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HARDY INEQUALITIES FOR THE HEISENBERG
LAPLACIAN ON CONVEX BOUNDED

POLYTOPES

BARTOSCH RUSZKOWSKI∗

Abstract
We prove a Hardy-type inequality for the gradient of the Heisenberg Laplacian on open bounded
convex polytopes on the first Heisenberg group. The integral weight of the Hardy inequality is
given by the distance function to the boundary measured with respect to the Carnot-Carathéodory
metric. The constant depends on the number of hyperplanes, given by the boundary of the convex
polytope, which are not orthogonal to the hyperplane x3 = 0.

1. Introduction

Consider the first Heisenberg group given by R3, equipped with the group law

(x1, x2, x3) � (y1, y2, y3) := (
x1 + y1, x2 + y2, x3 + y3 − 1

2 (x1y2 − x2y1)
)
,

and the sub-gradient ∇H := (X1, X2) given by

X1 := ∂x1 + 1
2x2∂x3 , X2 := ∂x2 − 1

2x1∂x3 ,

for x := (x1, x2, x3) ∈ R3. We recall that the vector fields X1, X2, X3 :=
[X2, X1] = ∂x3 form a basis of the Lie algebra of left-invariant vector fields
on H and that the sub-elliptic operator

�H := −X2
1 − X2

2

is the Heisenberg Laplacian , also called the Kohn Laplacian. There is a con-
siderable amount of literature concerning the Hardy-type inequality∫

H

|u(x)|2
‖x‖4

H

(x2
1 + x2

2 ) dx ≤
∫
H

∣∣∇H u(x)
∣∣2 dx, u ∈ C∞

0 (H \ {0}), (1)
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where

‖x‖4
H := (x2

1 + x2
2 )2 + 16x2

3 .

For the proof of (1) we refer to [10], [1], [21], see also various improvements
obtained in [2] and [23]. The anisotropic norm ‖x‖H, which appears in (1), is
referred to in the literature as the Korányi-Folland gauge or Kaplan gauge. For
the sake of brevity we will use the latter notation and call it the Kaplan gauge.

In this paper we deal with sharp Hardy inequalities for the Heisenberg-
Laplacian on bounded domains. In particular we consider the following prob-
lem: given a bounded domain � ⊂ R3, we would like to find the best constant
c for which the inequality

∫
�

|u(x)|2
δC(x)2

dx ≤ c2
∫

�

∣∣∇Hu(x)
∣∣2 dx, ∀u ∈ C∞

0 (�) (2)

holds, where δC(x) is the Carnot-Carathéodory distance (C-C distance in the
sequel) between x and the boundary of �, see Section 2 for its definition.
For more details on the C-C distance we refer to [6], [7]. With respect to the
well-studied inequality (1), less is known about the validity of (2), especially
if one is interested in explicit constants. In [8] the authors proved that for every
� with a C1,1 regular boundary there exists c > 0 such that (2) is valid. Later
it was shown by Yang, [24] that if � is a ball with respect to the C-C distance,
then (2) holds with c = 2.

The fundamental problem of deriving inequalities of the form (2) lies in
the fact, that we a priori don’t know much about domains which are the most
natural for a Hardy inequality on H. In comparison to the Euclidean setting it
is well-known that if � is convex then

∫
�

|u(x)|2
dist(x, ∂�)2

dx ≤ 4
∫

�

∣∣∇u(x)
∣∣2 dx (3)

holds for all u ∈ C∞
0 (�), and the constant 4 is sharp independently of �, see

e.g. [3], [22], [9], [16], [5], [4], [13].

In this paper we prove that for open bounded convex polytopes � we obtain
a constant depending on the number of hyperplanes of ∂�, which are not ortho-
gonal to the hyperplane x3 = 0. Under an additional geometrical assumption
the constant in (2) for convex polytopes can be improved, see Theorem 6.2.
It is even possible to show that for any c > 2 there exists an open bounded
convex domain such that (2) is fulfilled, which is almost a sharp result since
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we prove that for any bounded domain � the following inequality holds:

inf
u∈C∞

0 (�)

∫
�

∣∣∇H u(x)
∣∣2 dx∫

�

|u(x)|2δC(x)−2 dx

≤ 1

4
.

This shows that at least some convex domains are more compatible with the
Heisenberg group structure than we expect them to be.

In [15] Luan and Yang proved on the half-space � := {x ∈ H|x3 > 0} that
for any u ∈ C∞

0 (�) we have

∫
�

x2
1 + x2

2

4x2
3

|u(x)|2 dx ≤ 4
∫

�

∣∣∇H u(x)
∣∣2 dx. (4)

This result was recently generalized by Larson [14] to any convex domain.
Under an additional convexity condition, where H(x) denotes the tangent
plane to x, we can replace the weight on the left-hand side by

ω(x) := inf
y∈∂�∩H(x)

dC(x, y), (5)

see Theorem 3.1. This result turns out to be (4) for the case of the half-space.
The paper is organized as follows. In the next section we introduce neces-

sary notation. Main results are formulated in Section 3 and the proof of each
Theorem is done in a separate section.

2. Preliminaries and notation

The tangent plane to x := (x1, x2, x3) ∈ H is given by

H(x) :=
{
y ∈ H

∣∣∣∣
〈(

−x2

2
,
x1

2
, 1

)
, y − x

〉
= 0

}
,

= {
y ∈ H ∣∣ x1y2 − x2y1 = 2(x3 − y3)

}
,

where 〈·, ·〉 is the Euclidean scalar product in R3.
Let us briefly recall the definition of the C-C distance dC(x, y). We call a

Lipschitz curve γ : [a, b] → H parametrized by γ (t) = (γ1(t), γ2(t), γ3(t))

horizontal if

γ ′(t) ∈ span

{(
1, 0,

γ2(t)

2

)
,

(
0, 1, −γ1(t)

2

)}
.
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The C-C distance between x and y is then defined as

dC(x, y) := inf
γ

∫ b

a

√
γ ′

1(t)
2 + γ ′

2(t)
2 dt, (6)

where the infimum is taken over all horizontal curves γ connecting x and y.
We define the C-C and Kaplan distance functions for an open bounded

domain � by

δC(x) := inf
y∈∂�

dC(x, y), δK(x) := inf
y∈∂�

‖(−y) � x‖H .

If x ∈ �c, we set δK(x) := 0 and δC(x) := 0. With these prerequisites we can
state the main results.

3. Main results

Theorem 3.1. Let � ⊂ H be open bounded, and let the connected components
of H(x) ∩ � be convex for all x ∈ �. Then∫

�

|u(x)|2
ω(x)2

dx ≤ 4
∫

�

∣∣∇H u(x)
∣∣2 dx (7)

holds for all u ∈ C∞
0 (�), where ω(·) is defined in (5) and we have

ω(x) = inf
y∈∂�∩H(x)

‖(−y) � x‖H = inf
y∈∂�∩H(x)

√
(x1 − y1)2 + (x2 − y2)2.

We call the weight ω(·) the reduced C-C distance. The proof of (7) is done
in the following way. We prove the Hardy inequality for each separate Xj ,
where the distance function is given by the C-C metric generated by Xj for
j ∈ {1, 2}. Then we apply the hyperplane separation theorem in the same way
as E. B. Davies did for the proof of (3) for convex domains, see [9].

Theorem 3.2. Let � ⊂ H be an open bounded convex polytope, and let
m ∈ N be the number of hyperplanes of ∂� which are not orthogonal to the
hyperplane x3 = 0. Then

1

5

(
33/2

√
2

cm

+ 1

)−4/3 ∫
�

|u(x)|2
δC(x)2

dx ≤
∫

�

∣∣∇H u(x)
∣∣2 dx (8)

holds for all u ∈ C∞
0 (�), where cm is defined as the unique positive solution

of the following equality

√
c2
m + 16

(
1 + cm

33/2
√

2

)2/3

cm
4/3 = 1

27/33πm
.
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For the uniqueness we use the intermediate value theorem and the monotonicity
of the functions on the left-hand side.

In addition, we prove that for cm the following holds

1

c m
≤ m8/9π8/93 · 219/9

√
2−4/3π−2/3 + 16

(
1 + 1

33/227/6π1/3

)2/3

, (9)

which yields a result with an explicit constant in (8).
The strategy of the proof of Theorem 3.2 consists of two steps. We use

Theorem 3.1 for a bounded convex polytope. Then we take into account the
following Hardy inequality∫

�

|u(x)|2
dC(x, 0)2

dx ≤
∫

�

∣∣∇H u(x)
∣∣2 dx, (10)

for all u ∈ C∞
0 (�), which was proved in [11] and [24]. The sum of the weight

functions is then comparable to the distance function to the hyperplanes of
the given polytope, respectively the Kaplan gauge, which is equivalent to the
distance function respectively the C-C metric.

We can improve the constant inTheorem 3.2 under an additional geometrical
assumption, which is discussed in Section 6. The main consequence of that
result is the following:

Theorem 3.3. For any ε > 0 there exists a bounded convex domain � such
that ∫

�

|u(x)|2
δC(x)2

dx ≤ (2 + ε)2
∫

�

∣∣∇H u(x)
∣∣2 dx

for all u ∈ C∞
0 (�).

The last result has an almost optimal constant since we prove that for any
bounded domain � the inequality

inf
u∈C∞

0 (�)

∫
�

∣∣∇H u(x)
∣∣2 dx∫

�

|u(x)|2δC(x)−2 dx

≤ 1

4

holds, see Theorem 6.5.
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4. Restricted C-C distance and its connection to the Euclidean
distance

4.1. The natural restriction of ∂�

In this section we show that the reduced distance ω(·), defined by (5), can be
expressed in terms of a simple explicit formula. In particular, we show that ω

coincides with the distance to the boundary in the Kaplan gauge as well as the
projection onto the (x1, x2)-hyperplane of the Euclidean metric.

Theorem 4.1. Let � ⊂ H be open and bounded. Then

ω(x) = inf
y∈∂�∩H(x)

√
(x1 − y1)2 + (x2 − y2)2 = inf

y∈∂�∩H(x)
‖(−y) � x‖H

holds for all x ∈ �.

For the proof we need the following:

Lemma 4.2. For all x, y ∈ H, we have

1

π2
dC(x, y)4 ≤ ‖(−y) � x‖4

H ≤ dC(x, y)4. (11)

Moreover, both inequalities are sharp.

Proof. Using the left-invariance of dC(x, y), respectively the group law
on H, we transform (11) into

1

π2
dC(y−1 � x, 0)4 ≤ ‖(−y) � x‖4

H ≤ dC(y−1 � x, 0)4.

We know that y−1 = −y. Therefore it is sufficient to prove

1

π2
dC(z, 0)4 ≤ ‖z � 0‖4

H ≤ dC(z, 0)4 ∀ z ∈ H.

The arc joining geodesics starting from the origin were computed in [18]
and [17]. The parametrization of these arcs is given by

z = γk,θ (t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

z1(t, k, θ) = cos(θ) − cos(kt + θ)

k
,

z2(t, k, θ) = sin(kt + θ) − sin(θ)

k
,

z3(t, k, θ) = kt − sin(kt)

2k2
,

(12)
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where t ∈ [0, 2π/|k|], θ ∈ [0, 2π) and k ∈ R \ {0}. This means that for
the given point z := γk,θ (t) ∈ H, one has d(γk,θ (t), 0) = t . We extend this
formula to the case k = 0 by taking the limit for k → 0. This gives

z = γ0,θ (t) :=

⎧⎪⎪⎨
⎪⎪⎩

z1(t, 0, θ) = t sin(θ),

z2(t, 0, θ) = t cos(θ),

z3(t, 0, θ) = 0.

For the computation of dC(z, 0) we use (12). It is then sufficient to calculate
the supremum and the infimum of∥∥γk,θ (t) � 0

∥∥4
H

dC(z, 0)4
= 4

(
1 − cos(kt)

)2 + 4
(
kt − sin(kt)

)2

(tk)4
.

This leads to estimating the function

g(τ) := 4

τ 4

(
(1 − cos(τ ))2 + (τ − sin(τ ))2

)
,

with 0 ≤ τ ≤ 2π , because t ∈ [0, 2π/|k|]. To proceed, we show that the
function g(τ) is non-increasing on [0, 2π ]. By differentiating the function
g(τ) several times we find that the latter is non-increasing on [0, 2π ] which
implies that the same is true for g. Hence

1

π2
= g(2π) ≤ g(τ) ≤ lim

τ→0+ g(τ) = 1.

The sharpness of that inequality is an immediate consequence.

Proof of Theorem 4.1. Let x ∈ � and let y ∈ ∂� ∩ H(x). Consider
the curve γ : [0, 1] → H given by the parametrization γ (t) = (1 − t)x + ty,
t ∈ [0, 1]. Obviously γ connects x and y. Moreover, since y ∈ H(x), it is
easily verified that γ is horizontal. Indeed, we have

γ ′(t) = (y1 − x1)

(
1, 0,

γ2(t)

2

)
+ (y2 − x2)

(
0, 1, −γ1(t)

2

)
.

By definition of the C-C distance, see equation (6), it thus follows that

dC(x, y) ≤
√

(x1 − y1)2 + (x2 − y2)2.

Using y ∈ ∂� ∩ H(x) we see that√
(x1 − y1)2 + (x2 − y2)2 = ‖(−y) � x‖H .
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Then we apply Lemma 4.2 to obtain the following chain of inequalities

dC(x, y) ≤
√

(x1 − y1)2 + (x2 − y2)2 = ‖(−y) � x‖H ≤ dC(x, y).

Taking the infimum over y ∈ ∂� ∩ H(x) yields the result.

4.2. The Hardy inequality involving ω

We need the following auxiliary result.

Lemma 4.3. Let � be an open bounded domain in H. Then∫
�

( |u(x)|2
d1(x)2

+ |u(x)|2
d2(x)2

)
dx ≤ 4

∫
�

∣∣∇H u(x)
∣∣2 dx

holds for all u ∈ C∞
0 (�), where the distances d1(x) and d2(x) are given by

d1(x) := inf
s∈R{|s| > 0 | x + s(1, 0, x2/2) /∈ �},

d2(x) := inf
s∈R{|s| > 0 | x + s(0, 1, −x1/2) /∈ �}.

Proof. Let u ∈ C∞
0 (�). First we show that∫
�

|u(x)|2
d1(x)2

dx ≤ 4
∫

�

|X1u(x)|2 dx. (13)

To this end we define the following coordinate transformation

F(t, ϕ, θ) :=

⎧⎪⎪⎨
⎪⎪⎩

x1(t, ϕ, θ) = t + ϕ,

x2(t, ϕ, θ) = θ,

x3(t, ϕ, θ) = tθ/2,

(14)

where (t, ϕ, θ) ∈ A := {(t, ϕ, θ) ∈ R3 | θ �= 0}. It can be easily checked
that F : A �→ Ran(A) is a diffeomorphism and that the determinant of F is
equal to θ/2. For a given x ∈ �c we set u(x) = 0. If x = F(t, ϕ, θ) for fixed
θ ∈ R \ {0} and ϕ ∈ R, we see that there exists a constant c ∈ R such that
F(c, ϕ, θ) = x̂ ∈ ∂� satisfies d1(x) = dC(x, x̂). By {aj }j∈N we denote the
increasing sequence such that F(aj , ϕ, θ) ∈ ∂�. Thus for a fixed x ∈ � we
immediately see that there exists a k ∈ N such that

d1(F (t, ϕ, θ)) = dC(F (t, ϕ, θ), F (ak, ϕ, θ))

= dC(F (t, ϕ, θ), F (t, ϕ, θ) + (ak − t)(1, 0, θ/2))

= |ak − t |.
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Using the last observation, we apply the transformation F to find that to
prove (13) it suffices to show that∫

R

∫
R

∞∑
j=1

∫ aj+1

aj

|u(t, ϕ, θ)|2
δj (t)2

dt
|θ |
2

dθ dϕ

≤ 4
∫
R

∫
R

∞∑
j=1

∫ aj+1

aj

|∂tu(t, ϕ, θ)|2 dt
|θ |
2

dθ dϕ, (15)

where δj (t) := inf(aj+1 − t, t − aj ). Hence the one-dimensional Hardy in-
equality in the t-direction then implies that (15) holds which in turn yields (13).
It remains to prove ∫

�

|u(x)|2
d2(x)2

dx ≤ 4
∫

�

|X2u(x)|2 dx. (16)

This is done in the same way as (13) replacing the transformation of (14) by

F̃ (t, ϕ, θ) :=

⎧⎪⎪⎨
⎪⎪⎩

x1(t, ϕ, θ) = θ,

x2(t, ϕ, θ) = t + ϕ,

x3(t, ϕ, θ) = −tθ/2,

for (t, ϕ, θ) ∈ A. Summing up (13) and (16) then completes the proof.

Proof of Theorem 3.1. Let a := (a1, a2, a3) ∈ ∂� ∩ H(x) be such that

ω(x) =
√

(x1 − a1)2 + (x2 − a2)2.

The existence of such a is guaranteed by the compactness of � and the con-
tinuity of the distance. We know that all connected components of H(x) ∩ �

are convex. Therefore we assume without loss of generality that H(x) ∩ �

consists of a single connected component which is convex. Next we apply the
hyperplane separation theorem, which implies that the hyperplane

T :=
{

y ∈ H
∣∣∣∣∣
〈(

x1 − a1

x2 − a2

0

)
,

(
y1 − a1

y2 − a2

y3

)〉
= 0

}
(17)

separates H(x) ∩ � from the point a ∈ ∂�. We consider the definition of
d1(x), see Lemma 4.3, and compute the intersection point of the line c(s) =
x + s(1, 0, x2/2)t for s ∈ R with the hyperplane (17). This yields

s = − (x1 − a1)
2 + (x2 − a2)

2

x1 − a1
.
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At this point we apply the hyperplane separation theorem again to infer that

d1(x) ≤ (x1 − a1)
2 + (x2 − a2)

2

|x1 − a1| .

Now we do the same computation for d2(x) and obtain

d2(x) ≤ (x1 − a1)
2 + (x2 − a2)

2

|x2 − a2| .

Altogether we get

1

d1(x)2
+ 1

d2(x)2

≥ (x2 − a2)
2

((x1 − a1)2 + (x2 − a2)2)2
+ (x1 − a1)

2

((x1 − a1)2 + (x2 − a2)2)2

= 1

ω(x)2
.

We recall that the point a ∈ ∂� ∩ H(x) was chosen such that the equality
ω(x) = √

(x1 − a1)2 + (x2 − a2)2 holds, which proves inequality (7).

Remark 4.4. For p ≥ 2 it is possible to get an Lp version of Theorem 3.1
as well. In Lemma 4.3 we use the Lp version of the one-dimensional Hardy
inequality, which holds for p > 1. Then we mimic the last proof and apply for
p ≥ 2 Jensen’s inequality

(a2 + b2)p/2 = 2p/2(a2/2 + b2/2)p/2 ≤ 2p/2−1(ap + bp),

for a, b > 0.

5. Proof of the Hardy inequalities for open bounded convex polytopes

In this section we give the proof of Theorem 3.2. First we have to give some
lower estimates for the Kaplan distance function to hyperplanes which are not
orthogonal to the x3 = 0 hyperplane. Therefore we need the following:

Lemma 5.1. Let p > 0 and q ∈ R \ {0}. Consider

z3 + pz = q,

for z ∈ R. Then there exists a unique real solution and it satisfies

|z| ≥ |q1/3|
3

(
1 + p

√
p

|q|3√
3

)−2/3

.
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Proof. First we consider the case q > 0. Then Cardano’s formula gives
the unique real solution

z = (
q/2 +

√
q2/4 + p3/27

)1/3 + (
q/2 −

√
q2/4 + p3/27

)1/3

= 1

3

∫ q/2+
√

q2/4+p3/27

−q/2+
√

q2/4+p3/27
s−2/3 ds ≥ q

3

(
q/2 +

√
q2/4 + p3/27

)−2/3

≥ q

3

(
q +

√
p3/27

)−2/3

The case q < 0 is treated in the same way.

Proposition 5.2. Let x ∈ H and a > 0. We consider


 := {y ∈ H | n1y1 + n2y2 + n3y3 = c},
wheren1, n2, n3, c ∈ Randn3 �= 0. When (−2n2/n3+x1)

2+(2n1/n3+x2)
2 ≤

a| − c/n3 + x3 + x1n1/n3 + x2n2/n3| we have(
inf
y∈


‖(−y) � x‖H
)2

≥ 4| − c/n3 + x3 + x1n1/n3 + x2n2/n3|
33

(
1 + a

33/2
√

2

)−2

,

and for (−2n2/n3 + x1)
2 + (2n1/n3 + x2)

2 ≥ a| − c/n3 + x3 + x1n1/n3 +
x2n2/n3| we have(

inf
y∈


‖(−y) � x‖H
)2

≥ 4| − c/n3 + x3 + x1n1/n3 + x2n2/n3|2
(−2n2/n3 + x1)2 + (2n1/n3 + x2)2

(
33/2

√
2

a
+ 1

)−4/3

.

Proof. First of all we consider the case n1 = n2 = c = 0 and n3 = 1. Let
y ∈ H such that y3 = 0 and fix x := (x1, x2, x3) ∈ H with x3 �= 0. We set
z1 := y1 − x1 and z2 := y2 − x2 and consider

‖(−y) � x‖4
H

= (
(y1 − x1)

2 + (y2 − x2)
2
)2 + 16

(
y3 − x3 − 1

2y1x2 + 1
2y2x1

)2

= (z2
1 + z2

2)
2 + 16

(−x3 − 1
2z1x2 + 1

2z2x1
)2

.

(18)

Then we compute the minimum of the right-hand side as a function of x. We
assume that x1 �= 0, since x1 = 0 is a null set and δK is continuous, see (24),
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(26) and Lemma 4.2. The y1 and y2 derivatives then yield respectively

(z2
1 + z2

2)4z1 − x216
(−x3 − 1

2z1x2 + 1
2z2x1

) = 0,

(z2
1 + z2

2)4z2 + x116
(−x3 − 1

2z1x2 + 1
2z2x1

) = 0.

Since x1 �= 0, we easily deduce that z2
1 + z2

2 �= 0 and obtain

z1 = −z2x2

x1
.

Inserting this in (18) yields

‖(−y) � x‖4
H = z4

2
(x2

2 + x2
1 )2

x4
1

+ 16

(
−x3 + 1

2z2
x2

2 + x2
1

x1

)2

.

We compute the critical points with respect to y2 and obtain

‖(−y) � x‖4
H = z4

2
(x2

2 + x2
1 )2

x4
1

+ z6
2
(x2

2 + x2
1 )2

x6
1

,

where z2 is the unique real solution of

z3
2 + 2z2x

2
1 = 4x3x

3
1

x2
2 + x2

1

, p := 2x2
1 , q := 4x3x

3
1

x2
2 + x2

1

.

Using the estimate in the previous Lemma, we get

|z2| ≥ 41/3|x3|1/3|x1|
3(x2

1 + x2
2 )1/3

(
1 + x2

1 + x2
2

|x3|33/2
√

2

)−2/3

(19)

For the case x2
1 + x2

2 ≤ a|x3|, we use

‖(−y) � x‖4
H ≥ z6

2
(x2

2 + x2
1 )2

x6
1

,

and (19) to get

(
inf

y∈H,y3=0
‖(−y) � x‖H

)2 ≥ 4|x3|
33

(
1 + a

33/2
√

2

)−2

.

For the case x2
1 + x2

2 ≥ a|x3|, we use (19) again for

‖(−y) � x‖4
H ≥ z4

2
(x2

2 + x2
1 )2

x4
1

,
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which yields

(
inf

y∈H,y3=0
‖(−y) � x‖H

)2 ≥ 4|x3|2
(x2

2 + x2
1 )

(
33/2

√
2

a
+ 1

)−4/3

,

To obtain the result for a general hyperplane, we consider

inf
y∈


‖(−y) � x‖H = inf
y∈


‖(−(v � y)) � (v � x)‖H
= inf

(−v)�q∈

‖(−q) � (v � x)‖H ,

where q := (q1, q2, q3) ∈ H, and v ∈ H is set

v := 1

n3
(−2n2, 2n1, −c).

Then (−v) � q ∈ 
 is equivalent to q3 = 0, which yields the result.

Proof of Theorem 3.2. Let us assume that � is an open bounded convex
polytope. Let m ∈ N be the number of hyperplanes of ∂�, which are not
orthogonal to the hyperplane y3 = 0. We denote these hyperplanes by 
j for
1 ≤ j ≤ m. Thus there exist n1,j , n2,j , n3,j , cj ∈ R such that


j := {y ∈ H | n1,j y1 + n2,j y2 + n3,j y3 = cj },
where n3,j �= 0 for 1 ≤ j ≤ m. Write nj ∈ R3 for the unit normal of 
j . We
use Lemma 4.3 and inequality (10) to obtain

∫
�

(
1

d1(x)2
+ 1

d2(x)2
+ 1

m

m∑
j=1

1

dC(x, aj )2

)
|u(x)|2 dx

≤ 5
∫

�

∣∣∇H u(x)
∣∣2 dx, (20)

for u ∈ C∞
0 (�), where

aj := 1

n3,j

(2n2,j , −2n1,j , cj ).

The aim is to give a pointwise estimate for the weights on the left-hand side
from below. We take b ∈ ∂� such that δK(x) = ‖(−b) � x‖H, which exists
since ∂� is compact and δK is continuous.

The first case is b ∈ 
j for a fixed j . Since � is convex we compute
the intersection points d1(x) and d2(x) with 
j . The hyperplane separation
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theorem yields then

1

d1(x)2
+ 1

d2(x)2
≥ 1

4

(−2n2,j + x1n3,j )
2 + (2n1,j + x2n3,j )

2

| − cj + 〈x, nj 〉|2 .

Let a > 0. We use Proposition 5.2 for the case (−2n2,j /n3,j + x1)
2 +

(2n1,j /n3,j + x2)
2 ≥ a| − c/n3 + x3 + x1n1/n3 + n2x2/n3| and get

1

d1(x)2
+ 1

d2(x)2
≥
(

33/2
√

2

a
+ 1

)−4/3(
inf

y∈
j

‖(−y) � x‖H
)−2

.

For the case (−2n2,j /n3,j + x1)
2 + (2n1,j /n3,j + x2)

2 ≤ a| − c/n3 + x3 +
x1n1/n3 + n2x2/n3|, we use Lemma 4.2 to get

1

m

m∑
k=1

1

dC(x, ak)2
≥ 1

πm

1

‖ − aj � x‖2
H

≥ 1

πm
√

a2 + 16
| − c/n3 + x3 + x1n1/n3 + n2x2/n3|−1

and then again Proposition 5.2 yields

1

m

m∑
k=1

1

dC(x, ak)2

≥ 1

4 · 33πm
√

a2 + 16

(
1 + a

33/2
√

2

)−2(
inf

y∈
j

‖(−y) � x‖H
)−2

.

We choose a > 0 such that

1

4 · 33πm
√

a2 + 16

(
1 + a

33/2
√

2

)−2

=
(

33/2
√

2

a
+ 1

)−4/3

,

which obviously exists. The positive constant, which satisfies that equation is
denoted by cm. If we summarise our estimates, the weight function in (20) is
then bounded from below by(

33/2
√

2

a
+ 1

)−4/3(
inf

y∈
j

‖(−y) � x‖H
)−2

≥
(

33/2
√

2

a
+ 1

)−4/3

‖(−b) � x‖−2
H ,

where we used b ∈ 
j . We recall that b was chosen so that δK(x) = ‖(−b) �
x‖H.
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The second case is b := (b1, b2, b3) ∈ ∂� when the hyperplane, which
contains b, is orthogonal to the hyperplane x3 = 0. We denote that hyperplane
by 
. Because of the orthogonality condition, the hyperplane is parametrized
by


j := {y ∈ H | (b1 − x1)(y1 − b1) + (b2 − x2)(y2 − b2) = 0}.
We use the hyperplane separation theorem again and compute the intersection
points of d1(x), d2(x) with 
j obtaining

1

d1(x)2
+ 1

d2(x)2
≥ (b1 − x1)

2(
(b1 − x1)2 + (b2 − x2)2

)2

+ (b2 − x2)
2(

(b1 − x1)2 + (b2 − x2)2
)2

= 1

(b1 − x1)2 + (b2 − x2)2
≥ 1

‖(−b) � x‖2
H

.

At that point we use that b was chosen, such that δK(x) = ‖(−b) � x‖H is
fulfilled. Summarizing our estimates we arrive at(

33/2
√

2

a
+ 1

)−4/3 ∫
�

|u(x)|2
δK(x)2

dx ≤ 5
∫

�

∣∣∇H u(x)
∣∣2 dx,

where Lemma 4.2 finally yields the result.

Proof of inequality (9). Let us assume that cm > 0 satisfies

√
c2
m + 16

(
1 + cm

33/2
√

2

)2/3

cm
4/3 = 1

27/33πm
.

It can be easily seen that

cm ≤ (4mπ)−1/3 ≤ (4π)−1/3.

Thus we get the following estimate

1

27/33πm
≤
√

(4π)−2/3 + 16

(
1 + (4π)−1/3

33/2
√

2

)2/3

(4mπ)−1/9cm,

which yields

cm
−1 ≤ m8/9π8/93 · 219/9

√
2−4/3π−2/3 + 16

(
1 + 1

33/227/6π1/3

)2/3

.
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6. Convex polytopes with improved constants

We prove that for some open bounded convex polytopes the constant in The-
orem 3.2 can be improved. We discuss that behavior in detail for convex cyl-
inders. At the end we show for the smallest constant c > 0 satisfying (2) that
2 ≤ c, which is a similar result to the Euclidean case.

6.1. The improved version

Assumption 6.1. Let � be an open bounded convex polytope. Let m ∈ N
denote the number of hyperplanes of ∂�, which are not orthogonal to the
hyperplane x3 = 0. We denote these hyperplanes by 
j for 1 ≤ j ≤ m. Thus
there exist n1,j , n2,j , n3,j , cj ∈ R such that


j := {y ∈ H | n1,j y1 + n2,j y2 + n3,j y3 = cj },
where n3,j �= 0 for 1 ≤ j ≤ m. We assume that there exists a constant a > 0
such that for all x ∈ � and all j ∈ {1, . . . , m} holds

(−2n2,j /n3,j + x1)
2 + (2n1,j /n3,j + x2)

2

≥ a| − c/n3 + x3 + x1n1/n3 + n2x2/n3|. (21)

Theorem 6.2. Under Assumption 6.1, one has(
33/2

√
2

a
+ 1

)−4/3 ∫
�

|u(x)|2
δC(x)2

dx ≤ 4
∫

�

∣∣∇H u(x)
∣∣2 dx

for all u ∈ C∞
0 (�).

Proof. We use Lemma 4.3 to obtain∫
�

(
1

d1(x)2
+ 1

d2(x)2

)
|u(x)|2 dx ≤ 4

∫
�

∣∣∇H u(x)
∣∣2 dx,

for u ∈ C∞
0 (�), and proceed in the same way as in the proof of Theorem 3.2.

We treat only the case b ∈ 
j with δK(x) = ‖(−b) � x‖H since the other one
is the same verbatim. By nj we denote the unit normal to 
j . Again we use
the hyperplane separation theorem and get

1

d1(x)2
+ 1

d2(x)2
≥ 1

4

(−2n2,j + x1n3,j )
2 + (2n1,j + x2n3,j )

2

| − cj + 〈x, nj 〉|2 .
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Under Assumption 6.1, we use Proposition 5.2, yielding

1

4

(−2n2,j + x1n3,j )
2 + (2n1,j + x2n3,j )

2

| − cj + 〈x, nj 〉|2

≥
(

33/2

a2−1/2
+ 1

)−4/3(
inf

y∈
j

‖(−y) � x‖H
)−2

.

Since b ∈ 
j , we use Lemma 4.2 and get the result.

Remark 6.3. The last result can be extended to any convex bounded �

as long as there exists a constant a > 0 such that for any hyperplane, which
separates � from points lying on its boundary, inequality (21) holds.

6.2. Convex cylinders

We indicate briefly that there are indeed domains satisfying Assumption 6.1.
Therefore we consider domains of the form � = ω × (α, β), where ω ⊂ R2

is a bounded convex domain and α < β. This domain is not a polytope but the
hyperplanes which separate the points lying in b ∈ ∂ω× (α, β) are orthogonal
to the hyperplane x3 = 0. Thus the proof of Theorem 6.2 goes through and we
get:

Corollary 6.4. Let � = ω × (α, β) such that α < β and ω ⊂ R2 is a
bounded convex domain. For fixed a > 0, we assume that for all x ∈ � we
have

x2
1 + x2

2 ≥ a| − α + x3| and x2
1 + x2

2 ≥ a| − β + x3|.

Then the following is valid for all u ∈ C∞
0 (�)

(
33/2

√
2

a
+ 1

)−4/3 ∫
�

|u(x)|2
δC(x)2

dx ≤ 4
∫

�

∣∣∇H u(x)
∣∣2 dx. (22)

Proof of Theorem 3.3. Let a > 0 be fixed. We consider the following
domain �a := B1(pa) × (0, 1), where B1(pa) is the two-dimensional Euc-
lidean ball with radius one centered at pa := (

√
a + 1, 0). The conditions of

the last Corollary can be checked easily, where α = 0 and β = 1. Thus the
Hardy inequality (22) holds, where the constant depends on a > 0.
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6.3. On the sharp constant

Theorem 6.5. Let � ⊂ H be a bounded domain. Then one has

inf
u∈C∞

0 (�)

∫
�

∣∣∇H u(x)
∣∣2 dx∫

�

|u(x)|2δC(x)−2 dx

≤ 1

4
.

Proof. It suffices to construct a sequence un ∈ C∞
0 (�) such that

lim
n→∞

∫
�

∣∣∇H un(x)
∣∣2 dx∫

�

|un(x)|2δC(x)−2 dx

= 1

4
.

To this end we consider the sequence

ũn(x) = δC(x)1/2+1/n, n ∈ N,

and recall that δC(x) satisfies the Eikonal equation

∣∣∇H δC(x)
∣∣2 = 1, for a.e. x ∈ �, (23)

see [20, Thm 3.1]. Moreover, from [12] we know that

M ‖x − y‖e ≤ dC(x, y) ≤ M−1 ‖x − y‖1/2
e (24)

holds for some M > 0 and all x, y ∈ �. Hence the integral
∫
�

δC(x)2/n−1 dx <

∞, and using (23) we easily find that∫
�

∣∣∇H ũn(x)
∣∣2 dx∫

�

|ũn(x)|2δC(x)−2 dx

=
(

1

2
+ 1

n

)2

, ∀ n ∈ N.

Next we will show that δC is weakly differentiable with respect to X1 and X2

on �. Without loss of generality we consider only the case X1. Let u ∈ C∞
0 (�)

be given. We must show∫
�

X1u(x) δC(x) dx = −
∫

�

u(x)X1 δC(x) dx. (25)
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Since we can extend these functions to the whole space we can integrate over
R3. An application of the dominated convergence theorem then yields∫
R3

X1u(x)δC(x) dx = lim
h→0

(∫
R3

u(x + hx̃)

h
δC(x) dx −

∫
R3

u(x)

h
δC(x) dx

)
,

where x̃ := (1, 0, x2/2). We make the change of variables x + hx̃ �→ x to
obtain∫
R3

X1u(x)δC(x) dx = lim
h→0

(∫
R3

u(x)
δC(x − hx̃)

h
dy −

∫
R3

u(x)

h
δC(x) dy

)

= − lim
h→0

(∫
R3

u(x)
δC(x − hx̃) − δC(x)

−h
dy

)
.

Since any two points lying inH can be connected by a (not necessarily unique)
geodesic, see [19], we can easily deduce

|δC(x) − δC(y)| ≤ dC(x, y), for all x ∈ H. (26)

Taking that inequality and the application of the left-invariance of the C-C
distance, we get dC(x − hx̃, x) = dC(−he1, 0) = |h|, where e1 := (1, 0, 0) ∈
H. Hence we may apply the dominated convergence theorem again arriving at∫

R3
X1u(x) δC(x) dx = −

∫
R3

u(x) lim
h→0

δC(x − hx̃) − δC(x)

−h
dy.

This limit exists almost everywhere on H, see [20], since δC(x) fulfils (26).
This proves (25), and therefore it follows that δC is weakly differentiable on
� with respect to X1. The case of X2 is treated in the same way.

At this point it can be shown by a standard argument that δC can be approx-
imated by C∞

0 (�) functions and that the same is true for the sequence ũn.
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