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BOUNDARY VALUES IN FUNCTION SPACES

EBBE THUE POULSEN

1. Introduction.

The present paper is a continuation of the article [2] by the author
suggested by Lions, cf. [1].

We assume that on the interval I ={0<#< 1} the function vy is locally
(i.e. away from 0) in #? and that p-1is locally in £¢ (with 1/g+1/¢'=1).
We consider the space W= W™(y,q,X) of those functions 4 on I with
values in the Banach space X, for which yu™ e #9(I,X). Since ye £{,,
W contains the space C;™(I,X) of infinitely differentiable functions from
I into X which vanish near 0. Our main results are as follows:

The limit w9(0)=1limuY(t) exists for all w € W if and only if

t—>0

tm-i-1y-1 ¢ ¥4, (Theorem 3.3) .

Let n be the largest j <m for which the last condition of theorem 3.3 holds.
Then the closure of Co™® itn W consists of all we W for which

u(0) = %'(0) = ... = u™(0) = 0. (Theorem 4.1).

This result may be of interest for the applications of Banach space
and Hilbert space methods to partial differential equations, for in that
context the property of “having boundary values 0” is generally sub-
stituted by ‘‘belonging to the closure of Cy™”.

The author is indebted to the referee for valuable suggestions and
improvements.

2. Notation and definitions.
_ We denote by I the interval I={t|0<¢=<1}, and by I the interval
I={t|ost<1).
We shall consider functions » defined on I or I and with values in a
Banach space X; the norm of the element 2 € X being denoted |z]|.
C¥(,X) will denote the space of k times continuously differentiable
functions from I into X (one-sided derivatives at the endpoint).
Ck(I,X) is defined analogously.
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Co*(I,X) (or just Cy¥) denotes the subspace of C¥(I,X) consisting of
functions with compact support in I (i.e. vanishing near 0).

As usual C*(I,X) (and analogously C*(I,X) and Cy>(I,X)) is defined
by -
C>(I1,X) = ) CXI,X).

k=1

By #9(X) we shall denote the Banach space of measurable functions »
from I into X with

IA
L]
A
8

1 1/g
(flu(t)lth) <o for 1
0

ess sup |u(t)] < 0o for ¢ = .
tel

lelly =

The space C*(I,X) is a Banach space with the norm
[lloo + l1 oo + - -+ + [Pl

By yp weshall denote a positive measurable function on I, and W™)(yp,¢, X)
(or just W) will denote the space of functions % from I into X with the
properties

1) u is m—1 times continuously differentiable and u™-V is locally

absolutely continuous in 7;
2) yum™ e LYX).
We shall assume that
yp € £9 on every interval {¢ < ¢t < 1},
so that C>(I,X) < Wm(y,q, X).

Since we are going to study the behavior of functions in W near 0,
we do not want to allow singularities in points of I'; it turns out that the
relevant condition on v is

y~le £ on every interval {¢< ¢ < 1},

¢’ being determined by 1/¢+1/¢’=1. The space W™)(y,q,X) is a Banach
space with the norm m—

1
[/l =.Zolu""(1)l + [put™l, -
i

Wo™(1,q,X) (or just W,) will denote the closure in W of Cy*(I,X).

DEeFINITION 2.1. We shall say that the function u from I into X has the
boundary value u, at 0 if u(t) > u, for t - 0.
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REMARK 2.2. If u is a differentiable function from 7 into X, and if »’
has a boundary value %'y at 0, then % has a boundary value u, at 0, and
if u is extended by continuity to a function @ defined on I, then % is
differentiable at 0 with the derivative u’;. (Proof just as for real valued
functions.)

In particular, if » € C'(I,X) and %' has a boundary value at 0, then
e C'(I,X).

For convenience, we shall not distinguish between a function in

C*(I,X) and its restriction to I (which is a function in C¥(I, X)).

3. On existence of boundary values.

Lemma 3.1. Let v be a locally absolutely continuous function from I
into X, and assume that

1
ft"lv’(t)ldt < oo, where y 0.
0

T}Len‘, 'lrf y> O’ t)’v(t) -0 fOT t—-0 )
and 1

fﬁ—llv(t)| dt < oo,

0
while, if y = 0,

ve CY,X).

Proor. First, let y>0. Then, for 0<t<ax]1,

a

f V'(s)ds

t

@) = ¢ + ' |v(a)|

a
< |87]|v'(s)] ds + ¢ |v(a)] ,
0
so that

lim sup ¢ |v(t)| < [s”|v'(s)| ds
t—>0
0
for every a > 0. It follows that

o) -0 for ¢t—-0.

Similarly, choosing a=1,
1

tr1o(t)| < -2 f [v'(9)] ds + t2]u(1)] ,

¢
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so that (integration by parts)

1

f tr-1|v(t)|dt

€

IIA

1 1
y—1[—87f|v'(t)| dt + ft7|v’(t)| dt + (1—e¢)]v(1)]

IIA

1

y-‘[ [ewara + Iv(l)l]
0

for every ¢> 0, and hence

1
ftv—llv(t)l dt < .
0

Secondly, if ¥ =0, then v is absolutely continuous and hence uniformly
continuous on I, and the assertion follows since X is complete.

CoRrROLLARY 3.2. If v € C*-Y(I,X) with v*-V Jocally absolutely continuous
and 1
f te-1|v®(t)] dt < oo,
0

then v e C°(1,X).

THEOREM 3.3. Assume 1=<q=<oco and 0=<j<m. Then the following
assertions are equivalent:

(i) Wm(y,q,X) < OI(I,X)
(ii) tm-i-ly-le P4,
where 1/g+1[q’ =1.

Proor. (ii)=>(i) is a consequence of Corollary 3.2. For if » € W, then
r(pu(m) e $Q(X)
and if (ii) holds, it follows by Holder’s inequality that

1
f tm=i-1|um(t)| dt < oo .
0

Corollary 3.2 gives the continuity of % on I, and Remark 2.2 shows that
(i) holds.
(i)=> (ii). It suffices to show that if

{m—i-1 V’_l ¢ gq”
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then there exists a real valued function fe W)(y,q, R) such that 9 is
unbounded, for then the function » defined by

u(t) = f(t), 0+fvelX,
belongs to W™)(y,q,X) and not to Ci(I,X). Now, if tn—i-1y-1¢ 27 there
exists a non-negative function g € £ such that

[m-iryrg0 at = oo

If we define (for ¢> 0)
m-1
m—1,,-1
s = =2 f (s—t)"1y~s)g(s) ds
then f™=y-1g so that fe W®™)(yp,q,R). On the other hand,

1
(= =i m—j = )1 fO0) = [ (s =ty yN(s)g(s) ds

1
> [am i1y (s)g(e) ds = oo
0
for t — 0.

CoroLLARY 3.4. If tm-i-1y-le L7 then the imbedding mapping of
W (p.q,X) into C¥(1,X) is continuous.
Proor. For 0=¢<j and 0<¢=<1 we have the estimate

1
. 1 )
[w9t)| = |[u91)] + ———— f sm=i=1|ulm(s)| ds

(m—1—1)! ;
= [u(1)] + Clls™9-1p2 lpum],
= Cllully -
ReMARK 3.5. The imbedding mapping of W™(y,q,X) into C/(I,X)

is not compact unless X is finite-dimensional (consider a bounded set of
constant functions: it is not necessarily compact).

CoroLLARY 3.6. If tm—i-ly-le L7 then u(0)=u'(0)=...=uP0)=0
for u€ Wo("')('l’, q:X)'

Proor. Each of the mappings u - u®(0) is a continuous function on
C’(1,X) and hence on W, and it is 0 on Cy®(I,X), which is dense in W,,.

Math. Scand. 10 — 4
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4. Characterization of W,™)(1,q, X).

In this section we shall prove a converse of Corollary 3.6, namely that
(if ¢ < o0) W, is exactly the subspace of W consisting of those functions »
for which all the boundary values «%(0) which exist by virtue of theorem
3.3 vanish.

THEOREM 4.1. Assume that 1 <q < oo.

(i) If, for some n with 0 <m<m,

tmi-ly-le 7 for 0=j=m,
and

then

tm-i-ly-l¢ L7 for n<j<m,

Wo™(p,q,X) = {u € Wm(y,q,X)|u?0) = 0for 0 < j < n}.
(i) If tm-1yp-1 ¢ L9 then W™ (yp,q,X)=Wm(y,q,X).

Proor. Since W, is the closure in W of C;*(I,X), it follows that W,
is the annihilator in W of the annihilator in W* (the dual of W) of C,>;
that is, if we define

A = {LeW*|{L,u) = 0forall ue Cy™},

then Wo={ueW|{(Lu)y=0forall Le A}.

Thus the theorem follows (in view of Corollary 3.6) if we prove that in
case (i) every functional L € 4 is of the form

n

Lywy = 3 Q,ud0))  with e X*,

j=0

and that in case (ii) the only functional in 4 is 0.

First, let us consider the case where X is one-dimensional (that is,
X is the scalar field F, which is either the real or complex numbers).
Then, since the norm in W is defined by

m—1 )
by = /™l + 3 O
J::
every continuous linear functional 4 on W is of the form
1
m—1 .
@p> = [gOwofme i + 3 e o),
0 =0
where g € 7 and a;,j=0, 1,..., m—1, are scalars.

Note that y € Z{, by assumption, so that gy € £L, is a distribution
in I. Now, if 1€ A, then the distribution gy satisfies the equation
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((%)m(gw) _

that is m—1
gt p(t) = 3 bt
7=0
or m—1
gt) = 3 by
]=

Since p-1 € ZL,, it follows from g € £7 that

loc?

b; =0 forj< m—n—1in case (i),

b; =0 forally in case (ii) .

Furthermore, if we consider j2m—n—1 (in case (i)), then it follows
from Lemma 3.1 that integration by parts is permissible in the integral

1
[ermaya = forn) =g+ .+
0

+(= 15! (fomd=D(1) = fm=3-1(0)) .

Inserting the expression for 1, we get
n m—1
Af) = Z Lf0) + 3 k; fO(1),
j=0 j=0

where I; and k; are scalars, and where the first sum should be inter-
preted as 0 in case (ii). It is clear, however, that all k; must vanish since
A,f>=0 for all fe Cy®. Thus we have proved that

Ay = SLIN0),
J=0

where the sum should be interpreted as 0 in the case (ii).
Now, let X be an arbitrary Banach space over the scalar field F. It

is clear that if fe W™(y,q,F) and z € X, then fr € W™(yp,q,X), where
Sz is the function defined by

(fr)t) = f(t)x for tel.

Furthermore, for each x the mapping f-> fr is continuous and maps
Co*(I, F) into Cy*(1,X). Consequently, if L is a continuous linear func-
tional on Wo)(y,q,X), then A(z) defined by

O'(x)’f) = <L’fx>
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is a continuous linear functional on W™(y,q,F), and if L€ A, then it
follows from the result above that

(Lfzy = 3 1(a) f(0)

J=0

Since the mapping « — #/x is a continuous mapping of X into W™ for
0 <j = n it follows that the (obviously linear) functionals l; are continuous,
whence we can write

Lfed = 3 023 1910) = 3 @ (121900
2
with lj e X*. We then have
*) (Lyuy = z Qs u(0)

for all w € W(y,q,X) which are flmte linear combinations of functions
of the form fx. Since these functions u are dense in W and both sides
of (*) are continuous, it follows that (*) holds for all » € W, and the
theorem is proved.

CoroLLARY 4.2. The smooth functions are dense in W™ (y,q, X) — more
exactly C°(I,X) n Wm(yp,q,X) is dense in W(p,q,X).

Proor. Let v € W and define

no4i
p(t) = 3 —u0).
j=0J"
Then p € C°(1,X)n Wm(y,q,X),
a,nd V=uU—pE Wo(’")(%q,X)

by Theorem 4.1, that is, v can be approximated in W by functions in

I X) € 6°(1,X)n Wm(y,q,X) .
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