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ON NON-HERMITIAN TOEPLITZ MATRICES!

EDGAR REICH

1. Introduction.

Let f(0) be a (not necessarily real) function of class L(0,2r) with
Fourier series

£0) ~ 3 cqei.

—00

We are interested in the solution of the system of equations

n
(1.1) kZOCj—khk =95 0=5jsn,

and in relating the ‘“size” of the solution {%,}; to that of {g,}5 by means
of a norm inequality. We shall extend some results of Baxter’s [1] for
this problem.
A periodic function F(e®) of class L over (0,2x) is said to be of power
series type [3] if
27

fF(eiﬂ) gy =0, k=1,2,....
0

The following statement is a rephrased version of the main theorem of
[1]. (The exponent —1 denotes the reciprocal.)

THEOREM A. Suppose f(0)= A(e®) B(e®), where A(e®), B(e-%), A-1(e%),
and B-Y(e~®) are of power series type, and possess absolutely convergent
Fourier series. Then there exist constants K, p, and N 4 p, depending
only on the functions A and B, with the following property:

If n is a positive integer and {h;}y, {9:}5 satisfy (1.1), then

(L.2) % Ayl < KA,BOZ lgel, n2ZNyp-.

Let g(0)=359x6%0, h(0)=3gh,e*. If F e L, we put, as usual,
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1 2n 1/r
M,[F] = l% f [F(ei")]'del .
0

We will see that, by using M, norms (r>1) to replace (1.2), one can
weaken the hypothesis of Theorem 4 to obtain the following.

THEOREM 1. Suppose f(0)= A(e®)B(e®) where A(ei), B(e~®), A-1(e®),
and B-1(e~%) are bounded measurable functions of power series type, and
at least one of the two functions A-1(e®), B-1(e~®) is continuous. Then for
any r>1 there exist constants K 4 g ., N 4 p , such that whenever (1.1) is
satisfied,

(13) Mr[h] é KA,B,er[g]ﬂ n g NA,B,r .

While the conclusion (1.3) is, because of the different norm, not the
same as (1.2) this will be seen to be of no importance so far as the applica-
tions which are of interest to us (Sections 4 and 5) are concerned. The
basic structure of the proof of (1.3) is the same as in [1]. In addition to
the introduction of the norms M,, and the use of classical facts regarding
conjugate Fourier series, the principal technical innovation in the present
contribution is the use made of Cesaro means.

2. Proof of Theorem 1.

It is convenient to follow Baxter in the use of the operators F+(0)
and F-(0). However it is necessary to define these for a broader class
of functions F(0) than merely the functions with absolutely convergent
Fourier series considered in [1]. Suppose F(6) e L7, r>1, and

F(e) ~ Z akeiko .

Then the conjugate function ([3, p. 253]) i’(@) is defined a.e., and is also
of class L7, and 5 m
F6) ~ —1 Y (signk) a,e®® .
e
We define 3 o
F+(0) = 3[F(0)+ao+iF(0)] ~ 2 a,e?,
0

F-(0) = 3[F(0)—ap,—iF(6)] ~ fakeiko.

By Riesz’ theorem and Minkowski’s inequality there exist constants C,,
not depending on F, such that

(21)  M|J[F*] £ C.M[F), M[F-]=sCMI[F] (r>1).
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(In the simplest case, r=2, we can clearly take C,=1.) An alternative
but equivalent definition of the functions F+(8) and F-(6) a.e. is obtained
by means of the Abel sums of the respective formal Fourier series.
Suppose the hypotheses of Theorem 1 are satisfied, with 4-1(e*) con-
tinuous. We have f(6)h(6) —g(0) € L™, and, by (1.1),
2n
f[f(e)h(e)—g(e)] e-h0dh = 0, OSksn.

0

Hence o

(2.2) GI(G) — ei(n+1)9[6—i(n+1)6(fh_g)]+ ~ ngeiko
1

and -1 "

(2.3) Gy(0) = [fh—g]~ ~ % g o™

are of class L", and

(2.4) F(0)h(0) = G41(6)+9(6) + Gy(0) -

Thus

[ Be—i(n+1)0h]+ = [ A —le—in+1)0(} L+ A—le—i(n+1)69+ A—le—i(n+1)0G2]+ )

Since B(e~%) is of power series type, the left side is zero. The term
A-1le~n+10@, ig also of power series type. Hence

(2.5) A-le= it WG, = —[A-le~in+ g+ — [A-le-in+DOQ, ]+,

If 6,,,(0) is any linear combination of {¢™*%}, 0<k=<n+1, and
Op11(0) = A~Y(e®) —0,,4(0)

then, in view of (2.3), [0, e=+D0G, ]+ = 0 .

Therefore,
(2.6) [A-Te-insmagy]+ = [3,, o~i+9G, ]+ .

In particular, let o, be the n'" Cesaro—1 mean of the Fourier series of
A-Ye®). By Fejér’s theorem,
(2.7) lim sup|d,.,(0) = 0.

n—>oco 6

Substituting (2.6) into (2.5), and solving for @,, yields, after application
of (2.1),

(2.8) M,[G4] = O, sup|A(e”)| {sup |41 (e?)| M 7[9]+B;1P[5n+1(0)l M,[G,]}
0 0
On the other hand, starting again with (2.4), and multiplying both sides

by B-! we obtain
(Ah)~ = 0 = (B71Gy)~+(B7l9)~+(B7'Gy)" .
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Since (B-1G,)-=B-1Q@,,

G, = —B(B-1G,)-—-B(B-lg)-.
Therefore

(2.9) M[G]=C, suPlB(e"’ lsup |B-X(e®)| {M,[G,]+ M, [g]} .

Combining (2.8) and (2.9), and taking into account (2.7), we find that,
when nzN, p ,,

Mr[Gl] = Ker[g]> r[GZ] K Mr[g]
where K,, K, depend only on 4, B, and r. Hence, by (2.4),
M,[h] = (1+K,+Ky) sup|A-'B-YM,[g], nzN4p,,

completing the proof of (1.3). In the case when 4-1(¢®) is only bounded,
but B-1(¢®) is continuous, the proof is similar.

3. Hypotheses on f alone.

By means of a lemma, various forms of which are more or less well
known, but whose proof shall be included for the sake of completeness,
the hypotheses on 4 and B in Theorem 1 can be replaced by direct
hypotheses on f.

Lremma 3.1. Suppose v(0) € L has a Fourier series of power series type,
and e"® € L. Then the Fourier series of e*® 1s also of power series type.

Proor. There exists ([3, pp. 288-289]) a function F(z), regular for
|2] <1, such that, for almost all 0,

v(0) = Lim F(re®) ,

r—>1

and with the property that F' is the Poisson integral of v,

F(re?) _——jl—2rcos(0—t)+ 2V(0) di -

Let G(z)=¢eF®, |z]<1. Then

lim G(re®) = e a.e.
r—>1

On the other hand,
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|G(rei®)| = exp |- [ 1-r Reo(t) dt
= °xp 27:0 1—27cos(0—¢t)+1r2

1 2n 1 2
< — f i eRev gy
T 2nJ) 1-

0

27

2r cos (0 —1¢) +172

1 1—72

=— e"| dt .
27:0 1-—-2rcos(0—t)+r2| |

Therefore,

1 7 1 F
_— 0 < w(f) <
2ﬂ![0(7’e)|d0=2bfle |dt, 0<r<l,

that is, G(z) belongs to the Hardy class H. It follows that the radial
limit values of G are of power series type.
As an immediate corollary we can state the following.

THEOREM 2. If the two functions (logf)+, (logf)~ exist and are bounded,
and if at least one of them is continuous, then
M, < K;,MJfg]l, nz=N;, r>1.

Proor. We take A4 =exp[(logf)*], B=exp[(logf)-], and apply Theo-
rem 1.

4. Non-vanishing of the determinants.
We consider the (n+1) x (n+1) determinants

D,[f] = det(c;_;)

corresponding to the matrix of system (1.1). Since M,[g]=0 implies
M, [h]=0, which in turn implies that all A, =0, 0<k<n, we have

THEOREM 3. If the hypotheses of Theorem 1 or Theorem 2 are satisfied
then D, [f1£0 for all sufficiently large n.

Further remarks.
In the classical case [2] when (c,_;) is Hermitian, the condition

(4.1) fz0, logfe L

is sufficient to insure that D,[f]+0. In the general case when (c;_;)
is not necessarily Hermitian the condition logfe L is not sufficient to
guarantee that D,[f]+0 for even a single n as the example f(0)=e%®
shows.



150 EDGAR REICH

The function
(4.2) f(6) = (1—et®)(1—e~) = 2(1—cosb)

satisfies (4.1), and therefore D,[f]+0, n=1,2,.... (This can also be
seen more directly.) But, unfortunately, we would not have been able
to conclude this from Theorem 3, since neither (1 —e#)-1 nor (1 —e-%)-1
are even integrable. In fact, it is impossible to generalize Theorem 3,
in the sense to be described below, so as to include (4.2).
Let us call the class of functions & admissible if # has the property

that the conditions

f(0) = a(e®) fle~*)

o(e®) e F, a~l(e?) € F, P(e®) e F, p-1(e?) e F

impl

Haply D,Jfl1+0, nzN,,.

Theorem A shows that the class of functions with absolutely convergent
Fourier series of power series type constitutes an admissible class. In

view of the present results we know that the larger class of merely con-
tinuous functions with Fourier series of power series type is admissible.

The example F(6) = (1—e)(1—e-i0)-1 = _ it
shows, however, that there exists no admissible class containing both the
functions (1 —e®) and (1 —e®)-L.
5. The ratios D,,_,[f1/D,[f]-
We shall prove the following
THEOREM 4. If the hypothesis of Theorem 2 is satisfied then

_ D,,f] 17
S - P [‘:z;;of foef d”} ‘

The basic method of proof, following [1], is to consider the solution
of (1.1) for the case g;=J;,, namely,

(6.1)

n n
k=0

k=0
where the superscript is used as a reminder of the fact that the solution
vector {/,(} depends on n. We have

ho(n) = Dn—l[f]/Dn[f] .

LeMma 5.1. Suppose the hypothesis of Theorem 2 1is satisfied. Let
r™(0) be defined by (5.2), and suppose that
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H(0) ~ 3 Hjeiko
0

ts a function of class L? for which

2n
1
(5.3) — f FOHO)e-"do = 8, 0<k<oo.
7
0
Then there exist constants K,, N,, depending only on f, such that
n [
k=0 k=n+1

Proor. Since

27
1
— f FORM(O)e-H0 df = §,,, O0<k=n,

27
0

we have
2n

[ o) - (o0 at
0

2n
1
o [FONHNO) -0~ df = w, =
27
° 0skzn,

1
2
with "
H™(G) = 3 Hyeio
0
By Theorem 2,

n by n Y
= 2 [Hy- hk(")]z} = Kf,z{ 2 ukg}
k=0 k=0
M{[H™ —H]f}K
Ky ysup|f| Mo[HM—H], nzNg,.

=
=

Proor oF (5.1). The function
2n -1
1 . )
H(6) = [— J B(e”)dt] A-1(¢)
2n0

is of class L? and satisfies (5.3). By (5.4),

n—>00

2n 2n -1
1 ) 1 )
(6.5)  lLimh = Hy= |— f A1) do| | — f B(e®) do| .
2.n0 2n0

Let p(z) be the function, regular for |z| <1, with non-tangential boundary
values [logf(6)]*. The function e-?® has non-tangential boundary



152 EDGAR REICH

values A-1(e®%) almost everywhere, and, by Lemma 3.1, ¢?@ is the
Poisson integral of 4-1(¢®%). Hence

(5.6) Ely—z ZaA—l(e“) df = e PO = exp { - %jn[log‘]"(ﬂ)]+ d0].
Similarly, ’

V7 17
(5.7) = Of Be®) df = expig Of [logf(8)]- de} 1.
Substituting (5.6) and (5.7) into (5.5) gives (5.1).
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