MATH. 8CAND. 10 (1962), 17-24

p-MEANS OF CONVEX BODIES

WM. J. FIREY

The setting of this discussion is Euclidean n-dimensional space. The
letters u, v denote vectors; (u,v) denotes the inner product of two vectors.
Convex bodies will be denoted by K with distinguishing marks. Such
bodies will be assumed to contain the origin of the coordinate system
as an interior point or, in the case of degenerate bodies, as an interior
point with respect to the subspace of least dimension containing the
convex body. AK denotes the body resulting from dilating K in the
ratio A:1 using the origin as a centre. Those standard results of the theory
of convex bodies which are mentioned without reference are to be found
in [1]. For the material concerning inequalities, see [3].

Since the work of Minkowski, sums of convex bodies have been
considered which can be defined, among other ways, as follows: Let
hyu),i=0, 1, be the support functions of convex bodies K, These
functions satisfy three conditions:

(a) hyuw) 20  for (w,u) >0, Ry0) = 0;
(b) hypu) = phy(w)  for u > 0;
() hy(u+v) £ hy(w)+h(v).

These conditions are also sufficient for these functions to be support
functions of unique convex bodies K, of the sort considered here, whose
supporting hyperplanes are described by (x,u)=h,(u). The function
Aoho(w) + ARy (), 4,2 0, satisfies conditions (a), (b), (¢) and so is the sup-
port function of a convex body, denoted by 1,K,+ 4,K, called a weighted
Minkowski sum of K, and K,. In particular, we shall call

(1-9)Ky+9K,, 0=d® <=1,

an arithmetic mean of K, and K.
It is possible to introduce other means of K, and K,. For non-negative

numbers a;, let
Mp(ao:aq) = [(1 =®)ay? +Fa,P]VP .

We set
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M (ay,a,) = lim M,(ag,a;) = max(a,,a,)
p—>00
for 0<¥<1. We assert that for 1 £p < oo, whenever the functions %(u)
satisfy (a), (b) and (c), then so do Mp(ho(u),hl(u)). That the first two
conditions are met is obvious. For (c), we have by Minkowski’s inequality

Mp(%:‘h) é Mp(b01b1)+Mp(COacl) ’

where a;=b;+¢; and 5,20, ¢;=0. Clearly the inequality remains valid
if a;<b;+c;. Setting a;=h(u+v), b;=h;(u) and c¢;=h;(v) shows that
M, (ho(u), hy(u)) satisfies (c). Hence, whenever K, and K, have the origin
as a common interior point (in the sense of the first paragraph), there is
a unique convex body, which we denote by K¢ having AP (u)=
M (ho(u),hy(u)) as its support function. We call K the weighted
p-mean of K, and K,. The convex body 2/?K{) whose support function
is [hoP(u)+ h,P(uw)]V/? is called the p-sum of K, and K,. We denote it by
Sp(Ky, Ky).

The following rules proceed immediately from the properties of the
function [a,? +a,P]'/? for non-negative a, applied to the appropriate
support functions:

(i) Sp(AKO’}'Kl) = }*Sp(KO’Kl) )
(ii) Sp(KOx'Kl) = Sp(Kl’KO) )
(lll) Sp(Sp(Ko,Kl):Kz) = Sp(KO’Sp(Kl’Kz)) .
This last rule allows us to define inductively S,(K,,...,K,) by
Sy (Sp(Ko, + ..y Kppy), K,

In turn, set

if

Sy(we? Ko, . .., w, P K,) = My(Ko, ..., K,)

dw; =1, w; = 0, 1<p<o.
j=1
Further, we define M _(K,,...,K,) as that convex body whose support

function is _
Lim M, (ho(u), . . ., hy(u)) = max {ho(u), .. .,h,(u)}.

p—>x0

With a similar definition for S, (K, K,), wehave S (Ko, K;) =M (K, K,).

2.

In this section we examine the dependence of K on its arguments
p, #, Kyand K, for 1 Sp< o,

Let E signify the spherical body of radius one centred at the origin.



p-MEANS OF CONVEX BODIES 19

The p-deviation of two convex bodies K, and K, is defined as the greatest
lower bound of non-negative numbers ¢ for which S,(K,0E)=K,; and
S,(K,,0E)=2 K, This p-deviation, denoted by J,(K,, K;), is given by

6p(K0,K1) = max [hyP(u)—hyP(u)M? .

(u, wy=1

It is positive definite, symmetric and satisfies a triangle inequality
6p(K0’ Kz) S 6p(K0’ Kl) + 6p(K1’ K‘z) .

The deviation &, is the usual deviation introduced by Blaschke.

For the range of p-values under consideration, these deviations are
topologically equivalent. That is to say, if we call the sequence of convex
bodies {K,} p-convergent to the limit K when lim,, ,,.6,(K,,K)=0,
then p-convergence implies the usual 1-convergence and conversely. This
depends on the fact that either sort of convergence implies that the
corresponding sequence of support functions {A,, ()} is uniformly con-
vergent to h(u) and uniformly bounded over (u,u)=1. Thus, in discus-
sing convergence of sequences of convex bodies and questions of con-
tinuity any one of the p-deviations may be used; we shall use 6(K,, K,)
to denote such a deviation.

Let & p be the space of elements (p, &, K, K;) where

l1spsP<o, 0=dc=1

and K,, K, are any two convex bodies. Take as the distance d(e,e’)
between elements e=(p,9,K,,K;) and e =(p’,9,K,,K,’) the number

d(e,e) = [p—p'| +18 -] +0(Ko, Ko')+ (K1, Ky')

We set K= K(e); then K(e) is continuous in e in the sense that, if {e,}
is any sequence of elements of &, such that lim,, ,d(e,,e) =0, we have
lim,, .. 6(K(e,,), K(e))=0.

The algebraic function f(p,?,a,,a,) =[(1 —F)ay? + da,P]V/? is uniformly
continuous for 1Sp=<P<oc,0=5a;24<00,0=59=<1. Consequently if
{him(u)},7=0, 1, are two uniformly bounded and uniformly convergent
sequences over (u,u)=1, the sequence { f(pm,ﬁm,hm(u),hlm(u))} has these
same properties, when 1<p,<P, 0=59,=<1. The condition that
lim,, . d(e,,e)=0 implies

lim §(K,,, Ky) = lim 6(K,,,,K;) = 0.

m—>00 m-—>o0
These in turn, as remarked earlier, imply that the sequences {h;,,(u)} of
support functions corresponding to the sequences of convex bodies {K,,}
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converge uniformly over (u,u)=1 to h;(u). Thus the convergence of {e,,}
to e entails the convergence of the bounded sequence

{f (pm’ ﬂm’ h(!m(u)’ hlm(u))}

to f(p,9,ho(u),hy(u)) uniformly over (u,u)=1 when {p,} and {8,} lie in
the allowed intervals and tend to p and &. This gives
lim 6(K(e,,), K(e)) = 0
as asserted.
Since 2P K} =8 ,(K,, K,) it follows that this family is also continuous
in its arguments. These results will be included in Theorem 1 of Section 3.

3.

We now consider certain inclusion relations among the means. Here
we allow p= + co. In this case the p-means K§ and the sums S (K, K,)
coincide when 0<# < 1. For

lim [(1 —3)ay? + 9a,P]V? = lim [ay? + a,P]VP = max(ay,a,) -

p—>00 p—>00
Consequently the support function of K§® and S, (K, K,) is
max (hy(u), hy(u)) when & is neither zero nor one. Hence, if we let L
mean the convex closure of L, the bodies in question are

K, UK, K = K,, K& =K.

Thus K is continuous in # and K,, K, for 0<® < 1. At $#=0, the mean
is continuous in 9 from the right if and only if K, < K; at ¢ =1, the mean
is continuous in ? from the left if and only if K < K.

The inclusion relations to follow are based on the well-known theorems
that

M (ag,a;) S M (ay,a,) and  S,(a,a;) 2 Sy(@g,a,)

if 1=p<q= oco. In the first inequality, there is equality, for 0 <¥ <1,
if and only if ay=a,; in the second there is equality if and only if one
of the a;=0. Applying these inequalities to the support functions

[(1=D)he?(u) + OhyP(w)]V?  and  [heP(u) + hyP(w)]/P

shows that

KP c KP and 8,(KyK,) 2 8Ky K,) .
In the first inclusion there is identity, for 0<® <1, if and only if K,
and K, coincide. In the second inclusion there is identity if and only
if, in each direction u, one of the support functions Ay(u) and h,(u)
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vanishes. Since we have imposed the supposition that the origin is a
common interior point (relative to the containing subspaces of least
dimension) of the bodies K, and K,, this implies that S,(Ky,K;)=
Sy(Ky, K;) if and only if one of the bodies is a point.

In particular: for & fixed, all p-means are subsets of K,u K, and
contain the arithmetic mean K{; all p-sums contain K,u K, and are
subsets of the Minkowski sum K+ K,. From the continuous dependence
of K and S,(K,,K,) on p we see that, through any point of K,+ K,
which is an exterior point for K{ there passes one and only one hyper-
surface of the family of bounding hypersurfaces of K and S,(Ko,K,).

We next consider inclusion relations among the means K for fixed
p and varying ¢#. For p= o, it is geometrically obvious that the convex
bodies K form a concave family by which is meant that

KP 2 (1-9)KP+9KP  where ¢ = (1-9)9,+99, .
But more generally this is true for 1 <p=<oc. We have
My(ag,ay) 2 My(ag,ay) ,
where these means are formed with weights (1—4) and 9. Set
hofu) = [(1 = D) heP(u) + F:hP(w)]VP, i =1,2;

a direct computation then shows that

M, (hpy(w), hg,(w)) = [(1 =) heP(u) + O hyP(w)][VP = hg(u)
and the preceding inequality gives

hoP(u) 2 (1—=3)hsP(u)+ Dby P(%)

which proves the assertion. For p>1, there is equality if and only if
K and KJ are identical, which means either =4, or K,=K,.
We summarize the results obtained so far.

THEOREM 1. The families KP and S,(K,,K,) depend continuously on
(p, %, Ko, K,) for 1<p<oo,059=<1 and at p=co for 0<®<1. They are
monotonic increasing and decreasing respectively in p over 1<p< oco. In
the first case, the monotonicity fails to be strict if and only if Ky=K,. In
the second case, the monotonicity fails to be strict if and only if either K, or K,
degenerates to a point. The family KP is strictly concave with respect to 9,
Jor l<p<oo, 05951, if Kyand K, are not identical, and linear if Ky= K,
or p=1.

The connection between the processes of projection into lower dimen-
sional linear subspaces and the formation of p-means is the same as that
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for Minkowski addition. Let K* denote the projection of K upon an
m-dimensional linear subspace L,,, m <n. The support function of K*
in L, is the restriction of A(u) to vectors » in L,. Hence the support
function of S,*(K,, K,) is the same restriction of [A,?(u) + h,P(u)]/? which
is identical with the p-sum of the restrictions of 4(u) and h,(u) to vectors
win L,,. Therefore §,*(Ky, K,)=8,(K,*, K,*). A similar statement holds
for the p-means.

4.

Let W(,y(K) denote the s mean cross-sectional measure of K, that
is the mixed volume
V(K,...K,E,... E),

n—s8 8

where s=0,1, ...,2—1. These measures are well-known to be continuous
and monotonic in K in the sense that K < K’ implies W, (K) =< W (K').
Coupling this with the monotonicity and continuity assertions of theo-
rem 1 shows that W (K$) is continuously dependent on its arguments
(p,%,K,, K,) and monotonic increasing in p for 1 Sp=<oc. In particular
then, for fixed K,, K, and &, the arithmetic mean has minimal mean
cross-sectional measures and K, U K; has maximal.

It is possible to derive a slightly modified Brunn-Minkowski theorem

for the means KP. Let V(K) denote the volume of K. We shall prove
thet VIRKP) 2 [(1-8)VP/(Kq)+ VP2 .
In case both bodies are degenerate and lie in a common linear subspace,
there is a trivial equality since all the volumes vanish. Suppose that one
of the bodies, say K,, is degenerate and that K, is either not degenerate
or at least does not lie in a subspace containing K,. Then K’ contains
proper interior points and we must show that V(K{)29"V(K,). But
the support function of KP is

[(1 = D)heP(u) + Oy P ()P 2 §VPhy(u) 2 Fhy(u)

with equality in the last case if and only if 9=1. Hence K’ 29K, and
the assertion follows in this case.

Finally we consider the case in which neither body is degenerate. If
p=occ and 0<®#<1, our assertion reads

Vun(E, U Ky) 2 max(VUn(Ky), VVn(Ky)) .

This follows directly from the inclusion relations K;= Ky u K,,¢=0,1.
There is identity in at least one of these inclusions if and only if one of
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the bodies K; is a subset of the other. Hence there is equality between
the volumes V(K,u K,) and max(V(K,), V(K,)) if and only if one of
the K is a subset of the other.

For the remaining case in which 1 <p<oco and neither of the convex
bodies K is degenerate, we make the usual reduction to the special case
in which the convex bodies K, have unit volumes. Thus we let
A;=VV™(K,) and take

& = 9AP[[(1 —9)AP +94,7] .
M, and M, are to denote means formed with weights (1—4), ¢ and
(1—1%'), ¥ respectively. The support function of M,'(Ky/4y, K,[2,) is
ho? (u) Y hl”(u)] v [(l—ﬁ)ko”(uHﬁkl”(u)] HP
AP AP Tl (1-9)AP+0A4P

[a-)
In turn, this is the support function of M, (Ko, K,)/u=KP[u where

p= (A=) VPImE) +IVPmE P

Since the volumes of K,"=K;,[A; are one, it is enough to show that the
volume of M,'(KofAy, K,[4,) is greater than or equal to one.

By the Brunn-Minkowski theorem, (p=1), V(M,'(K,,K )z 1. From
theorem 1, M, (K,',K,")2M, (K,,K,’). These results, together with
the monotonic increasing character of the volume functional, gives
V(M, (Ky,K,'))21. In the set inclusion there is identity if and only if
K, =K, that is Ky=0K, where g=10/4,. Since these are sufficient (as
well as necessary) conditions for equality in the Brunn-Minkowski theo-
rem, they are the necessary and sufficient conditions for the linearity of
VP EP) in 9.

As a consequence of the inequalities of Fenchel and A.D. Alexandrov,
cf. [2,p.49], it is known that W V/®-9(K{’) is a concave function of &
and is linear if K,=0K, for some ¢>0, or s=n—1. Aside from a dif-
ference in the cases of degeneracy, the preceding discussion remains valid
if, for V1, we write W, 1#»-9, Since W, (K) vanishes if and only if K
lies in an n—s—1 dimensional subspace, W ?/®-9(KP) is linear in ¢ if
and only if K, and K, lie in a common n—s—1 dimensional subspace or
Ky=0K, or p=n—s=1.

The following theorem summarizes the results of this section.

THEOREM 2. For 1£p=<o0,8=0,1,...,n—1and 0<d<1:

[(1=8) W2/ 0=9(K ) + OW /=9 K7
< W(s)ll(n—s)(K%p)) < W(,)I/(”“’)(KOU Kl) .
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In the first inequality there is equality if and only if at least one of the fol-
lowing conditions 18 satisfied :

(i) both convex bodies Ky and K, lie in a common n—s— 1 dimensional
linear subspace;

(ii) there is a o> 0 for which Ky=0K,;

(iii) p= oo and one of the convex bodies K, K, is a subset of the other;

(iv) p=n—s=1.

In the second inequality there is equality if and only if either condition (i)
holds or Ky=K, or p=cc.
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