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GENETIC ALGEBRAS STUDIED RECURSIVELY
AND BY MEANS OF DIFFERENTIAL OPERATORS

OLAV REIERSOL

1. Introduction.

An algebra may be defined as a vector space together with a multi-
plication rule for the vectors such that

(1.1) The vector space is closed with respect to multiplication.
(1.2) Multiplication is distributive with respect to vector addition.
(1.3) A scalar factor may be moved freely within a product of vectors.

We shall consider a particular kind of non-associative algebras which
have been called genetic algebras because of their application in popula-
tion genetics. The study of these algebras and their genetical interpreta-
tions was initiated by I. M. H. Etherington [2]-[7]. Papers on genetic
algebras have also been published by Gonshor [12], Raffin [17] and
Schafer [18].

In this paper I shall present a new method of studying genetic algebras.
One aspect of the method is that the multiplication rules are expressed
by means of differential operators and that these operators are used in
the study of the algebras. This makes it possible to avoid an explicit
consideration of the components of the elements. Another aspect of the
method is that the algebras are studied recursively. In the study of a
genetic algebra corresponding to % linked loci we make use of certain
homomorphisms of this algebra onto algebras corresponding to smaller
numbers of loci. In this way we may use results already found for the
latter algebras in the derivation of results for the algebra corresponding
to k linked loci.

In the present paper we shall consider genetic algebras in the case of
haploid gametes only, and further restrict the study to the case when the
linkage distribution is the same for both sexes. It is evident, however,
that the method is applicable to other genetic algebras.

2. Preliminaries on differential operators.
Let f and g be functions of a set of variables x,, .. .,x,, such that the
Received June 18, 1960.
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derivatives considered in the following exist. In the present paper the
differential operators will be applied to polynomials only, so that all
derivatives exist. We note that derivatives of polynomials may be defined
algebraically, and in this paper all operators may be regarded as purely
algebraic operators.
Let D, be defined by
of

(2.1) Dzif = 'a‘;
1

and let a linear form in the D, be defined by

m m
(2'2) (_zlc'i ‘Dx.) f = '21% (D:c,f) ’
where c,, . ..,c, are constants. The operator
m
i=1

has the same properties as a differential operator with respect to a single
variable,

(2.4) D(f+9) = Df+Dyg,
(2.5) D(¢f) = c(Df),
(2.6) D(fg) = f(Dg)+g(Df) .

We may similarly define polynomials in the operators D,. If D is
such a polynomial, (2.4) and (2.5) are still valid. If D, and D, are two
polynomials in the D, with constant coefficients we have in addition

(2.7) (D1+Dy)f = Dif+D,f,
(2.8) (DiDy)f = Dl(sz) ’
(2.9) (eD)f = ¢(Df) .
Let us next consider k differential operators D, ...,D, each of which

is a linear form in the operators D, with constant coefficients. If each
D, operates on a product fg we may instead of D; consider two operators
D,;, and D;, defined by

(2.10) Dy(fg) = 9(Dif) ,
(2.11) Dyy(fg) = f(Dyg) .
(Compare Stephens [19, p. 33].) Then

(2.12) 'D’i = 'D’tl+D'iZ'

If we have an expression of the form
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(2.13) DS, D (D .. DP)DL. .. D),

where each D; within a parenthesis operates only within the parenthesis,
while the D;* operate on the product of the two parentheses, then we
may replace each D; which operates on both factors by D,, + D,,, each
D, which operates on f only by D,;, and each D, which operates on g
only by D;,. Formula (2.13) may thus be rewritten in the form

2
(2.14) TI D+ D) Dy Dyl fy -
i=1
If we have a sum of terms of the form (2.13), each multiplied by a con-
stant, then we may write each term in the form (2.14) and get an expres-
sion of the form

(2.15) P(Dyy, Dy, - .., Dy, Dio)fg

where P denotes a polynomial with constant coefficients.
If Q,0,,Q, are polynomials in Dy,,D,,,...,D;,, D, we have

(2.16) Q(fig1+[292) = L()191) +L2(f29) »
(2.17) Q(cfg) = c(f9) ,

(2.18) (2,+2,)fg = 2ifg+ 209,
(2.19) (2:2,)fg = (2:f9)

(2.20) (£2:2,)fg = (2:92))fg .

3. Preliminaries on linear difference equations with constant coefficients.

We shall give a summary of those results which are needed for the
purpose of the present paper. For a more detailed treatment the reader
is referred to textbooks on finite differences or difference equations, for
instance the textbook by Jordan [13].

We consider a linear difference equation

k
(3.1) 2. b, f(n+1) = g(n),
i=0
where g(n) is a known function and bgy,b,,...,b, are constants. The

variable » will be supposed to take integer values only. Using the operator
E, defined by Ef(n)=f(n+1), we may write (3.1) in the form

(3.2) Y(&)f(n) = g(n),
where

k
(3.3) p(B) = Y b B¢ .

1=0
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Let us first consider the homogeneous equation

(3.4) y(E)f(n) = 0.
If the equation y(z)=0 has roots ry,7,, . ..,r, which are all distinct, the
general solution of (3.4) is
k
(3.5) fln) =3 erm,
=1
where the c; are arbitrary constants (real or complex).
If ry=ry=...=r, the m first terms on the right-hand side of (3.5)
will be replaced by
(3.6) (e +cn+ ... +e e,

A similar rule holds for any multiple root.
Let us next consider equation (3.2) when g(n) has the form

h
(3.7) g(n) =3 q;a..
=1
If y(a;) + 0 for every ¢, then (3.2) has the solution
h q.
(3.8) (n) = “—a",
/ igl v(a,)

and the general solution of (3.2) is the sum of (3.8) and the general
solution of (3.4). The case when g(n) contains a constant term is a special
case of (3.7) which we obtain by setting one of the a; equal to 1.

If g(n) is of the form

(3.9) g(n) = P(n)a™,

where P(n) is a polynomial in » and a is a root of y(x) of multiplicity m,
then (3.2) has a solution of the form

(3.10) fm) = Qm)ar,

where @(n) is a polynomial whose degree is greater than the degree of
P(n) by m. The m coefficients of the terms of degree lower than m in
@(n) will be arbitrary. The other coefficients of {(n) may be determined
by insertion of (3.10) with undetermined coefficients in the difference
equation and comparing coefficients on both sides.

If we have a solution f;(n) of the equation

Y(B) f(n) = gi(n)

for ©=1,2,...,q, then the equation
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Y(E) f(n) = Z].,19:n)
has the solution f(n)=39_, f;(n).

4. Recombination operators.

Let us consider a set S of integers and the partitions of this set into
two disjoint subsets. When we include the empty set and the set S itself
as subsets of §, the number of such partitions is 2*-1, where k is the
number of elements of S. Let U’ and U"’ be two complementary disjoint
subsets of § and let

Uv=U,U0"=(U",T"
denote the partition of § defined by the subsets U’ and U”’. Let A=
a,a,y...0; and B=bb,...b,. Let U be a partition of the set S=
(1,2,...,k). The recombination operator R(U) will be defined by

(4.1) R(U)(A,B) = } ((TTicv %) TTicv-8:) + ([Ticvr @) [Ticorby)) -
Let D,, and D,, denote the differential operators 9/da, and 9/0b;. Since

(4.2) TLcv = (ILicv-Da) 4
and
(4.3) ILicvrt = (i Da)4

we get from (4.1)
R(U)(A4,B) = }((ITicv- Do) TLic v~ Do) + ([Ticv~Day) [Licrr Dy)) AB

or
(4.4) R(U) (4,B) = R(U)(IT;csDap TTicsDs)AB,

where R(U) on the right hand side operates on the differential operators
only, not on 4B.

5. Presentation of the algebras.
We shall consider an algebra 7, whose elements ¢ are multilinear
forms
my mk
(5.1) Q =.Z ....Zg,-lu_ika”l...akik,
11=1 =1
where the g; ; are real numbers and the a,, are variables. Each
element of the form (5.1) with real coefficients will be supposed to belong
to the algebra.
Addition of two elements of the algebra is taken to mean addition of
polynomials in the usual sense, i.e.
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my mr
Zl ziqn R Zl Zlg i1 i Paiy e v Dy
1= in= i1= =
(5.2) -
‘lzl “cz (gu wk+g .. )a’lil' . 'a’kik .
1= =

Multiplication of G by a constant (a real number) is taken to mean
multiplication of the polynomial by the real number in the usual sense, i.e.

(5.3) c@ = Z chu x iy - Vg »

=1 =1

We shall next define a multiplication rule for the algebra. We shall
use x as a symbol for this multiplication and we shall call it cross multi-
plication. We shall let G,G, denote the product of the two polynomials
G, and G, in the usual sense. If G, and G, belong to 7, then @,G, does
not belong to &7, because 7, contains polynomials of a fixed degree k,
while the degree of ¢,@, is 2k.

The multiplication ¢; x G, will be defined in such a way that:

(5.4) If @, and G, belong to &7, then @, x G, belongs to o, .
(5.5) GixGy = GyxQ, .
(5.6) (cGy) x Gy = c(Gy x Gy) .
(6.7) Gy x (G +G;) = (G1xGy) + (G x Gy) .
The mym,. ..m; elements of the form A4 =a,; ay,...a;;, form a basis
of the algebra 27,. Because of (5.6) and (5.7) the multiplication rule of

the algebra will be determined if it is given for any pair of basis elements.
The product of two basis elements 4, and A4, is defined by

(5.8) AyxAd, = 3 NU)R(U) A, 4,,
UeW(@S)

where W(S) is the set of all partitions of the set S=(1,2,...,k) into two
disjoint subsets, where A(U) is a real number which is a function of U,
and where 3y 5 A(U)=1.

Let

(5.9) D, =3 D,
and let us use the notation
Djl(AlAz) = A2(DjA1) ’ DjZ(A1A2) = Al(DjAz) ’

which we used previously in Section 2. The multiplication rule may be
rewritten in the form
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610)  dxdy = 3 40) (RO) (TTes Div Thjs D)) ads

where R(U) operates on the differential operators, not on A4,4,. The
proof is as follows: Since D,; operates on 4, only, and since 4, contains
only one a;;, say Wi for each j, the operator D;, is in this case equivalent
to the operator D, and the equivalence between (5.8) and (5.10) follows
from (4.4).

Since the operator R(U)(I1;csDj1 ITjesD)e) is independent of 4,4,,
we get by means of (2.16)—(2.18)
(6.11) Gy xG, =UEZW(S)Z(U) R(U)(ITjes Dj1> Tljes Pj2) G1Ge s
where G, and @, are any two elements of the algebra &7,. It is easy to
see that the multiplication defined by (5.11) actually satisfies (5.4)—(5.7).
We may thus state

ajs;

THEOREM 1. The set of all multilinear forms of the form (5.1) with real
coefficients together with an addition defined by (5.2), a multiplication by a
scalar defined by (5.3) and a cross multiplication defined by (5.11) forms a
commutative algebra. The multiplication rule of the basis elements is given
by (5.8).

We have considered a set S consisting of the integers 1,2,...,k. Itis
a formal generalization only to consider a set § consisting of any given
set of k positive integers. With obvious modifications of (5.1)-(5.3), the
results of this section are still valid.

We have considered an algebra with parameters which are real num-
bers. If we vary the parameters we get a family of algebras. Let us
denote a particular algebra by =f(mg, Ag), where mg denotes the set of
my for which j belongs to S, and where 44 denotes the set of all A(U) for
which U belongs to W(S). Let us denote by (/) the class of all algebras
where the set S consists of k integers.

We shall write down more explicitly the multiplication rule for the
first values of k. Instead of A(U)=A((U’,U")) we shall write A(U’,U""),
and we shall write A(S) when U is the partition consisting of S and the
empty set.

In the algebra &7;(m,)

(5.12) Gy x Gy = 3(G1(D1Gs) + Gy(D1Gy))
In an algebra of the class (</,)

(5.13) Gy x Gy = 3A(12)(G(D1DyG,) + Go(D1D,Gy)) +
+ §1(1,2)((D1G1)(D2G2)+ (DZGI)(D1G2)) .
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In an algebra of the class (<7;)
(5.14) Gy x Gy = }A(123)(G1(D,D,DyGs) + Gy(D1 D, D3 34)) +
3
+ %21 A(3,5k) ((DG1)(D;DyGy) + (DyGo)(D; D, Gy)) 5

where (ijk) is a permutation of (123).
In an algebra of the class (27,)

(5.18) Gy x Gy = }A(1234) (Gy(D1D,D3D,G,) + Go(D, D, D3D,G1)) +
s
+ %_21 A3, jkh) ((D1G1)(D1D #D1Gs) + (D,Gy)(D;D,.D hGl)) +

+% Zj}*(":j skh) ((D¢D;G1)(D;D3Gs) + (D;D;G5)(Dy Dy Gy)) s
where (ijkh) is a permutation of (1234).
In the formulae (5.13)—(5.15) each D; operates only within the paren-
thesis in which it is situated.
We note finally that the effect of the operator D; on an element G of
the form (5.1) is to remove the factor By, from each term. We have for
instance

my m1
(5.16) DLG =z Xy Z g 'il--oik—lal’h' . .ak_l,ik_l ’
=1 Up—1=1
where
mg
(5'17) g‘il...ik_l =z g’il-..ik ¢
=1

The operator D, is therefore essentially a summation operator. From the
point of view of probability distributions the operator D; may be said to
perform a marginalization of a distribution.

6. Genetic interpretations of Section 5.

A basis element a,; @y, . . .04, is interpreted as representing a gamete
having the allele a,; at locus 1, the allele a,;, at locus 2, and so on. An
element (5.1) of the algebra whose coefficients are non-negative with
sum one is interpreted as a probability distribution of the gametic types.
The product (5.8) represents the probability distribution of gametes re-
sulting from an individual of genotype 4,4, The set of numbers A(U)
represents what H. Geiringer [8] has called the linkage distribution. In
the case k=2, A(1,2) represents the recombination probability. In the
genetic interpretation the A(U) must be non-negative. Moreover they
are restricted by other inequalities.
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The recombination operator R(U) applied to two given gametes 4,
and A4, represents the effect of crossing over during meiosis.

The product G x G, represents the probability distribution of gametes
of the offspring when one population with gametic probability distribu-
tion G} mates at random with a population with gametic probability
distribution G,.

The linear combination ¢@, + (1 —c)@,, where 0<c =<1, represents the
gametic probability distribution of a mixture of two populations with
gametic probability distributions G; and G,.

If two or more loci are completely linked, they may be treated as one
locus. In the case k=2 complete linkage means that A(1,2)=0, and we
get the multiplication rule

(6.1) G1x Gy = %(Gl(Dlngz) + GZ(DIDZGI)) ,

and if ay; @y, is replaced by a single symbol b,, then the multiplication
rule will be the same as in the case of one locus.

If in the case k=3 we have complete linkage between loci 2 and 3,
then A(2,13)=4(3,12)=0, and we get the multiplication rule

(6.2) Gy x Gy = 3A(123)(G4(D,D,D,G,) + Go(D1DyDyGY)) +
+ 3A(1,23) ((D1G1)(DyD3@,) + (DyG) (D, DyG,)) .

Replacing a,;,a;;, by a single variable b,, we get a multiplication rule of
the form (5.13).

7. Sequences of powers and products connected with the different
generations under panmixia.

Since multiplication is non-associative in the algebras defined in Sec-
tion 5, there are different powers of the same degree having different
shapes (Etherington [2]). We shall consider powers and products of two
particular shapes. We shall consider the sequence of plenary powers de-
fined by

(7.1) Gn+1) = Gn)x@n), n=20,1,2,....
Secondly, we shall consider the sequence of products defined by
(7.2) Hmn+2) =Hmn)xHn+1), n=0,1,2,....

If H(0)=H(1) the sequence {H(n)} will also be a sequence of powers.
These powers are, however, different from the plenary powers.

The plenary power G(n) represents the probability distribution of the
gametic types in the n’th generation when the following conditions hold:

Math. Scand. 10 — 3
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(7.3) The population is infinite.

(7.4) There is panmixia in each generation.

(7.5) All loci considered are in autosomes (i.e. chromosomes which are
not sex chromosomes).

(7.6) The gametic probability distribution of generation 0 is G(0).

The sequence {H(n)} gives the probability distributions of the X
chromosomes if (7.3) and (7.4) hold. The X chromosome of a male in
the n’th generation comes from a female of the (z —1)’th generation. Of
the two X chromosomes of a female in the »n’th generation one comes
from a male and the other from a female of the (n—1)th generation.
When (7.3) and (7.4) hold, the female X chromosome in the n’th genera-
tion coming from a female in the preceding generation must have the
same probability distribution as the X chromosome of a male in the »’th
generation. Assuming that generation 0 has also been generated by
panmixia, we may set

(7.7) H(0)=the probability distribution of the female X chromosome in
generation 0 which comes from a male in the preceding generation.

{7.8) H(1)=the probability distribution of the other female X chromo-
some and the male X chromosome in generation 0.

Then in the n’th generation the male X chromosome will have the
probability distribution H(n + 1) and the female X chromosomes will have
the probability distributions H(n) and H(n +1).

Other sequences of powers and products which have a genetic inter-
pretation are the sequence of principal powers and the sequence of primary
products (Etherington [3]). These sequences will not be considered in the
present paper.

8. Homomorphisms between the algebras.
A mapping @ — 7(G) of an algebra o/ into an algebra Z is called a
homomorphism if
(G +Gy) = n(Gy) +1(GFy) ,
n(c@) = en(@) ,
7(Gy x Gg) = n(Gy) xn(G,) ,
for any elements Gy, Gy, G which belong to &/ and any real number c.
We shall show that each of the differential operators D; defined by
(5.9) generates a homomorphism of an algebra of the class (/) onto an

algebra of the class (&7),_,).
We have noted at the end of Section 5 that the effect of D; on G is
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to remove the factor a;; from each term such that we get a multilinear
form of a degree which is one less than the degree of G. If G, and G,
are two elements of the algebra &/(mg, 4g) and if j is an integer be-
longing to the set S, then the elements D;G; and D;@, will belong to
an algebra &/(mg_;, As_;) where S—j denotes the set of integers which
we obtain when j is removed from S. From (2.4) and (2.5) follows that

(8.1) D,(G1+G2) = D1G1+D1G2 >
(8.2) Dy(c@) = ¢D;@q,

when c is a constant. We shall next consider
(8:3) Djy(GyxGy) = 3MU) D, (RO Thes Dis> TThes Daz)) 16 -
Using (2.20) and (4.1) we get

(8.4) D;R(U)(ITnes Prs TTnes Do)
= $(IInev- Dii ITacvr Do+ TTacv D Tnew Da2) D; -

Each of the two terms in the parenthesis on the right-hand side of (8.4)
contains one and only one of the factors D;; and D;,. Furthermore

D, D;6,G, = D;;D;(,Gy = D; D;, G4 G, .
Hence (8.4) multiplied by G, G, is equal to
(8.5) (R(U' -3, U" =) (IThes— Puv> TThes—iDus)) Py DjzG1Gs

where, of course, only one of the sets U’ and U’’ contains j, such that if
j belongs to U’ then U"'—j=U"". From (8.3)—(8.5) we get

(8.6) DyG,xGy) =y v;(s .)A(U)R(U)(HheS—thv IThes—jDre) Djy D2 G4G:
€ -J

where
(8.7) MU', Uy = MU, U) + MU', U

if we write U’; for the union of U’ and the set which contains the element
j only. Evidently (8.6) means that

(8.8) Dj(Gl X @p) = (DjG1) X (D1G2) ,

where Ag_; is expressed in terms of 4g by (8.7). We have thus shown
that D, generates a homomorphism. Evidently any basis element of
o (mg_;, Ag_;) is the image of a basis element of &/(mg, 4g). Hence any
element of the former algebra is the image of an element of the latter
algebra. This means that the mapping generated by D; is a mapping
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onto the algebra of(mg_;, 45_;). We shall formulate our results in the
following theorem:

THEOREM 2. If G belongs to the algebra <f (mg, Ag), where S contains the
integer j and at least one other integer, then the mapping G - D;Q is a
homomorphism of the algebra sf/(mg, Ag) onto the algebra of (mg_;, Ag_;),
where Ag_; 18 expressed in terms of Ag by (8.7).

Let T be a proper subset of S and let D, denote the product

(8.9) Dy = Tljer D; -
Since the product of two homomorphisms is a homomorphism, we get

TeEOREM 3. If G belongs to the algebra of (mg, Ag), then the mapping
G — Dp@G is a homomorphism of of (mg, Ag) onto S (mg_p, Ag_p), where
Ag_p may be expressed in terms of Ag by repeated application of (8.7).

If G belongs to &/(m,) the mapping G — D,G@ evidently is a homo-
morphism of &/(m,) onto the set of real numbers. Combining this with
Theorem 3 we see that if G belongs to the algebra 7 (mg, 4g), then the
mapping G - D@ is a homomorphism of &7 (mg, 4g) onto the set of real
numbers. An algebra for which there exists a non-trivial homomorphism
into the set of real numbers is called a baric algebra (Etherington [3]),
and the real number which is the image of the element @ is called the
weight of G. Using this terminology we may state

THEOREM 4. The algebra o/ (myg, Ag) is a baric algebra with weight func-
tion £(G)=DgG.

The weight £(G) is the sum of the coefficients in the expression (5.1).
The weight of an element G which represents a probability distribution
is thus equal to 1.

Since Dg_p DpG=DgG, we have

(8.10) 5Dy @) = £(G).

The homomorphism G — DG thus preserves the weights of the elements.

It is evident that a sequence of products or powers is mapped onto a
sequence of products or powers of the same shape. For instance a sequence
of plenary powers is mapped onto a sequence of plenary powers, and a
sequence {H(n)} defined by (7.2) is mapped onto a sequence of the same

type.
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9. Explicit expressions and recurrence formulae for G(n).

9.1. The sequence {G(n)} of plenary powers was defined by (7.1). We
noted that a sequence of plenary powers gives the gametic probability
distribution in successive generations when there is panmixia, when the
population is infinite, and when the loci are located in autosomes.

In the rest of this paper we shall consider algebras which have a genetic
interpretation. This means that we consider the case when Agis a prob-
ability distribution, in other words the case when all A(U) are non-
negative. Furthermore we shall suppose that G(0)=@G is a probability
distribution. Then G(n) is a probability distribution for every n and
£(G(n))=1 for every n.

In the case of one single locus we get from (5.12)

(9.1) GxG =@Q.

In this case any power of @ of any degree and of any shape will be equal
to G. In particular

(9.2) Gn) =G

for every n.

9.2. The case of two loci. In the following we shall always assume
that no two loci are completely linked, for if they were completely linked
we could regard them as one single locus. (See Section 6).

Setting G, =G, =G(n) in (5.13) we get

(9.3) G(n+1) = A(12)G(n) + A(1,2)(D,3(n))(D,G(n)) .

According to Theorem 2, D, G(n) and D,G(n) are plenary powers in the
algebras o/ (m,) and 2/(m,), respectively. According to (9.2) we thus have
D,G(n)=D;@ and D,G(n)=D,G for every n. The difference equation
(9.3) may thus be rewritten in the form

(9.4) (E—(12))G(n) = A(1,2)(D,6)(D,G) .

In this difference equation the values of the function G(n) are not num-
bers but elements of an algebra. It is, however, easy to see that the results
summarized in Section 3 apply to this case with a change of interpretation
of the symbols. In (3.5) for instance the ¢; will now mean elements of
the algebra, while the r; are still real or complex numbers. If some of the
r; are complex numbers we shall also have to consider elements of the
algebra where the coefficients of (5.1) are complex numbers, i.e. we must
consider an algebra having as elements all multilinear forms (5.1) with
complex coefficients. The properties of the algebras which we have found
in the real case will hold also in the complex case. In the examples given
in the present paper no complex roots occur.
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The general solution of (9.4) is
(9.5) G(n) = (D,@)(D,G) + C(A(12))",

where C is an element of the algebra which does not depend on . Setting
n=0in (9.5) we get C =G — (D, Q) (D,G) which we insert in (9.5) to get

(9.6) G(n) = (D,6)(D,6) + (M(12))*(G— (D, 6)(D,®)) -

If a particular G is given and if we wish to calculate G(n) for some
separate values of n, we should use (9.6). If we wish to calculate all G(n)
for a sequence of successive generations it is easier to use the difference
equation (9.4) for recurrent computation of successive G(n). Alternately
we may use the homogeneous difference equation of the second order

(B—-1)(E-2(12))G(n) = 0
which for the purpose of recurrent computation of G(n) may be written
in the form
Q(n) = Gn—1) + X(12)(G(n—1)—G(n—2)).
9.3. Three loci. Setting G,=G,=0G(n) in (5.14) we get
3
(9.7 Gn+1) = A(123)G(n)+ Y A(3,jk) (D;G(n)) (D; D,,G(n)) .
i=1

According to Theorems 2 and 3, D;D,;G(n) is a plenary power in the
algebra 2/(m;), and D,G(n) is a plenary power in the algebra

oA (my, my, A(GE), A(j, K)) -
Using (9.2) and (9.6) we thus get

(9.8) D;D;G(n) = D; DG,
(9.9) D;G(n) = (D;D;G)(D; D,,G) + (A(jk))" ((D;G)— (D; D;G)(D; D, &)).

Inserting (9.8) and (9.9) in (9.7) we get the difference equation
(9.10) (E—2(123))G(n) = (1—A4(123))(Dy D3 G) (D, Dy &) (D, D, @) +
3
+ 3 A(i,jk) (D; D, &) (D; G — (D, D;G) (D, D,;,@)) (A(jk))".
i=1

If 2(123)+ A(jk) for every pair of values j,k, then the general solution of
(9.10) is

(9.11)  G(n) = (D3 DyG) (D, D;@)(D; D, @) + C(A(123))" +
+3(D,D,6) (DG~ (D,D,&) (DD, G) (AH))
1=1
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where C is an arbitrary element of the algebra. Setting n=0 we find

(9.12) C = @ + 2(D,Dy@)(D,D;G)(D,D,6) — Zs(D,.G')(D,-DkG).

=1

If for instance A(123)=A(23), then A(1,23)=0. The coefficient of
(A(23))* in (9.10) thus is equal to zero. The solution will then be (9.11)
after deletion of the term containing (1(23))".

As in the case k=2 it is clear that we should use the explicit expression
for computation if we wish to compute G(n) for some separate values
of n. If we wish to compute all G(n) for a sequence of successive genera-
tions we may compute the D;G(n) recurrently by means of (9.4) and use
(9.7) for recurrent computation of G(n). An alternative method of recur-
rent computation is to use the difference equation

(9.13)  (E—A(123))(E - A(23)) (B — A(13)) (E — 4(12)) G(n)
= (1-2(123))(1-2(23)) (1= A(13)) (1 - 4(12))(Dy D3 &) (D, D3 G) (D, D, G) .

That G(n) satisfies this difference equation is seen by application of the
operator (E —A(23))(E —A(13))(E —A(12)) to both sides of (9.10).

Since (9.13) is a difference equation of order four, it cannot be used
for computation of G(1), G(2) and G(3). These values may, however,
be computed in the manner previously described, and after that we may
use (9.13) for recurrent computation of G(4), G(5), and so on.

There is no great difference between the amount of numerical work
required by the two methods. If we compute each G(n) by both methods
we get a good checking of each individual value.

If we apply the operator £ —1 to (9.13) we see that G(n) satisfies the
homogeneous difference equation

(9.14) (E—1)(E - A(123))(E - 4(23)) (B —A(13)) (E - (12))G(n) = 0

which is called the train equation of the plenary powers.

9.4. Remarks on the general case. The method we have used may in
principle be used for calculation of explicit expressions and linear dif-
ference equations for G(n) for any number of loci. The explicit expression
for G(n) in the algebra &/ (mg, Ag) will be of the form 3,;C,r,*, where the
C,; are independent of n or polynomials in n. In accordance with the
terminology of Etherington the r; will be called the train roots of G(n) in
the algebra o/(mg, 4g). They are roots of the characteristic equation of
the homogeneous linear difference equation (frain equation) of G(n) in
the algebra &/(mg, Ag).

In the general case we get
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(9.15) GQ(n+1) = U}V(S)A(U) (ITjevo D;0m)) (I, c0- D;G(n)) -

One of the terms on the right-hand side of (9.15) is A(S)G@(n). The other
terms are products of plenary powers corresponding to smaller numbers
of loci. If we have already found explicit formulae for these powers,
(9.15) gives an explicit formula for G(n) in the algebra o/ (mg, Ag), except
for a single coefficient which is independent of » and which may be
determined by setting n=0.

THEOREM 5. The train roots of G(n) in the algebra o/ (mg, 4g) are A(S),
the train roots of the G(n) in the algebras sZ/(mg_;, Ag ;) for every je S
and the products of the train roots of G(n) in (Mg, Ay) with the train roots
of G(n) in ' (Mg_p, Ag_g) for every subset T' of S which contains at least
two elements and for which the number of elements of T does not exceed the
number of elements of S —T. The train roots are all real and are situated in
the interval 10,1].

The proof of the first part of this theorem is obvious from a considera-
tion of (9.15). The last part of the theorem is a consequence of the fact
that 0<A(S)<1 for every algebra which has a genetical interpretation.

10. Explicit expressions and recurrence formulae for H(n).

10.1. The sequence of products {H(n)} defined by (7.2) gives the
probability distributions of an X chromosome in successive generations
when there is panmixia and the population is infinite.

Let us set H(0)=G, and H(1)=G, and let us suppose that G, and G,
are probability distributions. Then &(H(n))=1 for every n.

In the case of a single locus we get

H(n+2) = Hn+1)xH(n) = }H(n+1)+3H(n).

We thus already have a difference equation for H(n) which may be
rewritten in the form

(10.1) (E—-1)(E+3)Hn) =0.
The general solution of this equation is

(10.2) Hn) = C;+Cy(—3)".
Setting n=0 and n=1 in (10.2) we get

(10.3) Cy = (G0 +2Gy),
(10.4) C, = §(Gy—Gy) .
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10.2. Two loci. For the sake of brevity we shall write 6 instead of
A(1, 2). Then
(10.5) H(n+2) = 3(1—0)(H(n)+H(n+1)) +
+ 30 ((DyH(n) (DyHin+ 1)) +(Dy Hm) (Dy H(n + 1)),
Applying (10.2) to D, H(n) and D,H(n) we get
(10.6) (E*—3(1—60)E—3(1-0))H(n) = 6(C3+Cy(—3)"+Cs(D)") ,

where

{10.7) Cs = (D,C)(D;CY)
(10.8) 04 = i((chl) (D202)+(D201) (DICZ)) s
(10.9) Cs = —HD,0,) (D, () -

Let r; and 7, be the two roots of the equation
(10.10) 22—-3(1-0)x—3(1-6) =0.

In the genetic interpretation 0 is situated in the interval [0, 1] and cannot
be much greater than }. Then r; and r, must be real and have opposite
signs since their product is —}(1—0). Equation (10.10) has the roots
1 and — }if and only if 6=0. This means that the two loci are completely
linked and can be analyzed as one single locus. Equation (10.10) has
the root } if and only if 6=0,9. This is an impossible value in the genetic
interpretation. In all cases of genetic interest we can therefore assume
that the numbers 7,, 7,, — 3, } and 1 are all different. Then the solution
of the difference equation (10.6) is given by

. 005 1 n—2
(10.11) H(n) = O3+ Cy(—3)»2 + 105 —35 (Z) + Cgry™ + Cory™

where Cg and C, are determined by setting »=0 and n=1.
Applying the operator (E + }) (£ —1) to (10.6) we get

(10.12) (E+3)(E—})(B*—3(1-0)E—}(1-0)) H(n) = $6C; .

Applying the operator £ —1 to this equation we get the homogeneous
difference equation

(10.13) (E—1)(E+})(E-})(E*-}(1-0)E—3(1-6))H(n) = 0.

10.3. Train roots and asymptotic distribution in the general case. It
is clear from the method we have used that the probability distribution
H(n) in the general case will be a sum of exponential terms r;* with
coefficients which are independent of n or polynomials in n. We shall
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call the r; the train roots of H(n) in the algebra considered. Two of the
train roots of H(n) in 27(mg, Ag) will be the roots of

(10.14) a? — 3A(S)x — JA(S) = 0.

These roots are real and have opposite signs since their product is — 34(.S)
where A(S)> 0. Let r, be the positive root and r, the negative root. We
see that r; <1 and that r, + r, = 3A(S) is positive. Hence r,> —1. We get

THEOREM 6. The train roots of H(n) in o (mg, Ag) are the roots of (10.14),
the train roots of H(n) in o (mg_;, Ag_;) for every j € S, and the products of
the train roots of H(n) in the algebra of (my, Ap) with the train roots of H(n)
n S (Mg_p, Ag_p) for every subset T' of S which has at least two elements
and for which the number of elements of T' does not exceed the number of
elements of S—T. The train roots are all real and are situated in the interval
1-1,1].

The positive root of (10.14) is equal to 1 if and only if 4(S)=1. Then
AMU)=0 for any other element U of W(S). Using (5.11) we again get
(10.1) corresponding to the fact that all loci are completely linked and
can be analyzed as one single locus. The term in the expansion of H(n)
corresponding to a train root 1 will thus always be a constant, not a
polynomial in n.

We conclude from these results that H(n) converges to a limit when n
tends to infinity. This limit H(co) is found by letting » - o in (7.2).
We then get H(oo)=H(o0) x H(c). Thus H() is an idempotent element
of the algebra. An idempotent element must, however, have the form
ITjes1;, where I is a linear form in the variables a;;. This is easily
proved by induction using (9.15).

11. Concluding remarks.

In the introduction I noted that one new aspect of the present paper
is the use of recursion in the study of genetic algebras. Geiringer [8]-[11]
has, however, applied a recursive approach to the individual probabilities
without considering algebras. She obtained the scalar version of formula
(9.15) [8, formula (31)]. She notes that this formula gives a system of
difference equations. She does not, however, seem to be aware of the
possibility of solving this system recursively. She indicates a method of
solution which is unnecessarily complicated.

Bennet [1] indicated another method of solving the system. His
method is also more complicated than the method given in the present

paper.
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Geiringer [9] carried through the solution in the case of three loci and
got an explicit expression which is the scalar version of (9.11) and (9.12)
of the present paper. It may be noted, however, that this explicit formula
follows easily from the train equation (9.14) which had previously been
published by Etherington [5].

The results given for one locus and two loci in the case of autosomes
and one locus in the case of X-chromosomes have been known for a long
time and can be found in textbooks (Li [15, Chapters 4, 5, 8], Kempthorne
[14, Chapter 2]).

The sequence H(n) defined by (7.2) and its genetic interpretation do
not seem to have been considered before, and the results of Sections
10.2 and 10.3 seem to be new.

The use of the sequence H(n) in the study of sex-linked traits presup-
poses that the traits are represented by loci in the X chromosomes only,
not in the Y chromosomes. This seems to be the usual case. (See for
instance [16, p. 64]).
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