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ON THE EIGENVALUES OF GENERALIZED
TOEPLITZ MATRICES

LARS MEJLBO and PALLE SCHMIDT

1. Introduction.

The class of generalized Toeplitz matrices which we will consider was
introduced by M. Kac, W. L. Murdock and G. Szegt [3] and is defined
in the following way.

Let f(x, 0) be a complex valued function defined for 0<x<1,0<0 < 2x,
and with the property that the Fourier coefficients

1 7 )
o) =—2—ff(x,0)e‘”"d0, y=0,+1,42,...,
JT
0

are defined. For each positive integer n we associate with f the (n+1)
by (n+ 1) matrix

1) T.(f) = (c,_i (%)) ij=01,.. ..

We denote the n+ 1 eigenvalues of 7,(f) by
Y S ST S

It is the purpose of our paper to obtain information about the behavior
of these eigenvalues as n becomes infinite, and like M. Kac, W. L. Mur-
dock and G. Szegé [3] we will do this by studying the behavior of the

determinants
Dn(f) = det’T'n(f) = noznl s }'nn )

and the traces (p=0 an integer)
t’r([Tn(f)]p) = ’zoznjp )
J=0

as n becomes infinite. The result by M. Kae, W.L. Murdock and
G. Szegd [3] can be stated in the form that if f(x,0) satisfies certain

conditions we have
(2) lim [D,(f)"®+) = G(f) ,

n—>o00
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where 1 2n

G(f) = exp{ ]f logf(x,6) dde}

and for each fixed integer p =0 we have
12n

(3) :ﬂﬁ 3 hp - —H[f(x 0)Jp dbde .
If f=£(0) is a function of 0 only, the matrices 7',(f), n=1,2,..., reduce
to the ordinary Toeplitz matrices associated with a function defined and
integrable in (0,27), in which case G. Szego [5] and M. Kac [2] have
sharpened (2) and (3) respectively for a large class of functions f(6) by
proving that the limits

D)
m G i‘fi,[zl - [f or da]

exist, and by evaluating these limits. It is natural to try to find cor-
responding sharpenings of (2) and (3) also in the general case. In a
previous note [4] we have done so, but with very restrictive conditions
on the function f(x,6). In this paper we will extend the results from [4].
For sufficiently nice functions f(x,6) we will show that, if p> 0 is a fixed
integer, then . 127
lim {zzwv— ’QL—IH fl, 0)]7 d@dm]

n—>oo |5=0 2m S
exists, and we will evaluate that limit. The precise statement and the
proof are given in Section 2.

This sharpening of (3) implies in a natural way a certain sharpening
of (2) too. If the function f(x,0) is “small”’, we have

Dy(1-f) = exp| -3 zan,v},

p=1P j=0

which enables us to prove that the limit

lim _Dall=])_
n—>00 [G(l __f)]n+1

exists, and to evaluate that limit. The precise statement and the proof
are given in Section 3. Regrettably we have not been able to remove
the requirement that f should be “‘small”.

We want to express our gratitude to professor M. Kac, who introduced
us to the problems considered in this paper.
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2. Asymptotic behavior of the traces of generalized Toeplitz matrices.
We consider the class of complex valued functions of the type

(o]

f@0) = 3 c@) e,

»=—00

satisfying the following condition.

ConDITION A. (i) The Fourier coefficients ¢ (x), v=0,+1, +2,..., are
twice continuously differentiable in the interval 0=z <1.
(ii) Let

¢, = max @), ¢ =maxle(@)], ¢ = maxl|e (@),
0ses<1 0ses1 oses1
for v=0,+1,+2,.... Then
oo oo
¢ <o and > < oo,
y=—00 r=-—00

and there exists a number x > 2 such that

(o]
> p%e, < .

y=-~00

We now state our main theorem.

THEOREM 1. Let f(x,0) satisfy Condition A, and let A,9,4,1; - « s Any be
the eigenvalues of the matrix T,(f) defined by (1). Then for every integer
20

1 2=
. n n+1
o ngf"fp“zn_of Of [f (e, 0>]vd0dx}

n—>00

1 2n 1 2n
- Of /(0,0 d0—-— ! [£(1,0)7 d6 —

oo

= 2 [400)...0)+cy(1). .. q1)]-

—ool<ll, v lp<oo
vhe =0 imax (0,0, l 4+l Sl )

Furthermore there exists a constant C such that for all n,p=1,2, ...,

n

1 12=n
> h =" [ 1@ 001p dbaa
00

=0

s 020‘( E cy)p-

y=—00

It is interesting to observe that the limit occurring in Theorem 1 only
depends on the two boundary functions f(0,0) and f(1,0).
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If f=f£(0) is a function of 6 only, Theorem 1 with Condition A replaced
by the condition o
’%‘JM le,| < o0,
has been proved by M. Kac [2], as already mentioned in the introduction.

The proof of Theorem 1 is quite elementary, but rather lengthy. It
is divided into a number of steps, and to simplify the exposition we
carry out the details for p=3, which case is representative of the general
situation.

We introduce the constants

o0 o] oo
M = 2 C,,, MI = z cy,, Mu = Z cvn ,
=-—00

y=—00 y=—00 v

and for notational convenience we also introduce & =«x"1.

2.1. The first step is to show that we can replace the matrix 7,(f)
by the matrix obtained by substituting 0 for the (i,j)’th element in
T,.(f) whenever |j—i|=n° This matrix is 7,(f,), the n’th generalized
Toeplitz matrix associated with the function

fol@,0) = 3 c(x)e”®, n=1,2,....

v|<ne

We have

Jj=0

34,2 = te([Tof)P)

. (2j+l1> . ( 2j+2l1+lz) . (2j+2l1+2l2+l3)
Lo wiSheo  \20+2/ 7\ 2ny2 )8 2n+2
—sh, htlasn—g

n

=2 2 +2

7=0 UhL+la+lz=0 J=0 l1+le+lg=0 .
—jsl, hiHlgsn—g —j=h, hi+lasn—j
[lal, lte, |la| <ne max (|, |l2l, llsh=ne
_ 3)
- tr([Tn(fn)]a) + ‘R(ln ’
where
n
3.
IR = > €1, 1, Ciy

J=0 max(|ll, |lal; |lahzne

30+ ( 3 0)( Sa)

|v|=ne y=—00

3 pive,) 1.

Ivizne

IA

IIA

33—

n+1<
n
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By Condition A, (ii), the last quantity tends to zero as n becomes in-
finite. Hence we have proved

@ 3 hug? = i ([TAT) + B,
where ”
(6) lim R} =

If we do the calculations for a general p >0, we find
1
B < p™ (3 i) e,
" \plzne

and consequently there exists a constant C, such that for all » and p
(6) |Bf)| < CypMP.

2.2. Consider the j’th diagonal element of the matrix [7,(f,)]%,
j=0,1, <M,

([Tn(fn)]3)jj

. (2j+l1)c (2j+2l1+l2)c (2j+2l1+2l2+l3)
li+Ho+1l3=0 " n+2 s 2n+4+2 s 2n+2 ’

—jsh, hHesn—j
[l, e, lls]<ne

and let r;, be determined by

([T”(f")]s)ﬁ - ,,HEF,O n (ni— l) s (nj+ 1) s (ni 1) * T -

—j=l, htlasn—j
Jal, 122], |ls| <ne

For every set of indices occurring in the above summation we introduce
the function (depending on n and j)

J I J 2l +1, J 20+ 2L+ 1,
) A e A P ):
n+l 2n+2/ F\n+1 2042/ %\n+1 2n+2

Tig, () = 011(
which is defined in an interval containing 0<¢<1. Then
Tin = 2 {Pratas(1) = G1,1,,(0)}

l1+la+l3=0
—J=h,Lh+lesn—j
ltl, |Lal, |la| <ne

and by the mean value theorem we get
(8) [750] < > max|g,,.(¢)] <
LHgth=0  o0sts<1

—sl,htlasn
[tal, |Lal, lls|<ne

M2,
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Now let 3n°<j<n—3n° and let T,*(f,) be the transpose of 7,(f,).
Then

([Tn*(fn)]a)j;i
2j+h 2j+ 21, +1, 2j + 21, + 2y + 1,
- z c_ll ( ) ¢ lz (_’.——_—__) c_l (—_ )
Li+lgtlz=0 2n+2 2n + 2 3 2n+2

[tl, 21, |a| <ne

c(%—h)c(ﬁ_ah—h)c(%_2h_%r4ﬂ
l+la+l3=0 n 2n+2 o 2n+2 s 2n+2

[l, l2als 23| <ne

= Z Tiaet(—1) 5

Li+la+Hl3=0
[l, 122, [ts] <ne

and hence
([Tn(fn)]a)i] = %{([Tn(fn)]a)ﬁ + ([Tn*(fn)]a)jj}
=% > Gt — 1) + G, (D}

L+la+l3=0
. 1, |2l, |l3] <ne
from which follows

Tin=3% 2 A% — 1)+ Fg,(1) — 2015,,(0)}

l1+la+l3=0
[tl, llal, |ls| <ne

By Taylors formula we get
(9) ITinl = % > max [g9'" ;.. (0)]

liHle+l3=0 —1st<1
[l Zal, lls| <ne

< %< 3n®
= *\n+1

2
) (3M" M2+ 6M"2 M) .

Note that while the estimate (8) holds for all j=0,1, .. .,n, the estimate
(9) only holds for 3n°<j<n—3n’
Summing the equation (7) over j=0,1,...,n, we get

> ! ) ! )au ! )
10) tr([T(f)]?) = B3R
WO u(@ ) =3 3 (L) a5 e (L) + 2
—j=h, hiHa=n—j

[ta, |22, lla] <me

n
R(z'ﬁ = zorjn = Z Tin t z Tin + Z Tjn >
j=

j<3ne n—j<=3ne 3ne<j<n—3ne

where

and hence by (8) and (9)

38 332
" s + 3O
n+1 n+1

IR < 2(3n°+1) (3M"" M2+ 6M'2 M),
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which, since 2¢ <1, implies

(11) lim R = 0.
n—>oo
If we do the calculations for a general p >0, we find

pn

|BE) < 2(pn°+ - ‘MP+

(

14 p(p—1) M2 MP-2) .
Consequently there exists a constant C, such that for all » and p

(12) IR < Cypt M» .

2.3. Let
z J J J
43 j§0 h+12§13=0 " n+1 fa nt+l1/) " n+1

—J=h, h+lesn—j
[, lle], lls] <ne

2 J J J |
= R
jgo 11+12§13=0 . (n+ 1) % (n+ 1) % ('n+ 1) *

~J=h, hitlesn—j

We can then estimate RS in exactly the same way as we did B (see
Section 2.1). Hence
(14) lim RY) =

n—>o00

and by doing the calculations for a general p>0, we find
(15) |BG < Cip WP
for all » and p.

2.4. By use of

LTI \T j j j
2n0f [f (n+1 )] ,1+,£3=00’1 n+l) 2\n+1/ ®\nt1

we can write

o % j i j
1 v [
1o jgo l1+lz§3=0 " (n + 1) % (n + 1> s (n+ 1)

—jsh, htlesn—j
1 7 J 8 ®) 4 §®
E‘f f(m, o) a9 + 8© + 89,
0
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< J J J
- - () () » ()
1 jgo ll+12§l3=0 b n+ 1 2 n—l-l s n+ 1

min(ly, i +lg)<—J
max(ly, hHpsn—j

" n—k n—k n—k
g 3 Al )
o kgo 11+12§z:s=o "\n+1/ " \n+1) B \n+1

max (3, L1+l >k

where

The sum defining S§) is dominated by the sum

oo
Z cllc,zcla= - z min(O, ll>l1+l2) Cllclzcla
J=0 l+la+l3=0 l1+la+l3=0
min(y, L1+l <—J oo
S 3 (W+lhD e s 2( 3 ble) i
h+lo+lg=0 Y= —00

Hence we can conclude

lim 8¢ = — § > ¢1,(0) ¢,(0) ¢,,(0)

n—>00 J=0 ILi+la+lg=0
min(ly, l1+lg)<—j

2 min(0,5,};+1,) ¢,(0) ¢,(0) ¢,(0) .

U1 +la+l3=0

Using the fact that if I, +7,+1;=0 then

min (0,7,,1,+1,) = —max(0,l;,0;+1,)
we get
(17) lim 8P = — ¥ max (0,0, +1,) ¢,(0) ¢,(0) ¢,(0) .
n—>00 li+a+l3=0

In the same way we prove

(18) lim 3‘2‘2 = — > max(0,l;,};+1,) (1) 6,(1) (1) .

n—>o0 Ui +lg+l3=0

Furthermore, if we do the calculations for a general p > 0, we obtain the
estimate

(19) 50+ < 20-1) (3 blo,) U

y=—00

for all » and p.

2.5. Finally we write

(20) z 2nf[ (n—f-l )] a0 ~——“[f(ac 0) dbde + S



ON THE EIGENVALUES OF GENERALIZED TOEPLITZ MATRICES 13

Introducing the function

2n
F@) =5 [ueoras,
we have 1
SO = ZF( )_(n+1)fF(x)dx,
j=o \n+1 o
and it is elementary to prove that under Condition A we have

(21) lim 8 = §[F(0)—F(1)]

ne l 2n 1 2n
- = of [£(O,00Pdb — Of [F(1,6)Pdo .

By doing the calculations for a general p>0, we find that for all n
and p
(22) ISPl < pM' M»-1,

2.6. Addition of the equations (4), (10), (13), (16) and (20) gives

n 1
zznf—’if f @00 d0dz = RQ+ R+ BR+ S0+ SD+59,
Jj=0

and the first half of Theorem 1 now follows from (5), (11), (14), (17),
(18) and (21). The second half of Theorem 1 follows from (6), (12), (15),
(19) and (22).

3. Asymptotic behavior of the determinants of generalized Toeplitz
matrices.

Let f(x,0) be a function satisfying Condition A of the preceding sec-
tion and let D, (1—f), n=1,2,..., be the generalized Toeplitz deter-
minants assoclated with the functlon 1—f(x,0). That is, let for each
positive integer n

4] , .
_f) = detr (6,“ Cj__,t <2n+2)) 1/,] = 0,1,...,'"1,

where d,; is the Kronecker symbol. As a simple consequence of Theorem 1
we Will now prove the following theorem about the asymptotic behavior
of D,(1—f) as n becomes infinite.

THEOREM 2. Let f(x,0) satisfy Condition A and let

M= 3Yc<l1.

Y= —00
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Then
. D n(l —'f )
o -

where

= exp{%[ho(O) ho(1) +2vh(0 h (0)+Evh 1k (1)”

v=1 r=1

12
fflog[l —f (=, O]dﬂdx}
00
and where h(x), 0sx =<1, v=0,+1,+2,..., are defined by

log[1—f(z,0)] = § h,(x)e™ .

y=—00

REmARK. Theorem 2 generalizes trivially to the determinants asso-
ciated with a function

o0

g(x,0) = 3 a,(x)e”

y=—00

satisfying Condition A and

min |ay(z)| > § max|a,(z) ,

v=0

because such a function can be written in the form a[l —f(x,0)], where f
satisfies the conditions of Theorem 2, and because

D(a(1-f) _ Dy1-f)
[Gla =)~ [Ea—fr+

for any complex number a 0.

If f=f(0) is a function of 6§ only, Theorem 2 has been proved by
M. Kac [2] with Condition A replaced by the condition

3 e < o

Hence if, for any fixed « in the interval 0 =x =<1, we consider the func-
tion f,(0)=f(x,0), then we have the relation

_ Dy1-f)
(23) Jm A

which we shall make use of in a moment.
Now let 4,9, 2,1, - - -»4,, be the eigenvalues of the matrix 7',(f) defined

in (1). Then n
D,(1-f) = IIo(l—lnj).
j=

= exp fvh,(x)k.xx)},
v=1
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It is easy to see that for all » and j

Aol =M < 1,
and hence we can write

D,(1-f) ©1[n . mslpT
_Zall=f) Sl 3 W it ,0)]pdodz|\.
(G- exp{ i Lz 2 of Of o x”

im0

By the estimate in Theorem 1, the series occurring in the above expres-
sion is majorized by the convergent series

2 Cp*MP,
p=1

and hence by the first part of Theorem 1

Dn(l'—f)

27 2n
1 1
lim — e = °%P {Eoflog[l—f(O,G)] de—aoflog[l —=f(1,0)]d6+

>1
+2 - 3 max[0,l,hL+0, .. L+ ... +1,4]0(0).. .0, (0) +
p=1pll+...+l,,=0

>1
+>- X ma,x[O,ll,l1+l2,...,l1+...+lp_1]c,1(1)...c,p(1)}.
p=1P i+ +lp=0

Using the same technique on the function f, we get a similar result,
which combined with (23) gives

> 1
exp {2 2 - X max[0,l,L+0,... . L+ ..+l ). . .c,p(x)}

p=1P ht...+lp=0

= exp {vgvh,(x)h_,(fv)} ,

and from the continuity of the functions involved it follows that

*1
exp{ 2= 2 max[0l,l+l,.. b+ ..+l )0 0).. .o (0)+

p=1P ly+.. +lp=0

*1
+> - 3> max[0l,L+10, ... L+ ..+l 4]q(1).. .c,p(l)}
p1P iyt T1p=0

= exp 4 3RO+ S o0 (1)].

v=1

This concludes the proof of Theorem 2.
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