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LINEAR FUNCTIONALS
ON BOUNDED POLYNOMIALS OF GIVEN ORDER

W. W. ROGOSINSKI

Introduction.
1. Given are n functions ¢.(t), 1 Sk <n, defined on some set T' of a
parameter t. By a polynomial we understand any linear combination

(0.1) p(t) =kzlak<pk(t), teT,

of the @,(t). For a real polynomial the ¢,(t) and the a, are supposed to
be real; for a complex polynomial they are complex. We assume that the
@i(t) are linearly independent on T. This implies that T' contains at
least n different elements. Otherwise, the ¢,(t) and 7 may be (at present)
quite arbitrary.

2. The ¢, span the linear manifold & of polynomials p, and & is of
dimension 7, real or complex. We consider linear functionals L on £.
They are of the form

(0.2) L(p) = 3 ayy,  where y, = L(g;) .
1

Here the y, are to be real, or complex, according to whether & is real
or complex. These L form the dual linear manifold % also of dimension
n. We write L= {y,} and consider the y,, as co-ordinates of the point L
in &.

If e T, then L,, where L (p)=p(1), is a linear functional on &, the
so-called spotting functional. We have L = {p,(7)}. If the ¢, and T are
given, then the set @ of all spotting functionals L, is given in .&Z.

No hyperplane (and hence no proper subspace) of & contains @.
For, by the linear independence of the g,

2 Appit) =0
k=1

for all te T implies 4, =0. Hence @ spans .Z, so that every L admits
some representation of the form
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(0.3) L=3wL, p+0;
=1
ie. m
Yr = 2 mp(t), 1sksn, 7eT,
-1

where the 7; are different. In fact, there exist such representations with
m<mn. The u; are real, or complex, according to whether & is real or
complex.

3. We assume, from now on, that the ¢,(t) are bounded on T, nor-
malizing this assumption by

(0.4) oal®) S 1.
On normalizing & through the uniform norm (Tchebychef norm)

(0.5) llpll = sup|p(?)| ,
tel

2 becomes a normed n-dimensional linear vector space on which every
linear functional L is bounded (continuous, cf. [1, p. 245]); and & itself
becomes a normed n-dimensional linear vector space under the norm

(0.6) L]l = sup|L(p)| .
lptl=1

We also note that the sup in (0.6) is always attained; there exists at
least one maximal polynomial P for which

(0.7) [Pl=1 and  L(P) = [IL||.

4. In this paper we shall first determine ||Z||, for given L in %, in a
‘geometrical’ fashion, by means of the given set @. This determination
is, at least for real polynomials, hardly new. Nor, unfortunately, seems it
to lend itself easily to actual calculation in the classical cases of algebraic
polynomials (7'=[—1,1]) and trigonometric polynomials (7'=[—an,x])
where many interesting results are known, obtainable by various ad hoc
methods (cf. [3, II. Abschn. 6]). However, we shall derive from this deter-
mination some remarkable theoretical insight regarding the general case.

Next, we find a second equivalent definition of ||L||, namely

08) I = inf 3 s

where the inf is taken with respect to all possible representations (0.3)
of L. Here the inf need not be attained for a given L. Any representa-
tion (0.3) for which the inf is attained is called a minimal representation
for L. The investigation into the existence of such minimal representa-
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tions throws additional light on the general case, revealing curious inter-
relations (direction theorems) between the maximal polynomials and the
(possible) minimal representations for a given L. These results have
interesting applications in various directions. It should be pointed out
that the methods used in this investigation are completely n-dimen-
sional. No use, apart from the definition of a norm, is made of further
functional analysis. Even the simple Hahn-Banach extension theorem
is avoided.

I. The general theory.

1. We shall assume that the ¢, () and the polynomials p(f) are com-
plex. The real case can be treated in the same way, but is somewhat
simpler. It seems that neither of the two cases can easily be deduced
from the other. We prove our results in the complex case and state them
in the real case.

In the following € will be a non-empty symmetrically convex set in
the n-dimensional complex space .Z; i.e., it has the following two pro-
perties:

(i) if L e ¥, then ¢L € € for every ¢ with |¢|=1.

(ii) if L,,L, € € then oL, +(1—p)L, € ¥ where 0<p<1.

It follows that the origin O=3}[{L+(—~L)] € ¥.

For the real space ., ¢ is restricted to + 1.

We use vector notation and write x for the point {,}. The scalar
product of # and y is denoted by

&y = 3 29

k=1

n
(@,x) =kz 2l? = [2[*
=1

where [z| is the “Euclidean norm” in .#. Clearly, (y,z) = (z,¥).
Any hyperplane# in % can be written in the form

so that

. n
(1.1) H: (x,a) = 3 2,a, = «, «20, Ja|=1.
k=1

It divides % into two parts:
(1.2) K za) s, H_: [(z,a)] > .

Clearly, O € 5, for every s#. We say that 5# bounds € if € < ,, and
that ¢ supports € if

(1.3) sup|{z,a)| = «.
ze¥
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We note that, if «=0, then 5 is a genuine subspace of ¥ and cannot
support € unless € <.

2. We require the following

Lemma 1. If y is an Euclidean frontier point of €, then there exists a
hyperplane # of support for € with y € .

REMARK. In real space this Lemma is familiar (for convex sets). The
present proof is modelled after that for the real case (compare [2, Vol. I,
Pp- 397-98]). Because of the “circularity’’ of € it could be derived from
the real case.

Proor oF THE LEMMA. Clearly, we may assume that € is closed.

(i) Let, first, y be exterior to €. Then there exists an x, € € such that,
for all x€ ¥,
(L4) e~y Z|o—y| = 6>0.

For any x €€ also z,+o(x—2,) €% for 0<9=<1. Hence

[7o+o(x—20) —y|* 2 |%o—y|?,

20 Re(x —m,%0—y) + 0% |z — o[

v
=4

On letting o — 0 we find
Re{z—zg,y—2» = 0,
or

IIA

Re{zg,y—2z¢) = Re{zy—y+y,y—2p)
= —0% + Re{y,y—2,) < Rely,y—=xy) .

Re(,y—xo)

Here we can replace x by ez, |¢|=1, and obtain

K2,y —xo)| < Rey,y—2o) -
Hence, putting a=(y —,)/|y —%,| we have |a|=1 and

(1.5) Kz,a)| < Re(y,a) = o,
say, for all x € %.

(ii) Now let y be a frontier point of ¥. Then there exists a sequence
of exterior points y* tending to y (in the Euclidean metric). By (1.5),

there exists a corresponding sequence of a® with |a®| =1 such that, for

all x€ ¥,
[{x,a®)| < Re YP,a®y = o,

say. There exists also a subsequence a®’ — a, say, where |a|=1. Hence,
letting »" - oo, we obtain

(1.6) Kz,a)| < Rey,a) = a.
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Since € is closed, y € €, so that
(L.7) KKy,a)| = Re(y,a) = .

This proves the Lemma.

CorOLLARY. If € is closed (and not the whole of £) then it is the inter-
section & of all S, where S supports €.

Proor. To avoid irrelevant complications we shall assume that € does
not lie in any genuine subspace of #. Anyhow, this will be the case in
our application.

Clearly, ¥ <. Next O is not a frontier point of %, since otherwise a
hyperplane of support through O would have x=0, and hence would
contain €. Let y,e &. If y, ¢ € then y,+0, and there exists a frontier
point y of € of the form y=py, where 0<g<1. Let {(x,a)=x>0 be a
hyperplane 5# of support through y. Then

Y2y = ¥:0)fe = afo > «,
so that y, € #°_. This contradicts y, € &. Hence y,€ € and L <¥%.

3. The symmetric convex hull " of @ is defined as the set of all
L e % that admit some finite representation of the form

m m
(1'8) L =__21:“iL1,~> 1223 * O, zl I,uil = 1;
ie. m
Yo = 2 mapr(n), 1sksn.

=1

Clearly, 2" is symmetrically convex. Equivalently, " is the smallest
convex set in .# containing all points ¢L, where |¢|]=1. We note that O
is an interior point of 7.

For the real space & the u,; are all real and the ¢ are restricted to
e=+1.

Let 5 be a hyperplane of support for 2#. We can write it in the form
(1.9) H: dud=1.
k=1
For, since « >0, we can put 4, =a,/x in (1.1). All L,e ¥, that is

(1.10)

2 Appi(t)
F=1

Also, by (1.3) we must have

= |Px(t)] = 1.
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(1.11) sup|Px(t)) = 1; thatis, [Pyl =1.
teT

Conversely, if P(t)=37_,4,¢.() is any polynomial with ||P||=1, then,
by (1.8), for every Le X,

n m n
2 YAy Z s 2, Arr(Ty)
1 t=1 k=1

On choosing in (1.8) the 7; and u; so that |P(t,)|>1—¢ and u;P(z;)>0,
we see that |37y, 4, >1—¢, for any given &> 0.

Hence, in the dual space &, the hyperplanes of support for A are ex-
actly the 5 p generated by the polynomials P with |P||=1.

Similarly, the polynomials p with ||p||<1 generate all the bounding
hyperplanes of J¢".

= < max|P(7)| = 1.

4. THEOREM 1. The unit ball |L| <1 in & is the Euclidean closure X
of A.

Proor. Let € be the unit ball ||L||<1. If ||P||=1 then |L(P)|=
|P(¢)] <1. Hence, by (0.8), [|L]|<1 for all £ T. Hence ", and so X,
<®. Conversely, let ||L||<1. If 5 is any hyperplane of support for
A, then ||[Ps|=1 and

|L(Psxy)| =

=1.

n
EI:AkZ/k

Hence Lcs#,. It follows that € <%, the intersection of all such 5.
By the Corollary in Section 2, ¥ <4 .

REMARK. The unit-sphere |L||=1 in L is the frontier A , of X .

We give two corollaries to Theorem 1 the first of which allows a
simple geometrical determination of ||L|, for any given L, by means of
X . It should be noted that with @ also J¢ is given to us by the given
@i(t) and 7.

It is clear that, if L + O, then there exists exactly one ¢ >0 such that
oL belongs to the unit sphere, that is, to ¢ ,. Hence g||L||=1, or

CorOLLARY 1. If L+0 and 9L € X », 0> 0, then
(1.12) 1Ll = 1/e .

In the classical cases mentioned in the introduction, an algebraic
identification of 2" would be required to use this corollary for an actual
algebraic determination of ||L|. To my knowledge, no such identifica-
tion is known.
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CoroLLARY 2. If L=+0, then the maximal polynomials P of L as de-
fined in (0.7) are exactly those Py for which 5 is any of the hyperplanes
of support for A that pass through L||L].

Proor. We may assume that ||L||=1, so that Le X ,. If ¢ is any
hyperplane of support through L, then ||Py| =1 and by (1.9),

L(Py) = ZAkyk =

Hence P is maximal for L. Conversely, let P be maximal for L. Then
IIPil=1, and #p is a hyperplane of support. Also

n
=24y =1,
k=1
so that L e #p.

5. We are interested in those L, if any, for which Le X' nx ,.
Clearly ||L||=1 for such an L.

THEOREM 2. Let Le A'nA ,. Then L determines, for every e with
le] =1, a (possibly empty) subset T', of T', of which one at least is not empty,
such that every maximal polynomial P and every representation (1.8) of L

satisfies @) 7eU,T,.
(1.13) (i) If 7;eT,, then P(r,)) = ¢1.
(iii) p;P(r;) > 0.

In particular, every maximal polynomial P of L attains (in modulus) its
norm.

Proor. Consider any maximal polynomial P and any representation
(1.8) of L. Then ||P||=1 and

1 =L{P) = %Akyk = EAk,E HiPr(T2)
(1.14)

m m

= Zlﬂ () < Z lual |1P()] < _Ellml =

1= 1=

Hence we must have equality throughout which implies
IP(T't)I = 1, ”iP(T‘t) > 0 .

Keeping the representation (1.8) fixed, let argu;=arge,;, say. Then we
must have P(z;) = ¢! for every P.

THEOREM 3. Let # be any hyperplane of support for A and let Py
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be the polynomial corresponding to it. Then H N is the convex hull of
all points eL,, |e|=1, if any, that lie in #; or equivalently, for which
Pyp(r)=¢"1

Proor. (i) If Le A" ns# then L e A nA ,. By Corollary 2 of Theorem

1, P4 is maximal for L. Hence, by Theorem 2, L admits some represen-
tation

m
(1.15) L = ._EllliL1i Z Ll.t,bll?l vi ?

m
leg] =1, 21 lpil =1, Py(r)=¢71.
i=

It follows that L € , the convex hull of all eL, with Pyp(t)=¢"1.

(ii) Conversely, let L e %. Then certainly L<." so that ||L||<1.
Also L is of the form (1.15) so that

LPy) = EMLH(P%) Zme’ D=Slul=1.

Hence |L||=1 and so L € X", since ||Ps||=1. Thus P is maximal for
L so that, again by the Corollary 2 of Theorem 1, L € J#.

(iii) Let €* be the convex hull of all ¢L,, |¢| =1, that lie in 5#. By (i),
every such ¢L € €. Hence ¥*<%. On the other hand, every ¢L,
with Py(t)=¢"! lies in 5# since e¢L (Py)=¢c¢Px(t)=1 so that P,y is
maximal for ¢L,. Hence &>

CoROLLARY 1. X is open if, and only if, no polynomial p (other than
p=0) attains (in modulus) its norm.

Proor. We may assume that ||p||=1 so that the corresponding 5, is
a hyperplane of support for .

If [p(¢)| <1 for all ¢ € T, then the above hull % and thus o N, is
empty. If this is true for every such p, then 2" will be open. Conversely,
if K is open, then A" ns# and % are empty for every hyperplane of
support. Hence |p(t)| <1 for every p and every &.

COROLLARY 2. If A" s closed, then every polynomial p attains (in
modulus) its norm.

For p=0 this is always true. Otherwise, let ||p||=1. If X is closed
then X"'ns, is not empty. Hence p attains its norm.

It should be noted that the converse of Corollary 2 is not true. A simple
example (in the real case) is:

n = 2; pi(t) = (1 +cost), @,(t) = sint; T = (—3n,4x].
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We also note, in this connection, that, clearly, o is closed if, and only
if, @< A" where @ is the Euclidean closure of .

6. Every L admits representations of the form

(o] (o]

(1.16) L= _Zl.“iin§ or, Y =2 wp(t;), 1sksn,
1= t=1

where the sums are supposed to converge and the u; may be zero. In

fact, by (0.3), L admits even ‘finite”’ such representations.

THEOREM 4.
(1.17) 12| = int 3 |l

where the inf is taken with respect to all possible representations (1.16)
In fact, it suffices to admit only finite representations.

Remark. The right hand side of (1.17) is always a semi-norm for L;
it is a norm if, and only if, the ¢,(t) are bounded on 7'.

Proor oF THEOREM 4. For L =0 this is clear. Otherwise, by (1.16),

(i) EPNAAES N

since |LJ|<1. Hence ||L|| <inf ¥ |u,|.

(ii) Let 0<po<1/||L|l. By (1.12), oL € and thus, by (1.8), has a
finite representation with X7*|u;|=1. Hence L has such a representation
with 37 (u;| =1/o. As p*1/||L|, we see that inf 3 |u,| <||L||, even for finite
representations.

7. A representation (1.16) is said to be minimal for L if

(1.18) I = 3l -

=1
L =0 has, clearly, minimal representations with all u;=0 and the ¢,
arbitrary in them. Otherwise, L may, or may not, have minimal repre-
sentations, and there may be many. If L has a minimal representation
then, clearly, every AL has also one.

THEOREM 5. Let L+0.

(i) L has a minimal representation if, and only if, L[|L||e A". It has
then also a finite minimal representation.

(ii) Let (1.16), with p; for p;, be any minimal representation for L, with
all p,+0. Then the t;€ U,T,, as defined in Theorem 2 for L||L|, and

(1.19) argu; = arge if el
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that is, for given t € T, and for any p=+0 associated with t in a minimal
representation of L, argu is fully determined by L.

Proor. We may assume that ||L||=1 so that L e X .

(ia) Let LeA'. Then it has a finite representation (1.8) with
3T |p:)=1. This representation is minimal.

(ib) Suppose that L has a minimal representation. Then putting
pi=lpiles || =1, we have

=

o <) o0
Yr = zllljileifpk(tt) = 21 lpilagy, 15k=n,
P=

say, with 332 ,|u;/=1. Hence

o
Rey, = zl|/_li] Rea, ; o
Q=

(1.20) - ,  1sk=m, XYlml=1.
Imy, = 21|/1¢| Tma,
=

Now it is known [5, p. 10] that this finite system of 2n real linear equa-
tions in an infinity of positive “unknowns” |u,| has also a finite solution

m
Rey; = Z e; Reay;, m
(1.21) = , 1sksm, @20, Sg=1.
Imy, = ,Zlei Imay, =
i=
Hence also
m m m
(1.22) gy, = .ElQia’ik =D p*elt),  1sksn, '21 lw* =1,
1= =1 1=

where p*=p,¢;. Hence Le X .
(ii) Let P be any maximal polynomial and (1.16) be any minimal
representation of L. Then [compare (1.14)]

n o0 n
1 =LP) =3 Ay = Xt 2, Arpilts)
E=1 =1 k=1

(1.23) = ,ZlgiP(ti) = 21 i P(8)|
= 21 sl = 1,

from which follows

(1.24) |P@t)] =1, wpP(t) >0,

if p;+0. This, by Theorem 2, completes the proof.
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We note that, since |P(t;)|=|L,(P), all ||L,||=1. Hence L can have
an infinite minimal representation only if infinitely many L,e A nXA ,.

We also note that Theorem 3 determines all L in a given hyperplane
 of support for £ that have minimal representations.

CoroLLARY 1. X s open if, and only if, no L+0 has a minimal re-
presentation.

CoOROLLARY 2. X is closed if, and only tf, every L has a minimal repre-
sentation.

One should compare these corollaries (in particular, Corollary 2) with
those of Theorem 3.

In the case of the real space & all our results remain true with ¢ re-
stricted to the values + 1. Thus, in Theorem 2, L determines two sub-
sets T, and T'_ of T, of which one at least is not empty, such that, for
every representation (1.8) of L, and every maximal polynomial P

(i) 7, eT,.uT_,

(i) 7; €T, implies P(z,)=1, u;>0;

7, € T_ impliesP(7;)=—1, u;<0.

Consider the classical example of p(t)=30a,tk with |[p(f)]<1 on
T=[-1,1]. Here £ is closed. For the L of £ , each maximal poly-
nomial P reaches its norm 1. Unless P= +1, the number of points
where |P(7)]=11in [—1,1] is at most m+1 (=n). Hence the representa-
tion (1.8) for an L with some maximal P== + 1 is uniquely determined,
the u; automatically satisfying (ii) above. A similar result holds for
bounded trigonometrical polynomials.

I1. Finite systems of linear equations in an infinity of unknowns

1. We are given a column-finite matrix [a,], 1=1,2,3,..., 12k<n,
of rank n and we assume that all
(2.1) lag| = 1.

Consider the finite system of linear equations

(2.2) D ks =Y 1Sks=n,
i=1

in the unknowns u;. The series are supposed to converge. There is the
real and the complex case where all the occurring numbers are real, or
complex, respectively. We discuss the complex case; the results in the
real case are analoguous.

It is clear that, for any given numbers y,, there exist solutions of (2.2),
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even finite ones with at most n of the u,+0. We are interested in the
possible minimum solutions {u;} of (2.2), that is, solutions for which

lpal = int 3 |,

i=1 i=1

M3

(2.3)

[

where the inf is taken with respect to all possible solutions.

2. If we put ¢, (¢)=ay for 1=1,2,..., 1 £k <n, then the assumptions
of our theory are satisfied. 7 is the set of all ¢, |p,(t)| <1 on 7', and the
¢, are linearly independent on 7. Any solution of the system (2.2) gives
a representation (1.16) of the linear functional L={y,}. Polynomials
p(t) are sequences defined as linear combinations

n
(2.4) p(i) -——kz Akaik, ’l: = 1,2, e ooy
=1

of the columns of the matrix [a;]; and ||p||=sup,|p(:)]. The spotting
functionals are the column points

(2.5) L; = {auti-1>

and " is the symmetric convex hull of this given sequence {L,} of points
in Z. Its points are of the form

m m
(2.6) L = .Ell"iLﬁ’ #i*0, le,“jl =1.
= =

3. We shall say that two complex sequences {«,} and {8;} have equal
argument if
(2.7) argo; = argf;  whenever «;=%0, §;+0.

We now restate Theorem 5 as follows:

THEOREM 6. Suppose that not all y,=0.

(i) If L={y,} then the system (2.2) has a minimal solution if, and only
if, L||L|| € A . It has then also a finite minimal solution.

(ii) Al minimal solutions of (2.2) have equal argument.

The two corollaries of Theorem 5 can be restated as

THEOREM 7.

(i) o is open if, and only if, no system (2.2), with X7 |y,|2> 0, has mini-
mal solutions.

(i) A is closed if, and only if, every system (2.2) has minimal solutions.

4. Of particular interest is the case where each row of the matrix
[a;] converges; say,



LINEAR FUNCTIONALS ON BOUNDED POLYNOMIALS OF GIVEN ORDER 65

(2.8) ay—>A4 asi—>oo, 1=Zksn; or, L,>A={4}.
We shall say that a sequence {«;} is directed if

(2.9) either (i) ;=0 eventually;
or (ii) arga; > 6, 0=<0<2xn for all «;+0.

Two sequences {«,} and {8;} are equally directed if (a) each is directed (b)
both have equal argument (¢) both have the same 6 of (2.9) if they are
both in case (ii) there.

THEOREM 8. Suppose that L; -~ A. Then the system (2.2) has a minimal
solution, for every choice of the y,, if and only if, A e A .
Moreover, every minimal solution is directed and all are equally directed.

Proor. First, & is closed if, and only if, 4 € /. Hence Theorem 7
(ii), proves the first part of our statement.

If all y,, =0, then all ;=0 for a minimal solution. This unique minimal
solution is directed.

Otherwise, all minimal solutions {u;} have equal argument, by Theo-
rem 6 (ii). Let P be a maximal polynomial for L= {y,}. Then |P|=1
and

(2.10) L(P) =k21Akyk = zlﬂtkzlAkatk = ZII_MP(@') = |14 .

Here are two possibilities. Either {y} is finite and hence directed; or
there are infinitely many u;+ 0. Then for these y;, by (1.19),

(2.11) P@) =™,  argu, = 0,,

say. Since P(i)=Ly(P) > A(P)=¢", say, we conclude that argu; > 0
for p;+0. Hence {u,} is directed. Again by (1.19), the 6, are fully de-
termined by L, so that all minimal solutions {y,;} are equally directed.

CorOLLARY. If A is an interior point of X then all minimal solutions
{u:} of (2.2) are finite. In fact, there exists an iy such that p;=0 for i 21,
Sfor all minimal solutions.

This follows immediately from the remark after (1.24).

In the case A=0, I had proved this corollary before [4, p. 98]. In
this case 2 is a subspace of the space ¢, of all sequences {x;} that tend
to zero, normed by the uniform norm. One knows the form of a general
linear functional on ¢, and a simple application of the Hahn-Banach
extension theorem yields the above result.

The present method is much more elementary, more general, and more
revealing.

Math. Scand. 10 — 5
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We add two remarks:
(a) Suppose that L; -~ A where A ¢ #". We add to our matrix a zero

column @, =4;, when our system becomes
o

(2.12) Holw +2 M = Yoo 1SkSm;  ag<1.
=1

Since also |4;| <1, Theorem 8 becomes applicable. Note, however, that
a minimal solution has now to take the number u, into account (see
[4]).

(b) Let A be any limiting point of the L,, and let L~ A, say. We
can now apply Theorem 8, or the above remark to it, by restricting the ¢
to the 4;. In general, this will diminish &, and minimal solutions are
now restricted to those for which ;=0 whenever ¢+, for all j.

5. In the real case all u;+ 0 are either positive or negative. In Theorem
6 all minimal solutions {u;} are simultaneously, for the same i, either non-
negative or non-positive. In Theorem 8, they are all, for iz 1, of the same
sign (see [4]).

III. The finite moment problem.
1. We consider the finite moment problem

(3.1) Yy = f(,vk(t) du(t), 1=k<n.

Here the integrals are Lebesgue-Stieltjes integrals over the N-dimensional
real Euclidean space 7' = &, the u(t) are distribution functions of bounded
variation over T, the ¢,(t) are arbitrary functions, linearly independent,
and satisfying |, (f)| <1 on T

For given y,, u(t) is a solution of (3.1) if the integrals (3.1) converge.
This implies that the ¢,(¢) will have to be measurable with respect to
the ‘“‘signed” measure u generated by the solution u(f). Solutions u(f)
that generate the same measure u are considered as equivalent. There is
the real and the complex case where all the numbers and functions in-
volved are real, or complex, respectively. We shall deal with the com-
plex case. The real case is much simpler and has analoguous results.
That there exists solutions for every choice of the y, is clear. There exist,
by (0.3), even finite (atomic) solutions of the form

(3.2) Y =i§1/‘iq)k(ti) ,

where u(t) is a “‘stepfunction” having “‘signed mass’ u; at the points #;
only.



LINEAR FUNCTIONALS ON BOUNDED POLYNOMIALS OF GIVEN ORDER 67

2. We require some properties of complex Lebesgue-Stieltjes integrals.
For these we refer to [1, chapter III].

(i) Let the point ¢ in &'y have the coordinates «;, 1 <1< N, and let (J]
denote an interval a;<x;<b,, 1=1,2,...,N, closed to the right. D de-
notes a “division” &y=U7(J,] in disjoint such intervals. Similarly, if
v={§}, &,=(x;<&], then D, denotes a division &, =U7 (J;] of disjoint
such intervals. Let
(3.3) 4,J] = ;(—1)"(”,“(1) ;
where the sum is extended over all 2V corners 4 of the closure of (J],
and »(4) is the number of a; amongst the co-ordinates of 2. Next, one puts

(3.4) oD) = ?m,,(ml, 0,(D,) = ? 40701,
and
(3.5) v(0) = supo,(D), v(r) = supo,(D,),

where the sup is taken with respect to all possible divisions D, or D,,
respectively.

The function u(t) is of bounded variation on &y if v(o0) < oo; v(o0) is
then the total variation of u(¢f) over &y. An equivalent definition of
bounded variation is that both Reyu(t) and Im u(t) should be of bounded
variation in the (more familiar) corresponding sense. The function v(z)
“increases” with 7; that is, v(7,) 2 v(7y) if £, > &,. If v(7)is “continuous
to the right”, that is, if v(7) generates a Lebesgue—Stieltjes (non-negative)
measure v over &y, then u(?) is said to be a Lebesgue-Stieltjes distri-
bution function for a signed measure u, defined, in the usual way, via
(3.3).

(ii) The integral { f(¢)du(t) can be defined as a combination of four
real Lebesgue—Stieltjes integrals on splitting both f(t) and x(¢) in real
and imaginary parts. By the Radon-Nikodym theorem [1, p. 181}, there
exists, given u(t), a function y,(t) such that

(3.6) lx®l =1 pp. (v)
and so that
(3.7) [ 1@ duy = {10 2.0 vt

for every f(t) integrable with respect to u(t). Also

(3.8) 10 du| s [i701 aote .
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3. We write the system (3.1) in the form

(3.9) L= f L, du(t) -

Let

(3.10) Ll = inf [do(),

where the inf is extended over all possible representations (3.9) of L.
THEOREM 9.

(3.11) Ille = IILII -

Proor. By (3.2) and (1.17), ||L||x <||L|]. On the other hand, let P be
a maximal polynomial for L (with respect to ||L||). Then ||P||=1 and,
by (3.8)

IL|| = L(P) = fPt)dy f]P ()| dv(t) fdv
Hence ||L|| < ||L]|«-

4. For a given L we may have minimal representations (2.3), with

(3.12) L=3why 3lul = IL;
and we may have minimal solutions u(t) of (3.9), with
(3.13) L= [Liduw),  [dot) = Ll = IZ1.
THEOREM 10. L has a minimal solution if, and only if, it has a minimal

representation.

Proor. (i) If L has a minimal representation, then it has, by Theorem 5,
also a finite one. This is also a minimal solution by a stepfunction.

(ii) Conversely, we may assume that |[L||=1 and that L has a mini-
mal solution u(t). By (3.6) and (3.7), we have

(3.14) L = [Ly,@dot), 15,0 =1 pp. @) [dut) = 1
Hence
(3.15) ReL = f Re(Liz,(H) dv(), ImL = f Tm Ly, (1)) do®) ,

or equivalently, for 1<k =n,

Reyy = [Re(py(t)z, (1) dutt),

(3.16)
Imy, = [Tm(pu0)2,()) du() -
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Thus the Rey,, Imy, are 2n real moments with respect to the 2n real
functions Re(p(f) 1,(t)), Im(px(t)2.(?)), and with mass {do(t)=1. It is
known (see [5, p. 5]) that this implies the existence of a finite represen-
tation m

Rey, = Z 0; Re(q’k(ti)xﬁ(ti)) ,
(3.17) =1

Imy, = gl 0 Tm (pi(t:) 2,(8)) ,

12k=mn, 0,0, 3 0;=1; or

(3.18) Y = 'Zlei‘Pk(ti)xﬁ(ti) = _Elx_wk(ti), .lel_ltl =1,

where u;=0,7,(t;), since, by (3.6), we may assume all |y,(¢)|=1. Now
(3.18) is a (finite) minimal representation for L, and the theorem is
proved.

We can now apply our general theory and obtain immediately

THEOREM 11.

(i) If the system (3.1) (or (3.9)) has a minimal solution, then all maximal
polynomials P of L attain their norm.

(ii) A i3 open if, and only if, no L=+0 has a minimal solution; or if,
and only if, no polynomial p (= 0) attains its norm.

(iii) o 18 closed if, and only if, every L has a minimal solution ; then all
P attain their norms.

5. Our final result corresponds to Theorem 5 (ii).

THEOREM 12. Suppose that L=+ 0.
If L has minimal solution then it determines, for every e with |e|=1,
a subset T;® of &y, of which at least one is not empty, such that, on any T [®,

(3.19) P@it) =¢1 pp. (v)
and
(3.20) xﬁ(t) =e pp. (2

Jor every pair of a maximal polynomial P(t) and a minimal solution u(t)
Jor L.

Proor. We may assume that ||Lj|=1. Then, for every P(t) and u(?),
we have |P||=1, L(P)=1, and |y,(¢)| =1 p.p. (v). Now
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(3.21) 1= LP) = [Pdu= [Pydv s [Py, dv

= [iPd s [an =1,

so that there must be equality throughout. Hence

22 [(-Pg)dv= [A-1Pg)de = [A-IP)de =0,
which implies

(8.23) [Pl =1 pp. (@, Pyl =1 pp. ().

If P, is a fixed maximal polynomial, then, by Theorem 11(i), the set
T'® where Py(t)=¢"! is, for at least one ¢, not empty. By (3.23), every p
satisfies (3.20) there; and hence also every P(t) satisfies (3.19) there.

6. In the case of the real moment problem (3.1) all our results remain
valid. The ¢ in Theorem 12 are now restricted to + 1. An equivalent
result can be obtained in terms of the positive and negative variation-
distributions v*(¢) and »~(f). The use of the Radon-Nikodym theorem
can then be avoided.
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