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DISCRETE SUBGROUPS OF THE LORENTZ GROUP

LEON GREENBERG

1. Introduction.

Let D be the unit disk {z | |2| <1} of the plane of complex numbers,
E its boundary and @+ the group of linear fractional transformations
which leave D invariant. The following has been proved by J. Nielsen [3].

THEOREM A. If @ is a non-commutative subgroup of &+ which contains
only hyperbolic transformations (besides the identity), then © s discrete.

This theorem has been generalized in several ways. W. Fenchel and
J. Nielsen [2] and C. L. Siegel [4] have proved the following. (The Fen-
chel-Nielsen formulation is slightly different.)

THEOREM B. If @& is a subgroup of L+ such that

a) the elements of ® do not all leave invariant a point or pair of points
n B,

b) the identity is not a limit point of the elliptic elements of &,
then & s discrete.

W. T. Van Est [1] has proved the following.

TaEOREM C. Let § be a semi-simple Lie group with trivial center and
with Lie algebra F. Let & be a subgroup of & which satisfies the following
conditions.

a) There is a neighborhood U of 0 (in F) so that if X e U, X +0 and
expX € @, then the Killing form (X,X)>0.

b) If X € F and expX € @, then ad X is not nilpotent.

Then the closure & contains a normal subgroup RN of finite index, such that
N=CxD, where € is an open, connected, central, Lie subgroup of N, and
D s discrete.

The purpose of this paper is to investigate in greater detail the case
where § is the group of rigid motions of n-dimensional hyperbolic space.
(We shall denote this group by € in the following. ¢ is isomorphic to
a subgroup of index 2 in the Lorentz group in n+ 1 variables.) Several
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analogues of Theorem B will be proved. A special case of one of these
(Theorem 3) is implied by Van Est’s result.

One way af proving Theorem B is to use the fact that the only Lie
subgroups of @+ are: 1. discrete groups; 2. Abelian groups of all trans-
formations with a given pair of fixed points (this includes the hyperbolic,
parabolic and elliptic cases); 3. groups of all transformations which leave
invariant a given pair of points in E (these are mixed hyperbolic-elliptic
groups); 4. groups of all transformations which leave invariant a given
point in E; 5. £+ itself. We shall prove an analogue of this fact in order
to generalize Theorem B.

2. The rigid motions of hyperbolic space.
Let D be the unit ball {(z,,...,2,) | 22+ ...+x,2<1} and E its
boundary. D together with the line element

st = 4 (dx 2+ ... +dx,?)
T (-2 ... —x,2)?

is a model of n-dimensional hyperbolic space (with sectional curvature
-1).

The geodesics and geodesic surfaces (of various dimensions), which we
shall call h-lines and h-planes, are the intersections with D of circles and
spheres orthogonal to E. The group of rigid motions is the same as the
group of isogonal transformations of D. This group, which we denote
by &, is the future-preserving half of the Lorentz group in n + 1 variables.
That is, @ consists of the (z+ 1) x (n + 1) matrices which leave invariant
the half-cone

(W1 o Yusd) | Y2+ s+ Y= Yna® = 0, Yy >0}

and have determinant + 1. The transformations with positive determi-
nant form a subgroup {2+ of index 2 in €. These are the orientation-
preserving motions (and conformal transformations) of D. An element
(@) € & acts in D according to the formula

(1) 7! = ina 2xZkE + 220 + Bgpin
b @iy — D22+ 2250000, 5 % + (Gpar,nat 1)

where in all of the sums the index % runs from 1 to n. This also defines
an isogonal map of R" (Euclidean space completed by a point at in-
finity) which maps the closed ball D (onto itself).

In the 2-dimensional case, the elements of @+ are classified into ellip-
tic, parabolic and hyperbolic types. We shall give a similar classifica-
tion for @ in arbitrary dimension.
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Let f € L. Since f is a continuous map of D into itself, it has at least
one fixed point in D (according to the Brouwer fixed point theorem).
If there is a fixed point in D, we shall call f elliptic. If there is exactly
one fixed point z, and z € £, we shall call f parabolic. If there are exactly
two fixed points z; and z,, and z,, 2z, € ¥, we shall call f loxodromic. If
there are three fixed points z;,2,, 2, which are on £ then f must be elliptic.
For if y is the circle determined by z,,2,,2;, and = is the h-plane, such
that y=7NE, then f leaves x invariant. In fact » with its induced metric
is a hyperbolic plane, and f induces a rigid motion in z. But a rigid
motion in z, which has three fixed points on the boundary y, must be
the identity. Thus, every point of x is a fixed point of f.

Now suppose that f is elliptic and z is a fixed point in D. As g is
transitive in D, there exists g € &, so that g(z)=0 (the origin). The
transformation gfg-! has 0 as a fixed point and therefore gfg-! is an
orthogonal transformation. It is represented in £ by a matrix of the
following form (see (1)):

where (a;;) is an orthogonal matrix. By further conjugation, f can be
brought into the form

4,

A[ 4]
1

where . .
in if = is even,

2] = \im+1) it misodd,

cos @, sind,

—sin 0, cosﬂ,) it k<i+1),

4, = (
and 4,,,,= + 1. We shall normalize the 6, by the condition —n<0,<x
and we shall call these normalized numbers the angles of f. We note
that f is diagonalizable (over the complex field) and its eigenvalues are
1, e*¥% (where 0, are the angles of f) and possibly —1.

If S is a subset of E, let o[S] be the smallest sphere in £ which contains
S, and let a[S] be the h-plane so that o[S]=n[S]nE. If an orthogonal
transformation leaves a set S pointwise fixed, then it leaves the smallest
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plane containing S pointwise fixed. From this it follows that if Sc K,
and § is pointwise fixed under an elliptic transformation, then the same
is true of ¢[S] and =[S].

Now we shall consider the parabolic case. Let &' be the group of
isogonal transformations of B”». This group £’ is the future-preserving
half of the Lorentz group in n+ 2 variables. An element (a;;) € &' acts
in R according to the formula

(2) z, = (@ins2+ Bins1) 2u%i? + 22505325 + (Binra— Vins1)

a3t + 234 (@piak—Gpiai)%p + b

where k runs from 1 to » and

Q= Qpig pi2— Cpiy nie T Cpio ni1— Upt1, n+1 o

b = @pig ni2— Bpi1,nie— Utz i1+ Fna1,n1 -

A transformation in &’ leaves D invariant if and only if it has the form

L5 B 0 a1pn
Qg1 - --Qgy 0 aypi
L% BRI Y Tpn+1
0o ...0 1 0
Bpi11- - - Cpsan Y Ay +1n+1

and a transformation (a;) € & is represented in &’ by this matrix.

Now consider a parabolic transformation f € £, and let z be the unique
fixed point of f. There is a transformation g € &’ so that g(z)=oo (for
instance g =r, the reflection in some sphere with center z). Then gfg—1
is an isogonal transformation of Euclidean space, whose only fixed point
is the point at infinity. Therefore

gfg~(z) = oAz +a,

where p>0 and A is an orthogonal transformation. Since gfg-1(x)==x
has no finite solution, (1—pA)xr=a has no solution, and 1—pA is a
singular matrix. Therefore p~! is an eigenvalue of A. Since ¢>0 and A
is orthogonal, it follows that p=1, and

gfg-l(x) = Az+a.

Thus gfg! is a screw-motion of Euclidean space. As such, it is conjugate
to a transformation te, where t is a translation in the z,-direction, e is
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an orthogonal transformation with the origin as fixed point, and te =et.
Thus f is conjugate to a transformation of the form

n—1
! .
xi=2aﬁxj, 1_S_’L§n—l,
=

’

x, =x,+a,

where (a;;) is an orthogonal matrix. This transformation is represented
in &' by the following matrix (see (2)):

Ay o By g 0 0 0
Op-11--%p-1n-1 0 0 0

0 ...0 1 -—a a

0o ...0 a 1-}a% 1a?

0 ...0 a —3a 1+ }a?

We shall refer to the angles of e also as the angles of f. If f is conjugate
to a translation, we shall call it strictly parabolic. In this case it is con-
jugate to a transformation with matrix

1
1

1
1 —-a a
a 1—%a? 1a?
a —%a® 1+ 1a?

We note the following facts concerning a parabolic transformation.
f is not diagonalizable (over the complex field) and its eigenvalues are 1
(with multiplicity at least 3), e (where 0, are the angles of f) and
possibly —1. There is a unique strictly parabolic transformation s, and
a unique elliptic transformation e, so that f=se=es. If f is parabolic,
it is strictly parabolic if and only if its only eigenvalue is 1.

Now suppose f is loxodromic and 2, and z, are its fixed points. There
is a transformation g € &', so that g(z;)=0 and g(z,) =00 (for instance
g=tr, where r(z,)=cc and t is a translation such that tr(z;)=0). gfg-!
is an isogonal transformation whose only fixed points are 0 and co. It
follows that gfg-!=he, where h is a dilatation (h(x)=gx,0>0,0+1) and
e is an orthogonal transformation with 0 as fixed point. If p=e¢?, gfg-!
is represented by the following matrix (see (2)):
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Qyq- . Oy 0 0

(3) Qpy. .a,;n 0 0 ,
0...0 coshl sinhi
0...0 sinhid coshi

where (a;;) is an orthogonal matrix. We shall refer to the angles of (a;;)
also as the angles of f. If f is conjugate to a dilatation, we shall call it
hyperbolic. In this case, it is conjugate to a transformation with matrix

1
1

1
coshl sinhA
sinhA coshA

We note the following facts concerning a loxodromic transformation.
The h-line between the fixed points of f is invariant. We shall call this
h-line the axis of f, and it will be denoted A4,. Points on 4, are translated
a constant distance A (which is the same number that appears in (3)).
This distance will be called the translation length of f. The transforma-
tion f is diagonalizable (over the complex field) with eigenvalues e*?,
e*® (where 1 is the translation length and 6, are the angles of f) and
possibly — 1. There is a unique hyperbolic transformation h and a unique
elliptic transformation e, so that f=he=eh. If f is loxodromic, it is
hyperbolic if and only if 1 is an eigenvalue with multiplicity = — 1.

We shall summarize these facts in the following propositions. By
diagonalizable we shall mean diagonalizable over the complex field.

ProrosiTioN 1.

1) If f is hyperbolic, then it is diagonalizable, it has eigenvalues 1 (with
multiplicity n— 1) and e** (where A is the translation length of £), and it is
conjugate (in &') to a dilatation.

2) If £ is elliptic, then it is diagonalizable, its eigenvalues are 1, e**%
(where 0,, are the angles of f) and possibly — 1, and it is conjugate (in L)
to an orthogonal transformation.

3) If f s strictly parabolic, then its only eigenvalue is 1, and it 18 conjugate
(in &') to a translation of Euclidean space.

4) If £ is loxodromic, then it is diagonalizable, it has eigenvalues e**,
e*% (where A is the translation length and 0,, are the angles of £) and possibly
— 1, and it i3 conjugate (in ') to the product of a dilatation and an orthog-
onal transformation (with a common fixed point). There is a unique hyper-
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bolic transformation h and a unique elliptic transformation e, so that f=
he =eh.

5) If f is parabolic, then it is not diagonalizable, its eigenvalues are 1
(with multiplicity at least 3), e*"% (where 0, are the angles of f) and pos-
sibly —1, and it is conjugate (in ') to a screw-motion of Euclidean space.
There is a unique strictly parabolic transformation s and a unique elliptic
transformation e, so that f=se=es.

ProrosiTioN 2. Let S be a subset of E which contains more than two
points and which is pointwise fixed by a transformation f € &. Then of8S)
and n[S] are pointwise fixed by f.

We shall conclude this section by remarking that Nielsen’s theorem
(Theorem A) is true in all dimensions. This fact follows from Nielsen’s
theorem and the following.

ProrostTion 3. 4 hyperbolic group $ has an invariant circle in E,
which contains all fized points of elemenis in 9.

Proor. If all elements of  have the same pair of fixed points, the
assertion is clear (for any circle through the fixed points). Otherwise,
let h;,h, €  and suppose their fixed points do not coincide. Let o be
the (1- or 2-dimensional) sphere which contains these fixed points. The
hype bolic group <h;,h,) leaves ¢ invariant, and ¢ contains all fixed
points of elements in this group. This is true because a sphere ¢ is
invariant under a hyperbolic transformation h, if and only if ¢ contains
the fixed points of h. Van Vleck [6] has shown that a hyperbolic group
of linear fractional transformations has an invariant circle. Therefore
there is a circle y which contains the fixed points of all elements in
{hy,h,>. We shall show that if h e §, the fixed points of h are on y.
By the above reasoning, the fixed points of the group ¢h,,h) lie on a
circle 9, which intersects y (at least) in the fixed points of h;,. Let ¢
be the sphere containing y and 9’. The group (hy,hy,h) leaves ¢’ in-
variant, so by Van Vleck’s theorem there is an invariant circle. This
circle must be y. Thus all fixed points of § are on y.

3. The Lie algebra.

Let .# be the Lie algebra of &.

The representation of & as skew-symmetric tensors and the consequent
easy derivation of the Killing form can be found in [5]. It is included
here for convenience.

Since € contains (with index 2) the connected component of the group
of linear transformations which leave invariant the form
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(®,y) = 21+ . . . +TYp — Tps1Yn1 5

# consists of the linear transformations which are skew-symmetric with
respect to this form. That is, X € % if and only if (Xu,v)= — (u, Xv).
The mappings @(v): w — (u,v) define an isomorphism @ of the vector
space V onto the dual space V*. If X is any linear transformation of
V and X7 is the dual transformation, then X*=®1X"® is the linear
transformation of V, such that (Xu,v)=(u,X*v). The Lie algebra ¥
consists of those X such that X*= — X. The isomorphisme @ also defines
an isomorphism of V® V onto V' ® V*. The latter is canonically iso-
morphic to the Lie algebra & of all linear transformations of V. Thus
V ® V is isomorphic to %, and an element X =2, ® z, € V ® V operates
as a linear transformation of V as follows:

Xu = xy(xq,u) .

Hence (Xu,v)=(2,,v)(®,,u)=(u,X*v), so that X*v=x,(2,,v). Thus the
mapping X — X* corresponds to the symmetry § in V® V, and &
corresponds to the space &% of skew-symmetric tensors in V@ V. If
X=2,0 %, Y=y, ® y,, then

[XY] = XY -YX = (22,41)%, @ ¥2— (Y2, 21)11 @ 7,
= X®1-19 X"y, Qy,.

Thus the operator ad X:Y — [X Y] corresponds to the operator X ® 1—
1X*inVV. If Xef,adX (in &£) corresponds to X ® 1+1 Q@ X
(restricted to &).

ProrosiTiON 4. Let X € Z.

a) If X is diagonalizable, then ad X is also, and the eigenvalues of ad X
are {A;+2; | 1]}, where {4; | k=1,...,n+1} are the eigenvalues of X
(each listed the number of times equal to its multiplicity).

b) If X is nilpotent, then ad X is nilpotent.

Proor. By the above remarks, we can substitute X ® 1+1® X for
ad X and & for Z.

a) Letv,,...,v, be a basis of eigenvectors in the complexification of V.
If Xv,=2,v;, then

XR1+1Q X)(v;® v;—v; Q@ v) = (+4)(;Q v;—v,®@ ;).
b) Suppose X¥=0. Then
2N 2N
(XR1+1Q X)XV =3 ( A )Xk®X2N—k =0.
k=0
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For later use, we will now compute the Killing form (X,Y)=
tr(adX,ad Y). Let S be the symmetry in ¥V ® V, that is, S(x® y)=
y®z), and L={weVQV | S(w)=—w}. The operator §(1—28) is a
projection of ¥V ® V onto &. Thus

(X.X) =tre{(X @ 1+1Q X)2}
=tr{}(1-8)(X®1+1® X)%}
= ${2(n+1)tr(X?) + 2tr(X)2} —
—3{tr(S(X2 @ 1))+ 2tr(S(X ® X)) +tr(S(1 ® X2))}.

But tr{S(4 ® B)}=tr(4B). For if A=a,® a, and B=b, ® b,, then
AB = a; @ by(n,,by), tr(4B) = (a;,b5)(as,b,) ,
(AQ B)x®y) = Az ® By = a; ® by(a5,%)(bs,y)
= [(a,® b;) ® (2. R by)](x R ¥) -
Thus A ® B=(a, ® b;) ® (@, ® b,) and

S(AQ®B) = (86,0 b)) ® (3, @ by) = ;@ 2,) ® (a;® by) ,
tr {S(A ® B)} = (b, ® a1,8, @ by) = (b1,a,)(ay,b,) = tr(4B).
Therefore
(X, X) = (n—1) tr(X?) + tr(X)2.
But X*=@'X"® implies trX*=trX, and X*= —X implies trX*=
—trX. Therefore

trX =0 and (X, X)=(n-1)tr(X?).

The following proposition is a consequence of the above discussion and
Proposition 1.

ProrposiTiON 5. Let X € Z.

a) If expX is elliptic or parabolic, then (X,X)= —2(n—1)30,2, where
the 0, are congruent mod 2z to the angles of expX.

b) If expX is loxodromic, then (X ,X)=2(n—1)[A%—30,2], where A is
the translation length and the 0, are congruent mod 2z to the angles of exp X.

The following proposition is proved in [1].

ProposiTION 6. Let Z be a real Lie algebra and let A be an automorphism
of Z. Then there exist derivations A,,4, and an automorphism A, so that

1) A=expd,-A,-exp4s,.

2) A, is diagonalizable with real eigenvalues; A, is diagonalizable with
etgenvalues of absolute value 1; Az is nilpotent.
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3) 4y, A, and A3 commute with any linear transformation that commutes
with A.

Furthermore, if A,', Ay’ are derivations and A,' an automorphism such
that 1) and 2) are satisfied and expA,’, A,', exp A, mutually commute, then
4 =4, A=A, and A3’ =A,.

We shall refer to the above decomposition as the canonical decomposi-
tion of A.

For each element a € , the mapping f — afa-! induces an automor-
phism A of #. We shall denote the group of these automorphisms by %,.
Since {+ has trivial centralizer in £, the mapping a — A is an isomor-
phism.

ProrosiTioN 7. Let a € & and let A be the corresponding automorphism
of Z.

1) a is hyperbolic if and only if A=exp(adX), where X € &£ and adX
i8 diagonalizable with real eigenvalues.

2) a s elliptic if and only if A is diagonalizable with eigenvalues of
absolute value 1.

3) a is strictly parabolic if and only if A=exp(adX), where X € &£ and
ad X s nilpotent.

4) a ig loxodromic if and only if A=exp(adX)-B=B-exp(ad X), where
X € &, ad X 1s diagonalizable with real eigenvalues, B € Ay and B is diag-
onalizable with etigenvalues of absolute value 1.

5) a s parabolic if and only if A=exp(adX)-B=B-exp(adX), where
X e, adX is milpotent, B € Ay, and B is diagonalizable with eigenvalues
of absolute value 1.

Proor. The uniqueness in Proposition 6 shows that the above alter-
natives concerning A are mutually exclusive. Therefore, it is enough to
prove only ¢f in each case.

1) Suppose that a is hyperbolic. Then there is a matrix m, so that
mam-1=diag(l,...,1,6*e™), where 4 is real. Define X =m-! diag(o0, ...,
0,A,—A)m. Then X € % and a=expX. The isomorphism & — U, in-
duces an isomorphism of the Lie algebras, which is given by X —» ad X.
Therefore A=exp(ad X). Proposition 4 shows that ad X is diagonalizable
with real eigenvalues.

2) Suppose a is elliptic. Let z be any fixed point of a in D, and let &
be the subgroub of transformations which leave z fixed. ® is isomorphic
to the orthogonal group. Therefore any representation of ® (in particular
! - Ag) is equivalent to a representation by orthogonal transformations.
Hence A is diagonalizable with eigenvalues of absolute value 1.
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3) Suppose a is strictly parabolic. Then 1-—a is nilpotent and the

series
X =log(1—(1-a)) = —(1—a)—}(1-a)2—...

converges. X € %, a=expX and X is nilpotent. Proposition 4 shows
that ad X is nilpotent. Asin 1), A=exp(adX).

4) If a is loxodromic, then a=a,b=ba,, where a, is hyperbolic and b
is elliptic. If A; and B are the automorphisms corresponding to a, and b,
then A=A;B=BA,. Casges 1) and 2) imply that A;=exp(ad X), where
ad X is diagonalizable with real eigenvalues, and B is diagonalizable with
eigenvalues of absolute value 1.

5) If a is parabolic, then a=ab=ba,, where a, is strictly parabolic
and b is elliptic. The assertion follows as in 4).

If @ is a connected, semi-simple Lie subgroup of & with trivial center,
and ¥ is the Lie algebra of ¢, then there are the natural inclusions
G <% and Ag<=Wg. Supposea € @, A is the corresponding automorphism
in Ay, and A=expd,-A,-expd; is the canonical decomposition of A
relative to ¢. Since ¢ is connected and semi-simple, Ay is the compo-
nent of the identity in the group of automorphisms of %. Therefore
exp4, and expd4; are in Uy, so that A, is also in Ag. Thus, all of these
transformations can be considered as acting in %. Note also that since
% is semi-simple there exist elements X,, X;e &, so that 4,=adX,
and d;=adX,. Thus we have A=exp(adX,)-A,-exp(adX;). On the
other hand we have the decomposition relative to %

A = exp(ad X;') A, -exp(ad X;') .

ProrpositioN 8. If & ts a connected, semi-simple Lie subgroup of & with
trivial centralizer, then X|'=X,,A,’ =A,; and X;' =X,

Proor. Since ad X,’, A,’ and ad X;’ commute with any linear trans-
formation that commutes with A, it follows that these transformations
are polynomials in A. Therefore ad X,’, A,’ and ad X' leave & invariant.
Because of the uniqueness of the decomposition relative to &, we have
for the restrictions to ¥

adX, |9 =adX, | ¥,
A9 =AY,
adXy' |9 =adX,| 9.
Therefore X,’— X, and X' —X; are in the centralizer of 4. Since the

centralizer is trivial, X;'=X,; and X,’=X,. It now also follows that
A2'=A2.
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ProposiTioN 9. Let & be a connected, semi-simple Lie subgroup of &
with trivial centralizer. Then @& contains the hyperbolic, elliptic and strictly
parabolic components of its elements. The hyperbolic and strictly parabolic
elements are contained in (hyperbolic and strictly parabolic) 1-parameter
subgroups of ©.

Proor. Suppose that a is a loxodromic (parabolic) element of ¢. Then
a=a,a,=4a,a,, where a, is hyperbolic (strictly parabolic) and a, is elliptic.
Let A,A;,A, be the corresponding automorphisms. Then A=A A,=
A,A,. Proposition 7 implies that this is the canonical decomposition of
A (relative to .#). Proposition 8 implies that the components A, and A,
are in Ay, Therefore a, and a, are elements of .

As we have seen, A;=exp(adX), where X €.%, and adX is diag-
onalizable with real eigenvalues, or ad X is nilpotent. Therefore a, lies
on a hyperbolic or strictly parabolic 1-parameter subgroup of &.

ProrosrtioN 10. Let & be a connected Lie group with trivial center, and
let © be a connected, semi-simple Lie subgroup with trivial centralizer. Then
© 18 a closed subgroup of ©.

Proor. Let % and & be the Lie algebras of & and &, respectively.
The mapping @& — Uy is an isomorphism and homeomorphism. Let B
be the subroup of Ay which leaves & invariant. % is a closed subgroup
of Ag. Each element of B induces an automorphism of &, and we have
a homomorphism B — Aut(¥). In fact this is an isomorphism, since
the centralizer of & is trivial. Since & is semi-simple, A is the com-
ponent of the identity in Aut (%), and % is a closed subgroup of Aut ().
Thus A is closed in B, and B is closed in Ay Therefore Ay is closed
in Ay and & is closed in @.

4. The Lie subgroups of L.
Let & be a subgroup of 8. The set of limit points of &, denoted L,
is defined to be the intersection with E of the limit set of any orbit in D.

That is, ,
Ly =En {g@ | g6},

where 2 is an arbitrary point in D. This set is independent of z because
hyperbolic distances (which are preserved by &) become arbitrarily small
relative to Euclidean distance as E is approached. L is a closed subset
of E which is invariant under &. It is easy to see that if @ is the closure
of &, then L= Ly,

The Lie subgroups of @ are conveniently divided into four classes,
according as L is empty, contains exactly one point, contains exactly



DISCRETE SUBGROUPS OF THE LORENTZ GROUP 97

two points or contains more than two points. If the elements of & have
a common fixed point z € B, and f is an isogonal transformation of R®
so that f(z)= oo, then f@f-! leaves oo fixed. Thus & is conjugate to a
group of isogonal transformations of Euclidean space. If Lg consists of
one point, then this point is fixed under & and @ contains only elliptic
and parabolic transformations. In this case, @ is conjugate to a group of
rigid motions of Euclidean space. We shall not investigate groups of
these types any further. In the following we shall take a closer look at
those Lie subgroups & of @ such that & does not have a common fixed
point in &, and Lg is empty or contains at least two points. We shall
first obtain some more information about L.

ProrosrrioN 11. If 8 is a closed subset of E which contains more than
one point, and S is tnvariant under &, then 8> L.

Proor. Let z € Ly and 2, z, € 8. There is a sequence {g,} < ® so that
limg, (p)==z for any p € D. We assert that at least one of the sequences
{8.(21)},{84(7,)} has z as a limit point. If this is false, then there is a
subsequence {g,,} so that lim, . 8,.,(2)=2, and lim, .8, (2,) =2,
where x; +2 and «, +z (though possibly x; =x,). Let 1 be the h-line with
endpoints z,,z, and let p be a point on 4. There are neighborhoods U,
of z, and U, of x, so that z ¢ U, and z ¢ U,. For large £, 8,.(21) € Uy and
8n,(22) € Uy, while g, ,(p) is a point on the h-line g, (4). If the sequence
{8,,(p)} converges to a point of , this point must be in U, or U,. We
have thereby reached a contradiction. Since S is closed and invariant,
the proposition now follows from the above assertion.

Lremma 1. Suppose that the elements of & do not have a common fixed
point in B, and £ is a loxodromic element of & whose axis 18 not invariant
under &. If U is an open subset of E which contains a point of L, then
there 18 an element £’ which is conjugate to f (in &) and has its fixed points
in U.

Proor. Let » and v be the fixed points of f. Let us assume that
u and v are labelled so that lim,_, f*(z)=v, if 25w, and lim,___f-"(z)=u,
if 250,

We shall first show that there is ¢ € @ so that g(u) +»,» and g(v) + u,v.
The assumption that the axis A, is not invariant under & means that
there is an element h € @, so that the pair of points {h(u),h(v)} does not
coincide with {u,v}, say h(v)$u,». Then v=Ilim,_, f*h(v), and there are
an infinite number of points in the orbit Gv. It now easily follows that
the same is true of the orbit Gu (for it is dense in L, which contains
g(v)). Therefore there are elements g,, 8, € G, so that g,(u)+u,v,

Math. Scand. 10 — 7
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8,(v)+u,v and 8,(u)+g,(v). If g,(v)+u,v or g,(u)=+u,» then our asser-
tion is established, with g =g, or g,.

Suppose that g,(v)=v and g,(u)=u. Then g,(u)+ g,(u), 8,(v) and
8,(v) &= g4(u), g5(v). Therefore g,~18,(u)+u,» and g,718,(v)F+u,v. We
may take g=g,"18,.

Suppose that g,(v)=u=g,(u). Then g,%(v)=g,(u), and g,%(u)=+u. If
8,%(u)+v, we may take g=g,% If g,%u)=v, then g,%(u)+ 8,(u), 8,(v)
and 8,%(v) + 8,(u), 85(v). We may take g=g,1¢,2 The case that
8,(v) =v=g,(u) is treated in a similar manner.

Suppose that g,(v)=u and g,(u)=v. Then g,(u)+ g,(u), 85(v) and
8,(v) + 8,(u), 8,(v). We may take g=g,7g,.

We now know that there is g € & so that g(u)=+u,v and g(v)+u,v.
Let ze Lgn U and let {g,} be a sequence in @ so that lim, _ 8,(p)=z,
for any pe D. The proof of Proposition 11 shows that if x,€ £ and
{84} is a subsequence of {g,} such that {g, (x,)} converges to a point
different from z, then lim;_, .8, (x)=2 for all x € K, x+x, Therefore,
there is a subsequence {g,, } of {g,} such that either lim; , g, (u)=2
and lim;_, 8, (v)=2, orlim;_, .8, &(u)=2and lim;_, ¢, 8(v)==2. Thus,
for large k, either g, fg, ~* or (g,,8)f(8,,8)" has its fixed points in U.

We shall say that the fixed points of the loxodromic elements of & are
dense in Lgx Lg, if for any points 2,,2,€ Ly and E-neighborhoods
U,,U, of these points, there is a loxodromic element in & which has
one fixed point in U, and the other in U,.

ProrositioN 12. If & contains loxodromic elements, and the elements
of @ do not have a common fixed point in E, then the fixed points of the
loxodromic elements of & are dense in Lgx L.

Proor. If the axis of a loxodromic transformation is invariant under
@, then Ly consists of the fixed points of this transformation, and the
proposition is established. Otherwise, Lemma 1 can be applied. Sup-
pose 2,,z, € Ly and U,, U, are disjoint E-neighborhoods of these points.
By Lemma 1, there is a loxodromic transformation f, € & whose fixed
points are in U,, and there is an element g € &, so that f,=gf, 8- has
its fixed points in U,. Let = be an (n— 1)-dimensional h-plane which is
orthogonal to the axis 4, , and which intersects £ inside U,. x separates
D into two half-spaces. Let H, be the half-space whose boundary con-
tains z,. g4, is the axis of f,=gf,g~! and g(n) is an h-plane orthogonal
to this axis. g(n) is translated along A, by the transformations f,.
Choose n large enough, and with the correct sign, so that f,"g(H,)=H,
is contained in H, and y,=H,n E is contained in U,. If y,=H,nE,



DISCRETE SUBGROUPS OF THE LORENTZ GROUP 99

then y, >y, and f,"gy, =y,. By the Brouwer fixed point theorem, there
is a fixed point of £, in y,< U,. Similarly, if y;/ =E — v,, then y,’ >y,
and (f,°g)1y,"=v,. Thus there is a fixed point of f,*g in y,'<U,.
Since f,”g maps H, onto H,, it moves every point on the h-line between
the fixed points, and therefore it cannot be elliptic. Thus f,”g is loxo-
dromic, and the proposition is established.

ProrositioN 13. If Ly=0, then the elements of & have a common fixed
point in D.

Proor. @ is a closed Lie subgroup of &, and Lg=Ly=0. For any
ze€ D, the orbit @z is a closed bounded set (in the hyperbolic metric),
so that @z is compact. Let R={ge ® | g(z)=z}. K is a closed sub-
group of the orthogonal group, so & is compact. The factor space G/®
is homeomorphic to @z, so &/® is compact. @ is a fibre space with
compact base (&/) and compact fibre (®). Therefore & is compact.
If u is the Haar measure in &, u(®) < cc.

We shall now find it convenient to operate in the Cayley-Klein model
of hyperbolic space. This is the set

C = {(xl""7xn+1) I xl2+ "'+xn2—xn+12 < 0}

in projective space. The transformations in & operate as collineations.
C is closed under addition in the following sense. If z=(zy,...,%,,4)
and y=(yy, - - - Yn4+1) are points in C, such that x, ., and y, ,, are positive,
then z+y e C. For

=1

n rn 3
< Tpig® + Ypa® + 2 [E xiz] [ E yiz]

t=1 1=1

n n n n
D (@+y)? = 21%2 + 2 yf+2 zlxt?/i
=1 i- i=

< Tpyr? + Ynti® + 20 0Yn1 = @t Yna)?.

Let g(x)=(g1(%),.-:9nn(®)). If 8€ & and z€C, then sign[g, ., (z)]=
sign[z,,]. Letz e C andz,,, > 0. Since @z is compact, g,(z) is a bounded,
continuous function of g, and the integral Sgg(z)d,u exists. Define

&) =fg(z)dy .
]

Then z, is a point in the convex closure of &z, which is fixed under &.

Let # be an m-dimensional h-plane, 1<m<n—1. We shall use the
following notations. L(n) is the group generated by the reflections in
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(n—1)-dimensional h-planes orthogonal to =, and Q+*(n) is the group
generated by the hyperbolic transformations with axes in 7. Thus, &(x)
is the group of rigid motions of #, {+(x) is the orientation-preserving
subgroup, and [(x): &+(7)]=2. RK(xn) is the group of transformations in
L which leave every point of = fixed. (=) is the group of transforma-
tions in € which leave = invariant, and J+(x) is the subgroup of trans-
formations which induce orientation-preserving motions in z, so that
[J(7):JH(w)]=2. It is easy to see that

K(z) = K(=) x &n) ,
and It () = K(w) x LH(w) .

We shall denote by 6 and ¢ the projections of J+(x) onto (=) and L+(x),
respectively. If @ =(n) we shall use the notation @+= @ n §+(xn). The
subgroup &+ is of index 2 in .

ProrositioN 14. Let & be a Lie subgroup of &, such that Ly contains
exactly two points, and let A=n[Lg] be the h-line between these points. Then
one of the following alternatives is true.

1) The component of the identity in & is contained in R(A).

2) @t= R xM, where R 13 a Lie subgroup of K(1), and M is a 1-parame-
ter loxodromic group with axis A.

Proor. Let @&, be the connected component of ¢+ (and &), and sup-
pose that @, is not contained in ®(4). Let ¥, " (1),£(1) be the Lie
algebras of @, ®(4), &(4), respectively. There is a negative-definite form
@ in (1), such that ad K is skew-symmetric with respect to @, for any
K e A°(4). If dimension {#'(1)}=1, we can take @ to be any negative-
definite form. If dimension {#'(1)}>1, take @ to be the Killing form.
@ can be extended to (1) @ L (A) by letting &(K,H)=0, D(H,H)="—-1,
where K € ) (1) and H is a chosen element of the 1-dimensional algebra
Z(2). The restriction of @ to ¥ is a negative-definite form (which we
again denote by @) such that ad@ is skew-symmetric with respect to
@, for any G € 4. This implies that every ideal in &4 has a complementary
ideal. The projection ¢: @+ &+(1) induces a homomorphism ¢": 4 > £ ().
Let o =kernel(¢’), and let .# be the complement of ¢ in ¥ with
respect to @. The assumption that @, is not contained in ®(A) implies
that X is a proper ideal in ¥ and 4 is a non-trivial ideal. %=
A DMA <A (L), #nH(A)={0} and A is 1-dimensional.

Let &, and M be the Lie subgroups of &, which correspond to J¢°
and #, respectively. The elements of ®, commute with those of I,
and @y=RM. If M contains no loxodromic elements, then &,< K(4).
Therefore I is a 1-parameter, loxodromic group.
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Let §®=kernel(p)=8*+n R(4). It is easy to see that G+={M and
fnM={1}. If we show that I is a normal subgroup of G+, then it
follows that G+=® xIM. If g € §+, the mapping f - gfg-! induces an
automorphism A(g) of (1) @ £(4), which maps S (1) onto itself. A(g)
preserves the form @ in (1) and maps H € £(1) into itself. Therefore
A(g) preserves the form @ in X (1) @ £ (4) and in ¥. Since A(g) maps )~
onto itself, it maps .# onto itself. Thus the conjugation f - gfg—1 pre-
serves M, and I is normal.

By the centralizer €(®, $), we shall mean the group
C(®,9) ={h | he ,gh=hg forall g e @}.

We recall that if S is any subset of £, then o[S] is the smallest sphere
in E which contains 8, and #[8] is the h-plane such that ¢[S]=x[S]n E.

ProrosiTION 15. Suppose that & is a subgroup of &(x), where n=n[Lg).
If L contains more than two points, then the centralizer € (®, S(x)) is trivial.
If, in addition, the elements of & do mot have a common fixed point in
o[Lg], then & is semi-simple.

Proor. Suppose that c is an element in the centralizer and z, € L.
There is a sequence {g,}<@®, so that lim, ,_g.(2)=2, for any ze D.
Then 2o = lim g,(2) = lim ¢cg,,c71(2) = lim cg,(z) = c(z,) .

n—>oQ n—>o0 n—>oo
Thus every point in Ly is a fixed point of c. By Proposition 2, every
point in n[Lg] is fixed by c. Since c € &(n), this implies that ¢=1.

Now suppose that N is a commutative, normal subgroup of &. If
Ly =0, then N has a common fixed point ze D. Suppose that z,€ Ly, {8}
is a sequence in @, so that lim, , 8,(2) =27, and n € . The point g,(z)
is fixed under g,ng,!. Since the mapping n - g;ng, ! maps N onto
itself, 8,(z) is a common fixed point of N. It follows that z, is & common
fixed point of ¢. Thus the elements of N leave every point of Ly and
a[Lg] fixed. Since N < L(n), if follows that N = {1}.

If Ly+0, we will show that Ly=Lg Suppose that z, € Ly,
{n,} <N, lim;,_, n,(2)=2,, and g € . Then

lim gn,g-1(2) = lim gn,(2) = 8(z,) -

k—>o0 k—>o00
Thus Ly, is invariant under ®. If Ly, consists of exactly one point, then
this point is invariant under &, contradicting the hypothesis. Therefore
Ly, is a closed subset of B, which contains more than one point, and Ly
is invariant under &. Proposition 11 implies that Ly > Lg Since N< @,
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Ly<Lg, and so Ly=Lg Therefore n=n[Ly] and N<Q(n). As we
have already shown, this implies that the centralizer €(R, &(=)) is trivial.
Since N is commutative, it is a subgroup of this centralizer, and Rt ={1}.

ProrositioN 16, Let & be a Lie subgroup of Q+(r), where m=n[Lg).
Suppose that Lg contains more than two points and the elements of & do not
have a common fixed point in o[Lg). Then either & is discrete or & = &+(n).

Proor. Suppose that & is not discrete, and let @, be the component
of the identity in . ®, is a non-trivial normal subgroup of &. As in
the proof of Proposition 15, Ly = Lg. Furthermore, the elements of @,
do not have a common fixed point in ¢[Lg]. For if z is such a point and
g € @, then g(z) is also a common fixed point of &, But the orbit Gz
is dense in Ly, so every point of Ly and n[Ly] is fixed under @&,, and
®o={1}. Proposition 15 implies that @, is semi-simple with trivial cen-
tralizer. Proposition 9 implies that @&, contains the hyperbolic, elliptic
and strictly parabolic components of its elements. If we show that &,
contains loxodromic elements, then the above facts and Proposition 12
imply that the fixed points of the hyperbolic elements are dense in
Lgx L.

Suppose that &, contains no loxodromic elements, and let ¥ be the
Lie algebra of ¢, Proposition 5 implies that the Killing form of & is
negative semi-definite in 4. The equation (X, X)=0 holds only if X is
strictly parabolic or loxodromic. If &, contains strictly parabolic ele-
ments, then it contains two strictly-parabolic elements s, and s, with dif-
ferent fixed points. But s,;s,s,~!s,~! is hyperbolic (since this is truein
the 2-dimensional case). Therefore @, contains no parabolic elements,
and the Killing form of % is negative definite in ¥. The group U,
which is isomorphic to ®,, is a subgroup of the orthogonal group with
respect to this form in %. Since ¥, is semi-simple, this is a closed sub-
group of the orthogonal group, and @, is compact. But this implies
that Ly =4.

We now know that the fixed points of the hyperbolic elements of &,
are dense in Lgx Lg. Also, according to Proposition 9, the hyperbolic
elements are contained in 1-parameter hyperbolic subgroups of &,.

We assert that @, contains every hyperbolic transformation whose
fixed points are in Lg. Let h be hyperbolic with fixed points u,v € Lg
and translation length 4. We shall suppose that h moves points toward v.
There is a sequence of hyperbolic elements h, € @&,, so that h,, has fixed
points u,,v, and translation length A, h, moves points towards v,, and
lim, ,  %,=u,lim,  v,=v. This implies that lim, ,  h,=h. By Propo-
sition 10, @, is closed, so h € §,,.
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We now assert that if 2,,z, and 2; are any three points in Ly, and y
is the unique circle containing these points, then y <Ly The group @,
contains the l-parameter subgroup $,, of hyperbolic transformations
with fixed points 2,,2,. The orbit §,,2;is the arc 2,2z, of y which contains z,.
If §,5is the 1-parameter hyperbolic subgroup with fixed points z,,2,, then
1:< @, and 9,52, is the arc zj2; of y which contains z,. Since Ly=Lg,
is invariant under &,,

Y = {21} U 91223 U D132 < Lg .

Since L contains every circle through any three of its points, it fol-
lows that Lg=o[Lg]. Therefore ¢, contains every hyperbolic trans-
formation in Q+(x). Since the hyperbolic transformations generate 2+(x),
it now follows that @,= 2+(x)=©.

ProrositioN 17. Let m be an h-plane (we assume here that dimension
() = 2) and let & be a Lie subgroup of J+(x), such that (@)= &+(x). Then

G = fxL¥x),
where & is a Lie subgroup of K(x).

Proor. Let ®=0(®) and H=kernel(6). If H={1}, then 6 is an iso-
morphism, and ¢6-! is a homomorphism of & onto €+(x). We shall show
that such a homomorphism does not exist.

Let ", A (), £ () be the Lie algebras of &, R(r), &+(xx) respectively.
The group homomorphism defines an algebra homomorphism 7 of ¢
onto £ (x). Since R(n) is an orthogonal group, the Killing form & in
A () is negative definite. Let o/ =Kernel () and let Z be the orthogonal
complement in ¢ with respect to @. Then &/ and # are ideals of ¢,
and A =of @ %. The automorphism 7 defines an isomorphism of #
onto #(n). Therefore & is a simple Lie subalgebra of the Lie algebra
of the orthogonal group. For such an algebra, any representation (in
particular n: # — £ (n)) is equivalent to a representation by skew-sym-
metric matrices. This contradicts the fact that £+(x) contains loxodromic
and parabolic elements.

We now know that $=kernel(6)=@ n 2+(x) is non-trivial. 9 is a
normal Lie subgroup of . We assert that § is also normal in £+(x).
Let he  and fe &+(n). There is ke &, so that kfe . Then fhf-1=
(kf)h(kf)-1 € . But L+(n) is simple, so H=L*(x). It now follows that
& =8 x &t(x).

ProrosiTioN 18. Let & be a Lie subgroup of & such that Lg contains

more than two points and the elements of & do not have a common fixed
point in E. Let n=n[Lg). Then one of the following alternatives is true.
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1) The component of the identity in & is contained in R(n).
2) G+=8 x &+(n), where K is a Lie subgroup of K(x).

Proor. Let @, be the component of the identity in & (and @+) and
suppose that §, is not contained in ®(x). Then M =gp(G*) is a non-
discrete Lie subgroup of £+(z). Furthermore Lg,=Ly. For if z5e L,
there is a sequence {g,}< @+ so that lim, . 8,(2)=2, for any ze D,
g,=k,m,, where k, € =06(&+), m, € M, and

lim m,(z) = imk,m,(z) = 2,.
n—>oQ Nn—>o0

If zy€ Ly, let lim,_, m,(2)=2, and k,m, € §+. Then

limk,m, (2) = lim m,(z) = z,.
n—>o0 n—>o0
Therefore Ly =Ly, and so o[Ly]=o0[Lg]=0. The elements of M do
not have a common fixed point in ¢, for such a point would be a com-
mon fixed point for . Proposition 16 implies that M = L+(x). Proposi-
tion 17 implies that += & x Lt(x).
The previous propositions imply the following.

THEOREM 1. Let & be a connected Lie subgroup of &. Then one of the
following 1is true.

1) The elements of & have a common fixed point in D, and & is conjugate
to a Lie subgroup of the orthogonal group.

2). The elements of ® have a common fixed point in E, and & is conjugate
(tn ') to a subgroup of the isogonal group of Euclidean space.

3) There is an h-line A, so that

@ =8xM,

where K< K(A) and M is a 1-parameter, loxodromic group with axis A.
4) There is an h-plane 7, so that

G = fx L),
® < K(=)

where

5) =2+

5. Discrete subgroups of Q.
Theorem 1 immediately implies the following.

TaEOREM 2. If there is no point in D or proper sub-sphere in E which
18 invariant under ©, and if there is a non-empty open subset U of L+ such
that U n @ =0, then & is discrete.
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If dimension {D} is even, € is the set of elliptic elements of , and U
is any neighborhood of the identity, then U n € contains an open set.
This is not true for odd dimension, because orthogonal transformations
near the identity have an axis. Therefore an elliptic transformation near
the identity can be approximated by loxodromic transformations.

CoroLLARY 1. Suppose that dimension {D} is even. If there is no point
or proper sub-sphere in E which is invariant under ®, and if the elliptic
transformations of & do not have the identity as a limit point, then ® is
discrete.

CoroLLARY 2. If dimension {n[Ly]} is even, the elements of & do not
have a common fixed point in o[Lg], and the elliptic transformations of ©
do not have the identity as a limit point, then & is discrete.

ProoF. @ has no invariant sub-sphere of o[Ly]. If ¢ is such a sphere,
then ¢ is a closed invariant set containing more than one point. There-
fore 0> L and 6> 0[Lg). The group ¢(®+) is a subgroup of L+(x) which
satisfies the hypotheses of Corollary 1 (replacing D, E by n[L], o[Lg]).
Therefore ¢(®+) is discrete. Suppose there is a sequence {g,} < @+ such
that lim, . g,=1. Then g,=k,f,, where k, € 6(&*), f, € p(G*) and
lim, ,  k,=1=lim,  f,. Since ¢(@t) is discrete, it follows that for
large n,f,=1 and k, € @+*. Since the elliptic elements of & do not con-
verge to the identity, k,=1 and g,=1 for large n.

There are some open sets in € which have a non-trivial intersection
with almost all Lie subgroups. We shall give two examples of this. If
fe 8, let T(f)=trace(f) and N(f)=4A2—30,2% where 1 is the translation
length (A=0, if f is elliptic or parabolic), and 6, are the angles of f. Then
the sets Up={f | Tf)<n+1} and Uy={f | N(f)<0} are open sets
which have a non-trivial intersection with every elliptic group and every
group (n), where dimension (7) 2 2. This implies the following.

THEOREM 3. If the elements of & do not leave a point or pair of points
in E invariant, and if there is a neighborhood U of the identity, such that
UnUpsn@=Gor UnUyn =0, then @ is discrete.

Note that in the 2-dimensional case, either of the conditions 7'(f) <n + 1
or N(f) <0 characterizes the elliptic transformations. Thus, Theorem 3
is a close analogue of Theorem B. The result concerning the condition
Un Uyn @=0 (with the additional condition that & contains no para-
bolic elements) also follows from Theorem C.

Corollary 2 implies the following analogue of Nielsen’s theorem:

If @ is a loxodromic growp such that dimension {n[Lgy]} is even, then &
18 discrete.
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(Note that if f and g are loxodromic transformations with exactly one
fixed point, then fyf~lg~ is parabolic. Therefore a loxodromic group
with more than one axis does not have a common fixed point.)

It might be thought that any loxodromic group with more than one
axis is discrete. We shall give a counter-example of this in the 3-dimen-
sional case.

It is convenient to take, as hyperbolic space, the upper halfspace
{(zy,25,23) | x3>0}. Each orientation-preserving rigid motion is the ex-
tension of a unique linear fractional transformation.

az+ b

, ad—bc =1,
cz+d ¢

f(=)

in the plane z;=0. The extension of f is loxodromic if and only if a+d
is complex.

Let {U, | n=1,2,...} be a basis for the open sets in Euclidean space
RS, In U, there is a point P, =(a,’,a,"",b,",b,"",¢,",¢,"") whose components
are independent transcendentals (over the rational field). In U, there is
a point Py =(a,’,a,"',by',b," ¢, ,¢5""), such that the components of P, and
P, are independent transcendentals. Continuing in this way, we can
obtain an everywhere dense set of points P,=(a,’,a,"”,b,’,b,",c,’,c,”’),
so that the set of all components consists of independent transcendentals.
Let

a, = @, +4a,”, b, = b, +ib,"
. 1+b,c
Cp = ) +ic,”,  d, = ——.
an
Let
" c’n dn

and let & be the group generated by the f,. Obviously § is everywhere
dense in the unimodular group. We assert that every element of & (be-
sides the identity) is loxodromic. That is to say, we will show that if

ab
f= (c d)
is an element of §, then either 7'(f)=a +d is complex, or f=1. fis a word
w(fy, £y, - - -ofx,) and T(f) is a rational function

B(ays bpys Crops -+ -5 By Oty Ciy) -

Let R=U+:V, where U and V are real, rational functions. If V=0
for f, then because of the transcendental independence, V is identically
zero. Then, since R is analytic, R=r (a real constant). This means
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that if 8,,8,, . . ., 8, are any unimodular matrices, and g =w(g,,8,, . . .,8,),
then T'(g)=r.

If we take g,=8,=...=g,=1, then g=1 and T(g)=2. Therefore
r=2. If g;,...,8, are free generators of a free, hyperbolic group, then
T(g)=2 implies that

8= w(glagz3 ~"’gn) =1,

and the word w can be freely reduced to the identity. Thus
f = W(fkl, sz, .. "fk”) = 1 .

This also shows that § is a free group.
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