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ON THE SOLVABILITY OF A CERTAIN CLASS
OF NON-PELLIAN EQUATIONS

CHR. U. JENSEN

While Pell’s equation 22— Dy?=1, D a positive non-square integer, has
always non-trivial integral solutions in z and y, the equation

(0.1) @-Dpp = -1

is solvable only for certain values of D. A necessary condition for the
solvability of this equation is obviously that all odd prime factors of D
be of the form 4n 4 1; furthermore, if D is even, it cannot be divisible
by 4. However, these conditions are not sufficient. (D =34 is the first
counterexample.)

There exists an extensive literature concerning the problem of finding
criteria for the solvability of (0.1). The most complete, but not very
simple treatment of this subject has been given by Redei [6], [7]. After
this article had been written, a recent paper by Furuta [1] dealing with
the same subject by methods which have points of resemblance with
those presented here, came to the author’s knowledge.

The author wishes to thank Professor Th. Skolem for helpful comments

and suggestions.

1.
In this note we shall consider non-Pellian equations of the form

(1.1) E—dm2n? = —1,

where d is an odd square-free natural number and the equation is assumed
to be solvable for m=1. We shall give some criteria for the solvability of
the equation for prescribed odd natural numbers m.

It is well known that the solvability of (1.1) is equivalent to that of
(1.2) g2—dmi? = —4.
Written in this form the problem in question may as well be regarded as
that of deciding whether the norm of the fundamental unit of the order
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I, of conductor m in the real-quadratic field P(d*) is 1 or —1. This has
consequences for the structure of the corresponding ring class fields.

We will follow up this point of view somewhat more closely. Let the
norm of the fundamental unit ¢ in the field P(dt) be —1. The order I,
is the integral domain consisting of the numbers }(a + bdt), where a and b
are rational integers for which a=5 mod 2 and =0 mod m. Any unit &
in I, is a power of e. If in particular Nx = —1, then

o« =¢, fodd.
Considering congruences in the principal order I, we have
e =¢7 modm,
whence because of Ne= —1

e?! —1 modm.

]

Conversely, if ¢ = —1 mod m, multiplication on both sides by &'/ yields
e =¢7 modm
which shows that ¢ belongs to I,,, since m is odd. Thus we have proved:

Lremma 1. The equation (1.2) (subsidiarily (1.1)) s solvable if, and only
if, there is an odd integer f such that ¢ = —1 mod m.

It is obvious that, if (1.2) is solvable for an m having the prime de-
composition m=[];p,”, then it is solvable for m=p, for all ¢. On the
other hand, let (1.3) be solvable for m =p, say

a?—dp?b® = —4.
Then, putting « = }(a + pbdt)=¢/, we obtain
= (P = (P g e T phdi 4 = K+ b, d),
where p’|b,, say b,=p’c,. Clearly No?""'= —1, so that
al—dp¥c? = —4.

Further (1.3) must be solvable for m=[T,;p;* when it is solvable for
m=p," for all 4. Indeed, there is for every i an odd number f; such that

&= -1 modp;,
whence

e = -1 modm,
where f denotes the least common multiple of all the f;. Thus the following
statement is proved:
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LemMa 2. The equation (1.2) (subsidiarily (1.1)) is solvable for an odd
number m with the prime decomposition m=TI;p;" if, and only if, it is
solvable for m=p, for all 5.

With regard to applications given in the next section we will consider
primes p for which p=1 mod 4 and (d/p)=1. Such primes split in P(d*)
into distinct prime ideals p and p’. Using the Euler criterion we have

(s) = ¢g®-D modp and (5—,) = e®-) modyp’.

By passing over to the conjugates we infer
()-G)-(5)-5)-G) ) -6)
p’ p p p P p p

(L;o_l.) = (= 1}W-D — (_])e-D = ],

Thus for the primes considered, exactly one of the congruences

since

e&@-D = +1 modp
must be valid.
By means of Lemma 1 we easily deduce the following lemma concerning
the sign in the above congruence.

Lemma 3. Let p be a prime for which (d[p)=1 and p=1mod 4. If p=5
mod 8 the diophantine equation (1.2) is solvable if and only if e#®@-V= —1
mod p, where ¢ denotes the fundamental unit in P(d}). If p=1 mod 8, the
validity of the congruence e¢®@-D=1 mod p is a necessary (but tn general not
a sufficient) condition for the solvability of (1.2).

Proor. Let us first consider primes p=5 mod 8. If (1.2) is solvable,
there is a least positive odd number f,, such that é¥1= —1 mod p. Then
4f, is the smallest positive integer for which ¢¥1=1 mod p. Since }(p—1)
is only divisible by 2, but not by 4, we must have ¢#®-V= —1 mod p,
because otherwise 4f, |4(p—1). If on the other hand &®-V= —1 mod p,
then }(p—1) is just an odd number f such that 2= —1 mod p.

Now let p=1 mod 8, and let (1.2) be solvable. Since }(p—1) is now
divisible by 4, we see that in this case 4f;|3(p—1) and hence &®-D=1
mod p.

By the way, we may state the following more general result: Let
24(p—1), A= 2. Then (1.2) is solvable if and only if

e@-/2-1 = _1 mod p.
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Indeed, if this congruence is true, then f=(3)*(p—1) is an odd number
such that ¢¥= —1 mod p so that (1.2) is solvable. Conversely, let (1.2)
be solvable. Then there is a smallest positive odd number f, such that
¢#1= —1mod p. Then 4f, is the smallest positive integer such that
¢¥1=1mod p, which implies that 4f,|p— 1, whence f,|(3)*(p—1) and the
quotient is odd. Hence, ¢é¥1= —1 mod p yields e»-/2*"1= —1 mod p.

In the following section we first consider in detail the special case
d=>5, and afterwards, in Section 3, we discuss which of the criteria may
be generalized to an arbitrary square-free odd d.

2. The equation §2 —5my?® = —4.

As shown above in Lemma 2 we may assume that m is a prime p=1
mod 4. Now it is elementary and well known that the equation is solvable
if (5/p)= —1, that is, if p= +2 mod 5. Therefore we may henceforth
assume that p=1 mod 4 and (5/p)=1, that is, p=1 or 9 mod 20.

The fundamental unit in P(5%) is

© = J1+5Y.

Hence, concerning the solvability of the equation in question, which now
takes the form
(2.1) E-5p2n® = —4,

we obtain the following statement using Lemma 3 in the preceeding
section:

If p=5mod 8, (2.1) is sovable if and only if w*®-V= —1 mod p.
If p=1mod 8, the validity of the congruence w*®-V=1 mod p is a neces-
sary condition for the solvability of (2.1).

We now establish some simple criteria deciding the sign in the con-
gruence '
(2.2) o@D = +1 modp

and obtain in this way criteria for the solvability of (2.1). More precisely
we are going to prove the following theorem:

THEOREM 1. Let p be a prime for which (5/p)=1 and p=1 mod 4. Such
primes may be represented by each of the quadratic forms

I) p=u2- 502
II) p=s2+5t2
III) p=a%+ 2542
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Criteria concerning the sign in (2.2) may be established in terms of any of
these representations:

I') The plus sign in (2.2) holds if and only if |u|+v=1 mod 4.
II') The plus sign in (2.2) holds if and only if t is even.
IIT') The plus sign in (2.2) holds if and only if (x/5)=1 or —1 according
as y is even or odd.

These yield evidently the following criteria for the solvability of (2.1).

1) A necessary condition for the solvability of (2.1) is that |u| = 1 mod 4.
For p=>5mod 8 this condition is also sufficient.
II'") A mecessary condition for the solvability of (2.1) is that }(p—1)+t
is even. For p=>5 mod 8 this condition is also sufficient.
III"”) A mnecessary condition for the solvability of (2.1) is that (x[5)=1 or
— 1 according as }(p—1)+y s even or odd. For p=5 mod 8 this
condition is also sufficient.

Remark. Since we are giving an elementary proof of the theorem at
the end of this section, it should be pointed out that the above representa-
tions, well-known from algebraic number theory, may be obtained by
entirely elementary methods as developed in Nagell [4, Chap. VI].

Proor or THEOREM 1. We start the proof by establishing the equiva-
lence of the statements I'), IT’), III’) (subsidiarily I'’), II'"), III"")), that
is I')<=II") and I')<=-IIT"). Since the proofs are analogous, we only carry
out the first one, I')<=II'). It consists of two parts:

(a) If p=s2+ 562 with an even ¢, then |u|+v=1mod 4.
(b) If p=s2+5i2 with an odd ¢, then |u|+v= —1 mod 4.

ad a): From the representations p=s2+ 5t2=u? — 5v% we get
ut—g% = (|lu|+8)(ju|—s) = 5(2+?%) .
Putting (¢,v)=p and ¢t =put,, v=puv,, where u obviously is even, this may
also be written a2 2
H(lul +9)- 3(|u|—8) = 5(3u)* (2 +017) -

Since (3(|u| +), 3(Ju| —8), 3u) =1 we conclude that, with a suitable choice
of the signs, }(|u|+s) and }(|u|F s)/(3u)? are positive integers all odd
prime divisors of which are divisors of the quadratic form 5(¢,%+v,?)
with coprime ¢, and v, and must therefore be =1 mod 4. We now distin-
guish between the cases 4|v and 2|jv. Since

5(t2+v?) = u?—s2 =0 mod 8,
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4|v implies 4|¢, that is 4|(f,v)=u. We thus obtain

|u| + 8

ul+s
2 ful £ =140=1 mod4.

2-(3p)?
Similarly 2||v implies 2||¢, that is }u is odd, and 23||5(t2+v2). Hence the
even one of the numbers (|u| + 8) and }(|u| F s)/(3u)? cannot be divisible
by 4. Therefore we have »

|ul =

+ (3u)?

kS |ul ¥ 8
+ 3uP———=142= -1 mod4.
2 2-(§u)?
In either case we have shown that |u|+v=1mod 4.
ad b): In this case (t,v)=p is odd. Since (|u|—s,|u|+s,u)=1,

lu| =

(lu] —8) (jul +6) = Bu*(t,®+0,%) ,

implies that |u|+s and (Ju|F s)/u? with suitably chosen signs are odd
integers all of whose prime divisors must be =1 mod 4, and which there-
fore must be =1 mod 4 themselves. Since 4|v or 2||v according as 2||s
or 4|s, we conclude that

lu] = (ju|+8)Fs=1F(v+2) mod4

or
w|+v = —1 mod4.

Thus the equivalence I')<=>II') has been established. Consequently we
have only to prove one of the propositions I'), II') or III'). For the
results from class field theory and the theory of reciprocity to be used
we refer to Hasse [2].

We first remark that, using the main theorems from class field theory,
the existence of criteria of the forms mentioned becomes almost trivial.
In fact, one has only to observe that the primes p for which the plus
sign in (2.4) is valid, may be characterized as those primes of the rational
number field P which are products of distinct prime ideals of degree 1 in
the field P(¢,w?). This field is an abelian extension of each of the quadratic
fields P(5%), P((— 5)) and P(i). Hence, the primes in question, decomposed
in these fields, are fully described by the class groups of the extensions.
In general the explicit computation of class groups of abelian extensions
is, however, by no means straightforward, as is well known to any one,
who has tried.

Only in one of the cases considered a direct determination is very
simple, viz. for the cyclic extension P(wt)/P((—5)!) of degree 4. In-
corporating the intermediate field P(,(— 5)t), which is the absolute class
tield of P((— 5)t), it is not hard to see that the conductor of the class group
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is 2. Since in P((—5)*) the only ideal group mod 2 of index 4 is the
group of principal ideals (x) generated by numbers « in the ray « = 1 mod 2,
this must be the class group looked for. This accomplishes, the proof
of IT").

It is true that this suffices for the proof of Theorem 1, but since in
the next section it turns out that not all of the criteria included in the
theorem can be applied to the general case, we also give direct proofs
of I') and III"). Furthermore, at the end of this section we give a purely
elementary proof of I') so that in fact each of the criteria may be proved
exclusively by the methods of elementary number theory.

For a direct proof of I') we observe that the factorization of p in P(5%)
is given by p~pyp’, where p = (u +v5%) and p’ = (u —v5?), say, and » chosen

positive. In virtue of
(9> = (_a;) = wt®D modp,
p p

it becomes our task to determine the above quadratic residue symbol.
For this purpose we apply the law of quadratic reciprocity in P(5%):

( ) )(u+v5*) (w,u+v5*) <w,u+v5!)
u+ o5t w B 2 Poo '

u+v5t , %+ 5t
( ha ) -1 and (“’_—) -1,
w Yoo

the first equality holding because w is a unit and the latter one because
u + v5t is totally positive. To find the value of the remaining norm residue
symbol we remark that, in consequence of the general theory, the norm
residue symbol depends only on the residue classes of the components
mod 4. Furthermore, v being an even number, #+v5t=1 or —1 mod 4
according as w+v=1 or —1 mod 4. Hence

(-5 = (-5

Since w and 1 are units, we conclude

(- e ()

Summing up these results, we have proved

Here

wi®D = 1or —1 modp accordingas wu+v=1lor —1 mod 4,

and hence I').
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In order to prove IIT’) directly we shall compute the class group of
the bicyclic extension P(,w?)/P(¢). In virtue of

(0 +0'?)? =142,

where w’ as usual denotes the conjugate of w, the extension is generated
by adjoining the square roots 5% and (1+ 2¢)} to the ground field P(z).
Hence, by a well-known theorem, the primes which split in the extension
concerned are exactly those splitting in each of the relative quadratic
fields P(5%,4)/P(i) and P((1+2:)})/P(i). Since all of the primes in question
split in the first one, we only have to require splitting in P((1 + 2i)})/P(),
that is, if p~ RP’ with P=(x+ 5y7), say, is the factorization of p in P(s),

then (1+2i)_(1+2i)_ 1
P Lt
must hold.

We proceed just as before using the reciprocity law in P(z), namely

1+2¢ x+ 5yt x+5yi, 14+2¢ x z+5yi, 1+2¢
( B )_(l+2i)'( 1+ )*(1+2i)'( 1+ )
Here the first factor is equal to the usual quadratic residue symbol
(z/5)=1 or —1 according as x= +1 or +2 mod 5, and the second one
1 or —1 according as y is even or odd. By combination of these results,
IIT') is established.
Finally we point out that, as mentioned above, I') may be proved

solely by methods of elementary number theory. In fact, since obviously
5=(u/v)? mod p and b=0 mod p in the expression

wt®D = Y(a+b5%),

we get
vosa =510 ) s = (0 ()
“E )RR
and thus - (1 " %)WD mod p
o= (00" (D) (HO0) .

Using the reciprocity law in the rational field we see that with » and
v chosen positive
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2_ 5,2 — 42 -
(57) - () - (520 - (G2 (520 - e
P w+v u+v u+v u+v
Hence it only remains to be shown that (2v0/p)=1. Here we distinguish

between the cases p=5 mod 8 and p=1 mod 8. In the first case we have
2||v, that is, v=2¢" with ¢’ odd. Thus

&)-E)-0)-0)-(52) -0

In the second case we put v=2%v' with v’ odd. Since here (2/p)=1,

we get (%’)) . (%) _ (;?) _ (uz;svz) _ (%f) -1,

which proves the assertion.

3.
In this section we turn to the solvability of the general equation

(3.1) g—dmip = —1,

supposed to be solvable for m=1. Just as in the preceeding section we
need only to consider the case, where m is a prime p=1 mod 4. Further-
more, since (3.1) is surely solvable for (d/p)= — 1, we henceforth assume
(d/p)=1.

Only part ITI' of Theorem 1 applies to the general situation, the two
others only if d is a prime q. First we look at this case, distinguishing
between the g=5 mod 8 and the ¢=1 mod 8. Concerning the solvability
of the equation (3.1), which now takes the form

(3.2) §—qpPn® = -1,
we actually prove the following in the case ¢=5 mod 8.
THEOREM 2. Let q be a prime =5 mod 8. Primes p for which (g/p)=1
and p=1 mod 4 possess the following representations
I) pt=u2—quv? or pt=}u2—qv,?), u, and v, odd; h being the class
number of P(g?).
IT) p** =u?+qu?; ' being the class number of P((—q)?).
With these representations
1) A necessary condition for the solvability of (3.2) is that |u|=1 mod 4
or }(|u,| + 1) = Hp— 1) mod 2, respectively. If p=>5 mod 8,this condi-
tion is also sufficient.
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II) A necessary condition for the solvability of (3.2) is that }(p—1)+t is
even. If p=5 mod 8 this condition is also sufficient.

Proor. ad I): Let &;+ 7,9 be the fundamental solution of
£-qn* = —1.

Exactly as in Section 2 we only have to determine (£,+7,9%)*®-? mod p,
applying Lemma 3 with ¢ replaced by &,+7,4¢}.

In P(gt) the factorization of p is given by p~pp’, where p and p’ are
two conjugate prime ideals. With suitably chosen p and p’, we then
have

¢ = v mod p and ¢t = L mod p’
v v
i Pt = ut—qut.
Hence
i
(BEBL) = Gt oD = (ot oo = (5"3%}'1-/”) mod p,

t —
(35T = Erna o = G- nyuipo = (-E-—g—i‘/—”) mod p'.

However, since P((£,+7,g%)t,4)/P is a normal extension,

('50‘*‘;7)0“/”) _ (‘50 +p"70 q}>

must have the same value as

(So—no__{b/g) _ (Eo+ noq*)
P Y
so that we may write

E——°+n°uﬁ) mod p .
P

(o +megh)te-? = (

The computation of the above residue symbol may now be accom-
plished as follows. We assume the numbers &, 7,, » and v to be chosen
positive and obtain then, using the reciprocity law (p=1 mod 4) together
with the well-known fact that the class number & of P(gt) is odd,
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(fo+nou/v) _ (v) fov+mou\ (v P
p / \p ( P ) N (5>.(5o”+’70u)
( v u? — qu?
) (§0v+no ) (5)'(&,0“;07)
( NPUP—quing®\ (v 7&2vE—quin,?
) ( §0v+770 ) B (E)( Eov+nu )
v2(£2— v -1
- () G )= () Gzos)

_ (g) (= 1)t Gov+ nau- (g) (= 1)1

where in the last step it is used that &, and v both are even and that
7o=1 mod 4, since 7, is a divisor of £:2+ 1. Putting v=2"v" with v’ odd

9000

Since 2||v exactly for p=5 mod 8, we have (v/p)=(—1)}*"D. Summing
up these results, we see that

(go_l_noqi)&(p—l) = (—1)ie-DHie-D a4 P,

which suffices for the proof of the first part of I).

The alternative part of I) may be established quite similarly, the
essential difference being that here both %; and v, are odd. Using 2||&,,
we get as before

(Bg+ o@D = (= Ljiomtmond = (1 mod p,

which proves the second part of I).

ad II): For quadratic fields P((—g¢)t) with ¢=5 mod 8 the class number
k' is divisible exactly by 2, the number of ideal classes in each genus
being odd (Iyanaga [3], Redei [5]). As in the proof of the cor-
responding theorem in Section 2 we hereby see that the class group of
the cyclic extension P((&,+nogt)t, (—¢)})/P((—q)t) of degree 4 consists of
all ideals whose (}%')-th powers are prmclpal ideals («) generated by
numbers in the ray « =1 mod 2. This proves the statement II).

Concerning the case ¢=1 mod 8 we prove the following

THEOREM 3. Let q be a prime =1 mod 8 and p a prime for which (g/p) =1
and p=1 mod 4.

Math. Scand. 10 — 6
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I) Let p be represented by p*=u?— qu?, where h denotes the class number
of P(qt). Then |u|=1 mod 4 is a necessary condition for the solvability
of (3.2); for p=5 mod 8 this is also sufficient.

II) If p=>5 mod 8, it is necessary and sufficient for the solvability of (3.2)
that p¥*, where ' is the class number of P((—q)t), be not representable
by pt =s? 4 qt2.

For p=1 mod 8 it is necessary for the solvability of (3.2) that
Pt is representable by the form pt* =g*+ qt®.

Proor. ad I): This part may be proved verbatim as the corresponding
part of Theorem 2. It should be noticed that when ¢=1 mod 8 the alter-
native representation in Theorem 2,I) does not occur, which is easily seen
by considering the representation mod 8.

ad II): In a quadratic field P(( —¢)}) with ¢=1 mod 8 the number of
ideal classes in each genus is even (Iyanaga [3], Redei [5]) so that
the full number of ideal classes % is divisible by 4 (at least). The statement
in IT) is equivalent to the assertion that precisely the primes p represent-
able by p** =s?+qt* are splitting in the field P((£,+7,¢})}, (—q)t). Now,
since £,=0 mod 4, it is not hard to see that the cyclic extension

P((¢o+n0g") (—2H)/P((—9))
of degree 4 is unramified (which incidentally makes clear that the class
number » must be divisible by 4). Hence the class group of this extension
must be the only existing subgroup in the group of ideal classes whose
factor group is cyclic of order 4, namely the subgroup consisting of all
ideal classes whose (}2’)-th powers are principal.

We now pass over to the generalization of part IIT) in Theorem 1.
Here the restricting assumption of d being a prime is not needed. In fact
we only suppose d to be an odd squarefree integer for which the equation
(3.1) is solvable for m=1. Under these assumptions we prove the fol-
lowing theorem concerning the solvability of

(3.3) E—dp*n? = —1.
THEOREM 4. Let &)+ nodt be the fundamental solution of &2—dn?= —1
(with arbitrarily chosen signs of &, and 7,), and let p be a prime for which

(d/p)=1 and p=1 mod 4, represented by p=x*+ 4y>.
A necessary condition for the solvability of (3.3) s that

(gjﬂ’g) = (- 1)@,

For p=5 mod 8 this is also sufficient.
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REMARK. In particular, if d is a prime, &, may be replaced by any
residue class & mod d for which &= —1 mod d.

Proor oF THEOREM 4. As previously, the theorem is equivalent to the
proposition that p splits in the field P((&,+ #,d%)},4) if, and only if,

— =1 .
NOW as a consequence Of

((50+7loda)}+(§o"’lod})})2 = 2(§,+1) = (1 —19)%i(&+1)

the bicyclic extension P((£,+ 7,d})},7)/P(i) may be generated by adjoining
the square roots dt and (i(&,+1))!. The factorization of p in P(i) is given
by p~ PP’ with P=(x+ 2y1), say. Since (d/p)=1, p splits in P(dt) and
thus in P(d},7) too. Hence we need only require that 9 (and then auto-
matically B’ as well) splits in P((i(£,+1))},4), that is, that

(i(&:;i)) 1.

In view of N(& +1)=£&2+ 1=dn,? it follows that &,+¢ may be written
in the form

i(&p+1) = (o +Bi)2(a+ 2b7),
where (@ + 2b¢) is a divisor of d in P(i) determined by
& = —1 mod (a+2bi) .

Since &, is even, it follows from the law of quadratic reciprocity in P(z)
that

(557 - (i) - Gam) - (5) - (57%).

where the last quadratic residue symbol is to be understood as con-
cerning numbers in the rational field (the signs of « and y are inessential
since a change of these only corresponds to the passing over to the
conjugates). This obviously accomplishes the proof of the theorem.
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