0?) — E0)*}E(7y)*
= E@)V(ry) + V() E(y)?.
The following theorem is due to Phillips [1, p. 221, p. 351].

TaEOREM 4. We have for every £>0, and x € X :
(10) T(&)x = lim exp {{[A2R(A)— A},

A—>00

uniformly for & in any finite interval.

Proor. Fix £>0; for each 1> 0, let »=v(4) have the Poisson distribu-
tion =(0,1; A£):
P{y=n} = e #"n!, n=012,....

We have E(»)=24&, V(v)=AL Let the 7,.’s and o,’s be as in (7) and
let » be independent of them. We write o, simply for o,;,(4). It follows
from (8) and Lemma 3 that

E(o,) = A£-(1/4) = &,
V(o,) = A& (1/A%)+A&-(1/A%) = 2¢&[A.

Hence again by Chebyshev’s inequality, ¢, converges to & in probability
as A — oo, uniformly for & in any finite interval. Furthermore,

S (/15)

E{||T(o,)2[*} = e~ Z BT (o) I}

oo n n—1
= e ¥ (*) (M) ] ').e“” 1T(8) x|j2 dt .

n=0 n! o (n_ )

By (5), the last integral is bounded by

 (Ayrt
J (n-1)!

1 n
(—A+20)E 3 M2 w2 df — M2 Ilali2
(1) -+t 3 D2 |2 ds = M2 ] (1_2w)



160 KAI LAI CHUNG
provided 4> 2w. Hence

B{[T(0,) 2|} < Mzuxuzexp{ Af+——} M2 exp{——}

This is bounded in 4, uniformly for & in any finite interval. Hence
Lemma 1 is applicable. We have by Lemma 2,

E{T(o,)x} = Z E’{T (0,) %}

s &F urara

eX¥T(0)x + e* {elzR(l)E__I}x .

e #T(0)z +

Il

Thus (10) follows.
ReEMarRk. We note that the Laplace transform of o, is

- lfu}

E{e™*} = exp ral

As 1 —» oo this tends to e—*%, showing again that ¢, converges to & in
probability.

5.

It is natural to replace the Poisson r.v. » in the proof of Theorem 4
by a more general one. We content, ourselves with the following theorem,
though more sophisticated results can be obtained by using a continuous
r.v. or relaxing the condition (12) below. We can even use other than the
exponential distribution for the 7’s in (7), which is dictated only by the
pre-eminence of the resolvent.

THEOREM 5. Let £=0, and
pe(u) = 2 ay(é)u,
k=0
where oo .
a’k(é) = ’ Za'k(é) =1, zka’k(‘f) =§.
E=0 k=0
Suppose that we have for some g,>e*’, where w is as in (5),

(12) Pi0g) < .

Then if the semi-group T satisfies the condition T(0)=1 in addition to the
assumptions made at the beginning of § 3, we have for every x € X :

(13) Tz = lim [@(nR(n))] = .
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If the g in (12) can be chosen independently of & in every finite interval,
then the convergence in (13) is uniform for & in every finite interval.

Proor. Let {n,,k=1} be independent, identically distributed, non-
negative integer-valued r.v.’s all having ¢, as generating function,

namely:
v E{u™} = gu)

Let {,=3%_; n,; then the generating function of ¢, is
E{un} = Y amuk = [pu)]",
¥=0

a® = Pt =k}

where

Let the 7,’s all have the distribution e, and let the t’s and #%’s be alto-
gether independent. It follows from (12) that 7, has a finite variance

'1)52 and E(Cn) = nf R V(Cn) — nvéz .
Hence by Lemma 3, and (8):
B(oy,) = né-(1n) = £,
V(oy,) = né:(1fn?)+nvg(1fn?) = (E+v2)n.

Consequently o, converges in probability to & as n — co. Using (11),
we have

B{T(o, )2t} = 3 0, B{|T(0,) 2|
k=0

oo n \k ” n
< el S (575 ) = 0l [ (50) |
By Holder’s inequality, we have
[P S 3 .

(This is also known as Liapounov’s inequality.) Hence we have, for each
o>e2®, as soon as n is so large that |n/(n—2w)|" <y,

[% (n —n2w )] n = ’goak(&) ¢

Consequently this quantity is bounded in = by (12), and so is
E{||T (0, )2}, uniformly for & in any finite interval if the g, in (12)
can be chosen independently of & in the same interval. In this case
v;2 will be uniformly bounded in & and the convergence of o,, to & is
likewise uniform. Therefore Lemma 1 is applicable. Furthermore, since
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k
i Rin) o] < Mnxu( . ) ,

n—w

@(nR(n)) is a bounded operator for all sufficiently large n. We have
by Lemma 2,

E{T(o,,)x} =I§0ak(n)E{T(ak) x}

= ’goak(”) [nB(n)*z = [pnR(n))]"x .
Thus (13) follows.

PARTICULAR CASES.

(i)  @fu) =1-E+éu, 0ZEL1;
Té)x = lim [(1 -&)I +EnR(n)]"x .

n—>oo

This is to be compared with Theorem 2 above. The semi-group property
of 7' can be used to extrapolate this formula to all £20, in various
obvious ways.

. <Y T G S
(i)  @gu) = mnzo(m) Ll 1+E—¢u’
T = im [(1+ &I —énR(n)] "z = im [I—&(nR(@x)-1)]",

provided w=0.
(iil) ‘Pe(u) = e~¥ ef¥ = z et — un;
n=0 n!
T(&)x = lim exp {—&nl + &n2R(n)}x .

n—>oo

This is Theorem 4 for integer values of 4.
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