MATH. SCAND. 10 (1962), 119126

THE BRAID GROUPS

R. FOX and L. NEUWIRTH!

1. Introduction.

The braid groups B,,n=1,2,3, ..., were introduced in 1926 by E. Ar-
tin [1] and have been the subject of numerous investigations. Although
there is a well-known presentation of B, that has been derived several
times the derivations that appear in the literature e.g. [1], [2] are all, in
one way or another, somewhat devious. Our principal object is to give a
straightforward derivation of this presentation, based on the previously
unnoted remark that B, may be considered as the fundamental group of
the space E?" of configurations of n undifferentiated points in the plane.

Our derivation uses a method of computation that has never been
published, although knowledge of it is probably widely distributed. It
is proposed to publish the details of this method in a later paper; however
the ideas involved are transparent enough to be believably communicated
very briefly, and this we do in § 2 of the present paper.

By examining a certain covering of £2" and using the results of [3] it is
shown that £? is aspherical, and certain consequences of this fact are
noted. In particular it follows immediately that B, has no elements of
finite order; we believe that this was not previously known.

2. Computation of 7,.

If X is a regular cell-complex, then we consider mappings of X onto
X /R where R is a relation obtained from a family @ of identifications of
the cells of X. @ is required to satisfy the following conditions:

0) Each ¢ in @ is a homeomorphism with domain a closed cell of X.
i) If Uis a cell of X, 9:U — U is in @ if and only if ¢ is the identity.
ii) f pe @, ¢:U, - U, then ¢p-2:U, - U, is in &.
iii) If ¢: U1—>U2and<p1 U, —~ U, are in @, so is ¢'¢: U, - U,.
iv) If : U, - U, is in @ and V, is a cell contained in U, then V,=¢(V,)
is also a cell, and ¢|V,;: V, - V, is in @.
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In what follows X and X/R will be manifolds of dimension =, and we
shall compute 7z, of the complement of an (n — 2)-dimensional subcomplex
K of X/R.

The algorithm for the computation is roughly as follows: Select in X/R
a maximal n-dimensional “cave” ¥ of n-dimensional, and oriented (n —1)-
dimensional cells (this will be dual to a maximal tree in a dual cell de-
composition). To each oriented (»— 1)-cell not in the cave will correspond
a generator of n;. This generator is represented by a loop that penetrates
the (n— 1) cell once with intersection number 1 but otherwise lies entirely
in €. To each (n—2)-cell of X/R that does not belong to K will cor-
respond a relation, obtained from the ‘“non-abelian coboundary’ of the
(n—2)-cell in question. More precisely, a small loop about an (n— 2)-cell
o will intersect, in a certain order and sense, all the (n — 1)-cells having o
on their boundary. Joining this loop to the base point will give a re-
presentative of an element of the fundamental group of the union of
the n, and (n— 1)-cells of X/R— K. In this way a set of elements of the
free group generated by the (n —1)-cells not in ¥ is defined. This set of
elements, one for each (n—2)-cell not in K, will be a complete set of
relations for =, (X/R— K).

3. A cellular decomposition of 2",

An ordered n-tuple (py,...,p,) of points of the plane E? may be con-
sidered to be a point p of 2n-dimensional space E?*. If the coordinates
of p,; are z,,y,, the coordinates of the corresponding point p are

Z1> Y15 o Yas «+ +5 Tpps Yp -

Let us write 4; <i, whenever the abscissa of p; is smaller than the
abscissa of p;,, 4, X i, whenever p; and p;, have the same abscissa, and
the ordinate of p,, is smaller than the ordinate of p;,, and ¢; =1, whenever
p;, coincides with p;. Information of this sort can be condensed into a
single symbol, 6, describing a point set in £2". Thus, for example, the sym-
bol (3<5=1<6X4Y2="7) denotes the set of all points (zy,¥,, .. .,%7¥;)
in E'* such that

Ty < Xy =&y < Tg = Xy = Ly = Ty,
Ys =Y Y6 <Ys < Y2 =1Yz-
(Of course the same information is indicated by each of the symbols

B<l=5<6X4¥2="7),
B<b5=1<6X4XT=2),
B<1l=5<6X4XT=2);
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we shall not distinguish between such equivalent symbols). The same
symbol 0 will be used to denote the set of all those points p satisfying
the indicated conditions.

It is easy to see that each 0 is a convex subset of £%* and that, together
with the point at infinity, they are the (open) cells of a regular cell-
subdivision of the 2n-dimensional sphere 82" =E?%" y co. The dimension
of the cell 6 is obviously equal to 2n minus the sum of the number of
occurences of ¥ and twice the number of occurrences of =. The lower
dimensional cells that are on the boundary of 0 are obtained by replacing
instances of ¢, <1, by %, X1, or 4, Xi;, and/or replacing instances of j, ¥ j,
by j1=j. (or j,=3j,). For example the boundary of the 5-dimensional cell
(1 <2 M3) consists of the 4-dimensional cells (1 X2 ¥3), (2X1¥3), (1<2=
3), the 3-dimensional cells (1=2¥3), (1 X2=3), (2X1=3), the 2-dimen-
sional cell (1=2=3), and the vertex oo.

In what follows we shall be concerned especially with the cells of
dimension =2n—2. There are n! cells of dimension 2n. One of them
is (1<2<...<n), and the others may be obtained from this by permuting
the indices 1,2, ...,n. The (2n—1)-cells on the boundary of

(1<2<...<n)
are
l1X¥X2<3<...<m,
2MX1<3<...<mn),
1<2¥¥3<...<m),
1<3XM2<...<2n) etc,

and the (2n— 2)-cells on the boundary of, say, (1¥2<3<...<n) are

1l=2<3<... <n),
1X2¥3<...<mnm),
1X¥3M¥2<...<mn),
BXXlM¥2<...<mn),
1lX¥X2<3Mx4 .. < n),
1X2<4¥3<...<n) ete

4. The action of X, on S*".

To the permutation
( 1 2...n )
Ty Gy ...y

associate the autohomeomorphism of $?* that maps an arbitrary point
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(P1,Pe; - - -, P,) of E** into the point (p,,p;,, .. .,P;,); thus an action on
82* of the symmetric group 2, of permutations of » symbols 1,2,...,n
is defined. Denote the collapsed space by S2°, and the image of E2»
under the collapsing A by £2», Each of the autohomeomorphisms of §2»
considered maps o into o and permutes the cells 0; the collapsing A
maps one or more m-cells ¢ upon an m-cell 7 of £ (not necessarily
homeomorphically). The cells 7, together with the image of the point at
oo, constitute a regular cell-subdivision with identifications of §2». A
symbolic designation of the cells 7 is readily derived. For example the
cells of 8% are {1<2<3}, {1<2¥3}, {1¥2<3}, {1x2¥3}, {1<2=3},
{1=2<3}, {1¥2=3}, {1=2¥3}, {1=2=3}, and .

5. The subcomplex 4.

The points py,...,p, of E? are distinct if and only if, for each 7 <j,
(x;— ;)% + (y;—y;)>>0. Accordingly we consider the collection 4 of those
cells 6 of our decomposition of E2* in whose symbols the sign = occurs at
least once. Since boundaries are obtained by changing < to X or ¥ to =,
it is clear that 4 and oo together form a (2n — 2)-dimensional subcomplex
of the cell complex §2*. Furthermore the points p,,...,p, of E?* are
distinet if and only if p lies in B2»—A. Let 4 denote the image of A
under the collapsing A of S2» to §%». Then A4 U oo is a subcomplex of
the cell complex 327, and p,, . . .,p, are distinct if and only if p € £2*— 4.
Note that the point » may be considered to be an unordered n-tuple of
points py, . . .,p, of E2 Let E*n=E_ 4.

6. The Braid group.

Let 4Z,, denote the braid group on n strings, ¢ the well-known homo-
morphism of #™ upon 3, and #™ the kernel of ¢. If we look at the plane
cross sections of a braid §, we see that it may be described kinematically
as a motion of n distinct points in the plane that ends with these points
back in their original position but permuted as indicated by the permuta-
tion g(f). In particular #belongs to £, if and only if the motion described
returns each point to its original position. From these remarks it should
be clear that the fundamental group of E**—A4 is £,, the fundamental
group of £*»— 4 is &,, and that E2»—A is the unbranched covering
space of B2n— 4 that belongs to the subgroup ., of &,.

7. A presentation of %,,.

To calculate 7,(£2"— A1) choose the base point in the interior of the
2n-cell 22»={1<2<...<n}. Since this is the only 2n-cell of 3*", there
is a generator o; corresponding to each (2n—1)-cell
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Al ={ .. <jMj+l< ... };

it is represented by a loop in A%™ y 2,22~ that cuts 42! exactly once.
Let us suppose that 4,>»~1 is so oriented that the motion of p, U ... U p,
in E? described by a loop representative of o; causes the points p; and
P;+1 to interchange places (and names) by circling one another in a
counterclockwise direction. The motion for ¢,~! is shown in Figure 1.

Fig. 1.

The braid o, is shown in Figure 2.

Fig. 2.

According to the general theory, a complete set of relations can be
found in one to one correspondence with the cells of £2" — 4 of dimension
2n—2. These are of two sorts:

Mp={..<iXi+l<...<kbXk+l<...} it+1<k,
Aigaa={ .. <t Xi+lMit+2< ...},

Now 1;  is on the boundary of just the (2n—1)-cells 4, and 4. Figure 3
shows a local cross section of £?" by a plane perpendicular to the (2n — 2)-

cell Il<...<tMit+l<...<kXk+l<...<m).

criMitTe - k<kt1-- cei<id1ockME+T-

ct<it 1o k<k+1-

ceit1<icck<k+1- cei<it1eck+1<k--

i I<ie -k MEAL AT I<E kA I<k NV gek+I<k--

Fig. 3.
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e relation r; , corresponding to the ce in is read as a ‘‘non-
The relation r; , onding to the cell 1; ; in B2 d “
abelian coboundary” of 2, ;. It is
— 1, -1
Ti,k = 040505 Oy

as may be seen by traversing the dotted loop in Figure 3. The motion
of (py,...,p,) in E? described by r; ; is shown in Figure 4 and its inter-
pretation as a braid in Figure 5.

. '@”H'} P, P

Fig. 4.

Fig. 6.

As for 4; ;.,, it is on the boundary of 4; and 4,,,. A local cross section
of E** by a plane perpendicular to the (2n— 2)-cell
l<...<tMi+1Xi+2< ... <n)

is shown in Figure 6.



i tI<iMi+2--
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i tHI<it+2-- <t tHIMi+ 2

ca<gtI1<it2--

e tI<i<it2-- <t +2<i+1--

M+ 2<it1- -
et I<i+2<ae- At 2<i<it1--

et 2<it+1<q-

et tHIMI+2<a- st +2<iMi+1--

Fig. 6.

ey Pi+1 *Pi+2

20
AN

Fig. 8.
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The corresponding relation r; ;,, is

— -1, -1 -1
74,441 = 030341030417 05 044y

as may be seen by traversing the dotted loop in Figure 6. The motion
of (py,...,p,) in E? thereby described is shown in Figure 7, and its
interpretation as a braid in Figure 8.

Thus we have derived anew the well-known presentation

By = (015« rOp1 71,2 T1,8 ~ s Tyg,n—1) -

REMARK. The same method could be used to find a presentation of
£ ., but the result could just as well be obtained by applying the Reide-
meister—Schreier theorem.

8. Corollaries.

The covering of 2" corresponding to the representation of %, on X,
(symmetric group of degree n) is just the space F, ,2 of [3], hence ac-
cording to [3] has trivial homotopy groups above dimension 1. It follows
then that %2 is aspherical. As an immediate corollary we have:

CorOLLARY 1. &, has no elements of finite order.

ProOF. /" is a finite dimensional K(%,,1) space, hence every sub-
group of #, must be of finite geometric, hence finite cohomological
dimension, but an element of finite order would generate a subgroup of
infinite cohomological dimension.

Clearly 2 is an open 2n-dimensional manifold so we have:

CoROLLARY 2. %, has the homology groups of an open 2n-dimensional
manifold.

ReEMARK. It seems reasonable to expect that the homology groups of
E2n, which by virtue of the asphericity of 2" are those of &, may be
calculated from the cellular decomposition of £2" which we have given.
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