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AN ASYMPTOTIC RESULT FOR
THE FINITE PREDICTOR

GLEN BAXTER!

1. Introduction.

In this note we will demonstrate two asymptotic results for the finite
linear predictor in the case that there exists a spectral density with
special properties. Our results can be contrasted with those in Grenander
and Szego [3, § 10.10]. The method used will involve an application of
an inequality and a convergence equivalence for Szegd polynomials
recently investigated by the author in a different connection [1].

Let {x,}%, € Ly(£2) be a stationary stochastic process with spectral
density function f(0) (=0). We assume that x,,z_;,...,%_,,,; are known
and that it is desired to determine constants a,(n), 0<k<n-—1, to

obtain the best linear predictor
n—1

(1 T* = Eam(n) Tom

m=0

of z,. Finding a,(n) is equivalent to obtaining the minimum value of

n—1 2 1 . .
@a1= 3 | = [Ipo+pt... +p2f(0)d0, 2= ev,
m=0 7T n
where py=1, p,= —a;_,(n), and where ||-|| is the norm in Ly(2). This
minimum is obtained for the polynomial
D,(f)
p(Z) = “un(z) ’
D,_(f)
with minimum value
= D)
" Dn~1(f) ’

if u,(z) is the unique polynomial of degree » satisfying
1 kL
) — [u@f@e®d0 = 50, 0sksn, 2=e",
JT
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and where D, (f) is the Toeplitz determinant of order »+ 1 associated
with f(6). Two questions arise in this connection which will now be
considered.

First, if logf(0) is integrable, then u, decreases as n tends to infinity
to a limit x>0 which represents a lower bound for the error of the finite
predictor x;*. The rate of decrease of §,=pu,—p to zero is important
in the asymptotic behavior of x,*. Results in this direction have been
given in [3, § 10.10] and [2] and may be compared with the following
special case of our Theorem 3.1: If f(0) is almost everywhere equal to a
positive function with k integrable derivatives (k= 2), then &, =o(ns+2-%),
£>0. Our result is an especially good improvement of the known results
in case k is large.

The second question concerns the computation of the predictor itself,
that is, the computation of a,(n). If f(0) is sufficiently nice, a,(n) ap-
proaches a limit @, as » tends to infinity, or equivalently, «,, approaches
a limit U,. It can happen that a,(n) is difficult to compute exactly
while the computation of a, is relatively easy. For example, if f(6) had
the form exp(a cos@), then the limiting values of a,(n) are easily com-
puted from the unique solution of (4) with n set equal to infinity. In
fact, the factorization f(0)=exp(3ae®) exp(3ae—%) in this case yields

limu,(z) = U(z) = exp(—}az) .

n—>oo
Thus %,,=1/u, - 1 and a;_,(n)= —p(n) > —(—3a)¥/k! The question
is simply what additional error is introduced by using @, instead of
a;,(n) in (1)? This additional error is in norm
n—1

n
* *
L2 R Z AT Zo z Q1T —n
m=0

m=1

(%) = 2 (Hntlm — U )% _p (Uptpe = pUy = 1)

m=0
n n
é M z (umn - Um)x—m + (/"’n _/"‘) z U@ - -
m=0 m=0

The second term on the right in (5) has the order of 4, =pu, —u, but an
investigation is still needed of the rate of convergence to zero of

n

(6) anz = z (U — Um)x—ml‘2 = '217;!; 2f(0)d0 .

2 (unm_ Um)zm
m=0 m=0

In this connection we prove as a special case: If f(0) is almost everywhere
equal to a positive function with k integrable derivatives (k=2), then
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g, =0(nt1k), ¢> 0. The fact that the estimate for o, is the square root
of the estimate for §, seems to be intimately connected with the quan-
tities themselves and is not a result of our methods.

As a final consideration in § 3 we will consider the case in which ¢,
goes exponentially to zero and show that this is necessary and sufficient
for f(0) to be almost everywhere equal to a function which is analytic
for real 6 and has no real zeros.

2. Preliminary results.

The method hinges on an inequality associated with equations like (4).
Let f(6) be an integrable function on —xz < 6 <z with (complex) Fourier
coefficients {c,}. Two polynomials ¢,(0)=30g,ne™® and h,(0)=
St 6™ are assumed to be related to each other by means of the
equation

(7) o [ 1O 030 = g, 0 5

IIA

n.

THEOREM 2.1. If f(0) is a positive continuous function whose Fourier
coefficients {c;} have A moments (A20), i.e. if IP°mc,|< oo, then there
exists an integer N and a constant M, both depending only on f(0), such
that for every pair g,(0) and h,(0) of degree n= N satisfying (7),

(8) Z 2+ m) hyy| = MZ (24 +m)|g | -

For a proof of Theorem 2.1 the reader is referred to [1]. In [1] the
inequality (8) is proved more generally with a ‘“‘norm” function »(m)
replacing 2%+ |m|*. It is easy to see, however, that ¥(m)= 2%+ |m|* satis-
fies the norm condition »(n) < v(m)v(n—m) for all n, m.

The special case of Theorem 2.1 of interest to us is that in which
Gum = Omo for all n,m. Equation (7) reduces in this special case to equa-
tion (4) and (8) becomes

S (@] < U

m=0

for all » sufficiently large. Now, according to the Wiener—Lévy Theorem
[4, p. 245], if f(0) > 0 is a continuous function whose Fourier coefficients
have A moments, then logf(6) is an integrable function whose Fourier
coefficients have 1 moments. Let {d,} be the Fourier coefficients of
logf(6). Under the conditions of Theorem 2.1, it is known that
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(9) U(z) = exp{ — zdmzm}, z = e
m=0

is the unique solution of
1 N

10) - [UEf(O 0 = b, 0Sk <, z=0c,
JT

and that {U,,} has 4 moments. A comparison of (4) and (10) indicates
that as » tends to infinity u,(2) approaches U(z). The exact rate of
approach of u,(2) to U(z)=3g U,2™ is crucial in our methods and it is
exactly in this direction that Theorem 2.1 is useful.

THEOREM 2.2. If f(0) is a positive continuous function whose Fourier
coefficients have A moments and if {u,,} and {U,}, n,m =0, are the Fourier
coefficients of the functions u,(z) and U(z) determined by (4) and (10),
then there exists an integer N and a constant M, both depending only on
f(0), such that for all n= N

(11) Z (2 + )ty — Uyl < I Z (2 +m?)| Uy .
m=0 m=n+1
Proor. It is easy to see from (4) and (10) that «,(z)f(6) and U(z)f(6)
have the same Fourier coefficients 9,4 for 0=k <n. Thus for 0<k<n

LT [3 = D] 5010705

275 m=0

_ L f [ S U,,,eimf’] F(0)e=#do = §,, (say) .

2n m=n+1
—n

According to (8) applied to the special case of (7) which appears just
above (n=N),

z (21+m1)'unm_ U, l =M z (21+ml)lgnm|
m=0 m=0
We finish the proof by deriving, by means of the norm condition »(n) <
y(m)v(n —m) for v(m)=2*+|m|* and the explicit expression for §,, above,
the inequality
n
2 (24 m)| | < 2 (2*+m) ey, 2 (2'+m")|U,| .

m=0 m=n+l

This gives (11) with
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M= M3 2 +m, .
m=0

The polynomial u,(z) in (4) is closely related to the Szegd polynomial
@,(2) associated with f(6). In the notation of [3, Chapter II], u,(z)=
k,9,*(), where k,2=D, _,(f)/D,(f). Our third and final preliminary
result will employ this connection together with Theorem 2.2 to give a
useful convergence result for the sequence of constant terms {g,(0)} in
the Szeg6 polynomials.

THEOREM 2.3. If f(0) is a positive continuous function whose Fourier
coefficients have A moments, then 33m* @, (0)] < oc.

Proor. For the purpose of this proof only we will use the notation
I\F|| =X (2*+ |m|*)|F,,| where F is an arbitrary integrable function, with
Fourier coefficients F,,., We begin with the known identity (see [3,
page 41])

(12) an(])n(z) = kn+1¢n+l(z)_ln+1(p*n+l(z)
in which 7,=¢,(0). Using w,(z)=Fk,¢,*(z) and performing some mani-
pulations, it follows from (12) that

n l
(13) un(z)"'uk(z) = Z (xmzmam(z—l)9 Em = ﬂ’
m=k+1 km

where #%,(271) is the polynomial in 1/z with coefficients ,,. Using U(z)
as defined in (9) and at the same time suppressing dependence on z,
let us now write (13) in the form

n n
(14) Uy —Upt+ > 6@ U—7%,) =U 3 az™.
m=k+1 m=k+1

Due to the special form of U(z) in (9) and the assumptions of the theorem,
which imply that {d;} has 4 moments, the reciprocal function V(z)=
1/U(271) (z=e%) is such that [|V| <oo. Dividing through (14) by U and
taking norms yields

S VIl — gl + (VI

n
Z (xmeimf)( U- am)
k+1

n
z (xmeimo
k+1

Now, the first term on the right above is bounded according to Theorem
2.2. Moreover, if m is sufficiently large, then ||V||- |0 —%,,|| <e<1. Thus,
for all k sufficiently large,

S VIl — || + &

.

n
z “meima
k+1

n
imo)
> e
k+1
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This shows that I3 (2*+m%)|x,|<occ. To finish the proof we remark
that k,~2 > x>0 and recall the relationship «,,=1,/k,,.

3. Application to the finite predictor.

In view of the preliminary results our asymptotic study of the finite
predictor is now rather straightforward. To obtain the fullest power
from the theorem of the last section, we will state our results in terms of
moment conditions on the spectral density function f(6).

TrEOREM 3.1. If f(0) is a positive continuous function whose Fourier
coefficients have A moments (> 0), then 8,=o0(n"2*) and o, =o0(n"*).

Proor. We show first that 8,=o0(n"?*). According to Theorem 2.3,
3>m*g,,(0)| <oco. Thus [3, p. 188],

by =ttt S |pm(O)?

m=n+1

(15) < g S m¥ g, (0)[2

m=n+1
= o(n—%) .
To show that o,=o0(n"*) we write first from (6)
n 2
(16) anz S co( z Iunm—Um]> ’
m=0

and then apply (11) with 1=0, getting

cozﬁz( S |U,,,;)2

m=n+1

2

IIA

G’IL
(o8]

A 2
00M2n—2‘( > m‘IUmI)

m=n+1

A

= o(n—%) .

The statements in the introduction follow as special cases of the above,
since if f(0) is almost everywhere equal to a positive function with &
integrable derivatives (k= 2), then the Fourier coefficients of f(0) have
A moments for any A<k—1.

The asymptotic estimate given for o, is just the square root of that
given for 6,. This fact seems to be intrinsic in the quantities under
discussion and is not just a phenomenon of the method employed. Some
light is shed in this direction by the example with spectral density f(0)=
1+02—2p cosf (0<g<1). It is easy to show for this example that
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PO i Gl 0
n 1-— 92n+2
On the other hand,

m__ n2n+2-m
and a computation reveals that co® <o, < Cp™ for suitably chosen con-
stants ¢ and C, showing that in this example the ‘“‘size’” of ¢,, is exactly
the square root of the ‘“‘size’ of ¢,.

Following the lead of Grenander and Szego [3], who find a necessary
and sufficient condition that J, =y, —u decreases exponentially to zero,
we now take up the question of finding a necessary and sufficient con-
dition that ¢, go exponentially to zero. Simply enough, the condition
found for 6, by Grenander and Szegé [3] works also for ¢,. Of course,
there is always the basic assumption that f(6)=0 and logf(0) are inte-
grable function on —z <0 =7,

THEOREM 3.2. A necessary and sufficient condition that o, goes at least
exponentially to zero as n tends to infinity 18 that f(6) coincide in —n<0=<nx
almost everywhere with a function which is analytic for real 0 and has no
real zeros.

Proor. To prove the necessity we combine the definition of ¢,2 in (6)
with the minimal property of x, mentioned in (2) (and after) to find first

(Iun - /‘)2
Pt

Thus, if 0,2 goes at least exponentially to zero, so does 8, =y, —u, and
the necessity follows from the known result for J,. On the other hand,
if the spectral density f(6) satisfies the conditions of the theorem, then
the Fourier coefficients {d,} of logf(6) go at least exponentially to zero.
It follows from (9) that |U,| < K a* with |a| < 1. Finally, an application
of (11) with A=0, gives in view of (16),

Gn2 2 (um)" U0)2‘un =

n 2
Unz = Co (% |unm_ Um{ )
A d 2
S oll*( 3 (U,
m=n+
b

K 2a2n s

and the proof is complete.
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