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ON A QUESTION OF SADULLAEV CONCERNING
BOUNDARY RELATIVE EXTREMAL FUNCTIONS

IBRAHIM K. DJIRE and JAN WIEGERINCK

Abstract
We study the relation between certain alternative definitions of the boundary relative extremal
function. For various domains we give an affirmative answer to the question of Sadullaev whether
these extremal functions are equal.

1. Introduction

Let D ⊂ Cn be a smoothly bounded domain, A ⊂ ∂D, and let PSH(D)−
stand for the family of non-positive plurisubharmonic functions on D. For
u ∈ PSH(D)− as usual

u∗(z) = lim sup
ζ→z,ζ∈D

u(ζ ) (z ∈ D).

Sadullaev studied the first three of the following boundary extremal functions.
For z ∈ D, consider

(1) ω1(z, A, D) = ωc(z, A, D) = sup
{
u(z) : u ∈ PSH(D)− ∩ C(D),

u|A ≤ −1
}
,

(2) ω2(z, A, D) = ω(z, A, D) = sup
{
u(z) : u ∈ PSH(D)−, u∗|A ≤ −1

}
,

(3) ω3(z, A, D) = ωn(z, A, D) = sup
{
u(z) : u ∈ PSH(D)−, lim sup

z→ζ,z∈nζ

u(z)

≤ −1 for ζ ∈ A
}
, where nζ is the inward normal to ∂D at ζ ,

(4) ωR(z, A, D) = sup
{
u(z) : u ∈ PSH(D)−, lim sup

r→1−
u(rz) ≤ −1, z ∈ A

}
,

if D is strongly star shaped with respect to the origin.

Actually, smoothness is needed only to define ωn. It is clear that

ω1( · , A, D) ≤ ω2( · , A, D) ≤ ω3( · , A, D).
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This paper is motivated by the following question (Problem 27.4 in [10]):
suppose A ⊂ ∂D is closed, for what i, j is ω∗

i (z, A, D) ≡ ω∗
j (z, A, D)?

The answer apparently depends on the geometry and convexity properties
of D and the choice of the compact set A ⊂ ∂D. For instance we showed
in [2] that Sadullaev’s question has a positive answer when D is a smooth
pseudoconvex Reinhardt domain and A is multi-circular. The result in [2]
exploits the relation between relative extremal functions and convex functions
in a Reinhardt domain.

In the present paper we answer in Section 3 the question affirmatively for
ellipsoidal domains DH , which are biholomorphic to the unit ball via a linear
transformation. Here we exploit an idea of Wikström [11] and use Edwards’
duality theorem. In Section 4 we show equality for circular sets A in the
boundary of circular, strongly star shaped domains D. We attempted to use the
version of Edwards’ theorem in [6] and found that their result is not correct.
In the appendix we give two pertaining counterexamples.

We denote the open unit disc in C by D, its boundary by T and the unit
ball in Cn (n ≥ 2) by B. Some basic properties of the boundary relative
extremal function are given in [2], [4], [8], [10], [3] ([4] appeared as [5]
but the preprint is more relevant). Depending on the way the boundary is
approached, plurisubharmonic function may have different boundary values.
Wikström considered the compact set A = T × {0} and the function u ∈
PSH(B):

u(z) = log
|z2|2

1 − |z1|2 .

He showed that u∗ = 0 on A. The radial limit of u, uR = −∞ on A and the
non-tangential limit of u, uα = log(1 − 1/2α) on A [11, Example 5.5]. We
recall the definition of uα . If α > 1 and z0 ∈ ∂B we put

Dα(z0) = {
z ∈ B : |1 − 〈z, z0〉| < α(1 − |z|2)},

uα(z0) = lim sup
z→z0,z∈Dα(z0)

u(z).

2. Notation and definitions

Let D = {ρ < 0} be a domain in Cn with C1-boundary and defining function
ρ. For z ∈ D and t ∈ R, let

n(z, t) = z − t

(
∂ρ

∂z1
(z), . . . ,

∂ρ

∂zn

(z)

)
.

If z ∈ ∂D the normal line nz passing through z is parametrized by {n(z, t) :
t ∈ R}.
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Let u: D → R ∪ {−∞} be bounded from above and z ∈ ∂D we define un

at z as
un(z) = lim sup

t↓0
u ◦ n(z, t).

Extend un to D by setting un(z) = u(z) if z ∈ D. Recall that D is called
strongly star shaped with respect to the origin if rD ⊂ D for r ∈ ]0, 1[.
If D is strongly star shaped with respect to the origin, then for z ∈ ∂D set
uR(z) = lim supr↑1 u(zr). Extend uR to D by setting uR(z) = u(z) if z ∈ D.
Throughout the paper by strongly star shaped we mean strongly star shaped
with respect to the origin. Let M(D) be the set of Borel probability measures
with compact support on D. For z ∈ D we consider four classes of positive
measures:

(1) Jz = Jz(D) = {
μ ∈ M(D) : u(z) ≤ ∫

D
u dμ for all u ∈ PSH(D) ∩

USC(D)
}
,

(2) J c
z = J c

z (D) = {
μ ∈ M(D) : u(z) ≤ ∫

D
u dμ for all u ∈ PSH(D) ∩

C(D)
}
,

(3) J n
z = J n

z (D) = {
μ ∈ M(D) : un(z) ≤ ∫

D
un dμ for all u ∈ PSH(D),

supD un < ∞}
, and

(4) JR
z = JR

z (D) = {
μ ∈ M(D) : uR(z) ≤ ∫

D
uR dμ for all u ∈ PSH(D),

supD uR < ∞}
, in the case when D is strongly star shaped with respect

to the origin.

Clearly for z ∈ D, J n
z , J R

z ⊂ Jz ⊂ J c
z . Wikström studied these classes and

proved that J = J c = JR on D if D is strongly star shaped, see [11, Proposi-
tion 5.4]. If U ⊂ D, χU denotes the characteristic function of U .

3. Applications of Wikström’s results

We use equalities between different classes of Jensen measures to prove the
equivalence of different definitions. This is done by applying Edwards’theorem
to the convex cone PSH(D)∩USC(D) and the associated Jensen measures Jz.

Proposition 3.1. Let D ⊂ Cn be a bounded domain with C1−boundary,
A ⊂ ∂D compact. If Jz = J n

z for all z ∈ D then

ω(z, A, D) = ωn(z, A, D).

Proof. We know that ω( · , A, D) ≤ ωn( · , A, D). Let us prove that
ωn( · , A, D) ≤ ω( · , A, D). Let u be in the family defining ωn.
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Set g = −χA. Note that un ≤ g on D. For z ∈ D one has

un(z) ≤ inf

{∫
g dμ : μ ∈ J n

z

}
= inf

{∫
g dμ : μ ∈ Jz

}
,

since Jz = J n
z . Because g is lower semicontinuous on D, Edwards’ theorem

(Cor. 2.2 in [11]) gives

un(z) ≤ inf

{∫
g dμ : μ ∈ Jz

}

= sup
{
v(z) : v ∈ PSH(D) ∩ USC(D), v ≤ g

} ≤ ω(z, A, D).

Asuwas taken arbitrarily in the family definingωn, we infer thatωn(z, A, D) ≤
ω(z, A, D) for all z ∈ D. Thus ω( · , A, D) = ωn( · , A, D).

Remark 3.2. Notice that the dual of J n i.e. {un : u ∈ PSH(D), supD u <

+∞} is not a convex cone, indeed if u and v are bounded plurisubharmonic
functions in D, we do not have in general (u + v)n = un + vn in D, cf. [12,
Definition 2.2 and below]. We use the class J n only to obtain an inequality.

The proof above applies to the next two propositions.

Proposition 3.3. Let D ⊂ Cn be a bounded strongly star shaped domain
and A ⊂ ∂D compact. If Jz = JR

z for all z ∈ D then

ω(z, A, D) = ωR(z, A, D).

Proposition 3.4. Let D ⊂ Cn be a bounded domain and A ⊂ ∂D compact.
If Jz = J c

z for all z ∈ D then ω(z, A, D) = ωc(z, A, D) for z ∈ D.

For z ∈ D define

J ∗
z = J ∗

z (D) =
{
μ ∈ M(D) : u∗(z) ≤

∫
D

u∗ dμ

for all u ∈ PSH(D), sup
D

u < +∞
}
.

Note that in [11] the author worked with J ∗ but this class does not represent
a convex cone, see [1] for details. Here we work with J instead of J ∗ for two
reasons: firstly PSH(D)∩ USC(D) is a convex cone so Edwards’ theorem can
be applied, secondly for z ∈ D and g lower semicontinuous we have

inf

{∫
g dμ : μ ∈ J ∗

z

}
= inf

{∫
g dμ : μ ∈ Jz

}
,
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thus the results in [11] remain valid for Jz if z is an interior point.

Corollary 3.5. If D is B-regular or if D is strongly star shaped with
respect to the origin or if D is a polydisc then ω(z, A, D) = ωc(z, A, D) for
z ∈ D.

Proof. In these domains Jz = J c
z for z ∈ D see [11, Thm. 4.10, Thm. 4.11,

Cor. 4.3]. Then Proposition 3.4 gives the result.

For H a positive definite hermitian n × n-matrix, let ρH (z) = zT Hz on Cn

and set DH = {z ∈ Cn : ρH (z) < 1}.
Proposition 3.6. On DH we have J n

z = J c
z = Jz for all z ∈ DH .

Proof. Set D = DH . Let z ∈ D. Because for u ∈ PSH(D) ∩ C(D),
u = un on D, we have J n

z ⊂ J c
z . Let μ ∈ J c

z and u ∈ PSH(D)∩ USC(D). Let
0 < r < 1. Observe that in case of DH the map n( · , r) is holomorphic and
maps D into D. Set ur(y) = u ◦ n(y, r), y ∈ D. Then ur is plurisubharmonic
in a neighborhood of D, hence ur can be approximated monotonically from
above by functions in PSH(D)∩C(D). By the monotone convergence theorem
ur(z) ≤ ∫

ur dμ for all r ∈ ]0, 1[. By Fatou’s lemma

lim sup
r→0

ur(z) ≤ lim sup
r→0

∫
D

ur(y) dμ.

For y ∈ D one has lim supr→0 ur(y) = un(y). Because the set [0, 1] is not
thin at 0, see Theorem 2.7.2 in [7], we have

un(z) = u(z) = lim sup
r→0

ur(z) ≤
∫

lim sup
r→0

ur(y) dμ ≤
∫

D

un(y) dμ.

Thus μ ∈ J n
z it follows that J c

z ⊂ J n
z . Hence J c

z = J n
z ⊂ Jz ⊂ J c

z .

The unit ball, i.e. the case where H = Id, was done in [11]. Our proof is a
slight modification of Wikström’s.

Theorem 3.7. For all z ∈ DH one has ω(z, A, DH) = ωn(z, A, DH) =
ωR(z, A, DH) = ωc(z, A, DH) for all A ⊂ ∂DH compact.

Proof. By Proposition 3.6 J c = J n = J and by Proposition 3.1 and
Proposition 3.4 ωc = ωn = ω. As DH is strongly star shaped with respect to
the origin, J = JR see Prop. 5.4 in [11] and by Proposition 3.3 above, the
equality ω = ωR follows.
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4. Circular sets

Our goal in this section is to generalize Theorem 2.11 in [2] and solve Sadul-
laev’s problem for circular sets in circular, strongly star shaped, (hence bal-
anced) domains.

Theorem 4.1. Let D be a bounded smooth circular domain that is strongly
star shaped with respect to the origin and let A ⊂ ∂D be a circular compact
set. Then

ωn( · , A, D) ≤ ωR( · , A, D) = ωc( · , A, D).

In particular,

ω1(z, A, D) = ω2(z, A, D) = ω3(z, A, D).

Proof. Let u be in the family defining ωn( · , A, D). Let ρ be a smooth
defining function for D such that for all θ and y in a neighborhood of D we
have ρ(y) = ρ(eiθy). For 0 < t < 1 consider the function

vt (z, w) = u(n(w, t)z), (w ∈ D, z ∈ C, |z| ≤ 1).

For fixed t and w, the function vt ( · , w) is subharmonic on the (closed) unit
disc. Observe that n(w, t)eiθ = n(eiθw, t), so that for each w ∈ A and all θ

lim sup
t↓0

vt (e
iθ , w) ≤ −1.

Hence for all |z| ≤ 1, lim supt↓0 vt (z, w) ≤ −1. It follows that u(wz) ≤ −1 for
w ∈ A and |z| ≤ 1. We infer that u belongs to the family defining ωR( · , A, D)

and the inequality is proved.
Now suppose that u belongs to the family defining ωR( · , A, D). Then

u(wz) ≤ −1 for w ∈ A and |z| < 1. Therefore, for 0 < r < 1 ur(w) = u(rw)

is a plurisubharmonic function in a neighborhood of D that is less that −1 on
A. Now ur can be approximated from above on D by a decreasing sequence
{vj } of continuous PSH-functions. By Dini’s theorem, for every ε > 0 there is
a j0 so that vj ≤ −1 + ε on A hence also on a neighborhood of A. It follows
that ur ≤ ωc( · , A, D), and then also u ≤ ωc( · , A, D).

Appendix

We attempted to apply the non-compact version of Edwards’ duality theorem
stated in [6] to prove equalities for boundary extremal functions. However, we
noticed that this version of Edwards’ theorem as stated, does not hold. This
appendix contains some counterexamples.
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Let D ⊂ Cn be a bounded set and F ⊂ C(D) be a convex cone containing
constants. B(D) denotes the set of Borel probability measures with compact
support in D. For z ∈ D set

JF
z (D) =

{
μ ∈ B(D) : supp μ ⊂ D, u(z) ≤

∫
D

u dμ for all u ∈ F

}
.

In case D is a bounded domain we make use of the notation in Section 2, and
for z ∈ D, we set J c

z = J c
z (D) and Jz = Jz(D). Let g: D → R and define

Sg(z) = sup
{
u(z) : u ∈ F, u ≤ g

}

and
Ig(z) = inf

{∫
D

g dμ : μ ∈ JF
z (D)

}
.

The following theorem is due to Edwards, see [9, Theorem 2.1].

Theorem 4.2 (Edwards). Assume that D is compact and g is a bounded
Borel function on D, then Sg(z) ≤ Ig(z). If g is lower semicontinuous, then
Sg = Ig.

Edwards’ theorem is very delicate. For instance if the kernel g is merely
upper semicontinuous, the theorem may fail, see [9], [6]. We will show that
the theorem may also fail if the set D is not compact, contrary to the following
theorem, which was formulated in ([6, Thm. 1.3]).

Theorem 4.3 ([6]). Let D be a locally compact Hausdorff space countable
at infinity. If g ∈ C(D) then either

Sg(z) = inf

{∫
D

g dμ : μ ∈ JF
z (D)

}

or Sg ≡ −∞.

However, this result does not hold if D is open.

Counterexample 4.4. For the sake of finding a contradiction, assume that
Theorem 4.3 holds for all open sets D′ i.e.

sup
{
u(z) : u ∈ F, u ≤ g

} = inf

{∫
D′

g dμ : μ ∈ JF
z (D′)

}
, (1)

where z ∈ D′, g ∈ C(D′), F ⊂ C(D′) is a convex cone containing the
constants.
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Let D be a bounded open ball and V ⊂⊂ D be an open ball. Define

uD,V (z) = sup
{
u(z) : u ∈ PSH(D), u ≤ −χV

}
.

Let u ∈ PSH(D)− so that the set {u = −∞} is dense in V . For m > 0 set
Um = { 1

m
u < −1} ∩ V , and F = PSH(D) ∩ C(D). Observe that the function

gm = −χUm
is continuous in the open set D \ ∂Um and that F is a convex cone

in C(D \ ∂Um) containing the constants. By (1) we obtain for z ∈ D \ ∂Um

the following equality (we take for D′ the set D \ ∂Um)

inf

{∫
D\∂Um

gm dμ : μ ∈ JF
z (D \ ∂Um)

}
= sup

{
v : v ∈ F, v ≤ gm

}

on D \ ∂Um. If v ∈ F and v ≤ gm, then v ≤ −χV because Um = V implies
v ≤ uD,V , hence

inf

{∫
D\∂Um

gm dμ : μ ∈ JF
z (D \ ∂Um)

}

= sup
{
v : v ∈ F, v ≤ gm on D \ ∂Um

} ≤ uD,V .

As JF
z (D \ ∂Um) ⊂ J c

z we have on D \ ∂Um

inf

{∫
D

gm dμ : μ ∈ J c
z

}
≤ inf

{∫
D\∂Um

gm dμ : μ ∈ JF
z (D\∂Um)

}
≤ uD,V .

Because D is a ball, by [11, Cor. 4.3] Jz = J c
z . It follows that

inf

{∫
D

gm dμ : μ ∈ Jz

}
= inf

{∫
D

gm dμ : μ ∈ J c
z

}
≤ uD,V

on D \ ∂Um. Now 1
m

u is plurisubharmonic and 1
m

u ≤ gm, hence for all m > 0
one has

1

m
u(z) ≤ inf

{∫
D

gm dμ : μ ∈ Jz

}
≤ uD,V (z) for z ∈ D \ ∂Um.

As D \ V ⊂ D \ ∂Um we have for all m > 0 that

1

m
u ≤ uD,V on D \ V .

This is impossible since

0 ≡
(

sup
m

1

m
u

)∗
≤ uD,V < 0 on D \ V .
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The conclusion is that equality (1) is false in open sets D′.

Next we prove that the version of Edwards’ theorem stated in Theorem 4.2
does not hold for (open) B-regular domains, i.e. connected open sets.

Counterexample 4.5. Let D be a bounded B-regular domain and V ⊂
∂D be relatively open. Then V is not b-pluripolar, see Propositions 3.5 and 2.4
in [2]. There exists a countable L ⊂ D so that L = L∪V is compact in D cf. [2,
Lemma 4.3]. Set g = −χL and F = PSH(D)∩C(D). As L is non-empty and
does not have any accumulation point in D, g is lower semicontinuous in D.
If Theorem 4.2 would hold for D we would get for z ∈ D

inf

{∫
D

g dμ : μ ∈ JF
z (D)

}
= sup

{
u(z) : u ∈ F, u ≤ g

} ≤ ω(z, V, D),

inf

{∫
D

g dμ : μ ∈ J c
z

}
≤ inf

{∫
D

g dμ : μ ∈ JF
z (D)

}
≤ ω(z, V, D),

because JF
z (D) ⊂ J c

z ,

inf

{∫
D

g dμ : μ ∈ Jz

}
= inf

{∫
D

g dμ : μ ∈ J c
z

}
≤ ω(z, V, D),

because Jz = J c
z , and

sup
{
u(z), u ∈ PSH(D), u ≤ g

} ≤ inf

{∫
D

g dμ : μ ∈ Jz

}
≤ ω(z, V, D).

Finally, because L is countable and therefore pluripolar, we would get

0 = (
sup

{
u(z) : u ∈ PSH(D), u ≤ g

})∗ ≤ ω(z, V, D).

This is impossible since V is not b-pluripolar. The conclusion is that Edwards’
theorem does not hold in D.

Remark 4.6. Approximating g by continuous functions one can show that
Theorem 4.3 does not hold in B-regular domains.

These counterexamples make it unlikely that a useful non-compact version
of Edwards’ theorem can be found. We have not been able to pinpoint the
problematic points in ([6, Thm. 1.3]).
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