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ORBIT EQUIVALENCE OF GRAPHS AND
ISOMORPHISM OF GRAPH GROUPOIDS
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Abstract
We show that the groupoids of two directed graphs are isomorphic if and only if the two graphs are
orbit equivalent by an orbit equivalence that preserves isolated eventually periodic points. We also
give a complete description of the (topological) isolated points of the boundary path space of a
graph. As a result, we are able to show that the groupoids of two directed graphs with finitely many
vertices and no sinks are isomorphic if and only if the two graphs are orbit equivalent, and that the
groupoids of the stabilisations of two such graphs are isomorphic if and only if the stabilisations
of the graphs are orbit equivalent.

1. Introduction

From a directed graph E, one can construct an ample groupoid GE such that the
C∗-algebra C∗(GE) of GE is isomorphic to the graph C∗-algebra C∗(E), and,
for any commutative ring R with a unit, the Steinberg algebra AR(GE) is iso-
morphic to the Leavitt path algebra LR(E). This has recently been used in [1],
[3], [4], [5], [7], and [8] to explore the relationship between isomorphisms of
graph C∗-algebras, isomorphisms of Leavitt path algebras, and isomorphisms
of graph groupoids. It is therefore useful to be able to characterise when the
groupoids of two directed graphs are isomorphic.

In [4], the notion of orbit equivalence of directed graphs was introduced
as an analogue of continuous orbit equivalence of shifts of finite type [9], and
it was shown that if the groupoids GE and GF of two directed graphs E and
F are isomorphic, then the graphs E and F are orbit equivalent. It was also
shown that if every cycle in E and F has an exit, then the converse holds, and
that the converse does not hold in general.

In [2], the relationship between orbit equivalence of graphs, isomorphism of
graph C∗-algebras, and isomorphism of graph groupoids was further explored,
and by using the connection with graph C∗-algebras, it was shown that if E and
F are two directed graphs, then the graph groupoids GE and GF are isomorphic
if and only if E and F are orbit equivalent by an equivalence that maps isolated
eventually periodic points to isolated eventually periodic points.
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In this paper, we prove the above mentioned result from [2] directly without
using C∗-algebras. We also give a complete description of the topological
isolated points of the boundary path space of a graph. As a result, we are able
to show that if E and F are directed graphs with finitely many vertices and
no sinks, then the groupoids of E and F are isomorphic if and only if E and
F are orbit equivalent, and the groupoids of the stabilisations of E and F are
isomorphic if and only if the stabilisations of E and F are orbit equivalent.

The rest of the paper is organised in the following way. In Section 2 we recall
the definitions of a directed graph, the boundary path space of a directed graph,
orbit equivalence of directed graphs, and the groupoid of a directed graph; and
introduce notation. In Section 3 we characterise all (topological) isolated points
in the boundary path space of a directed graph (Proposition 3.1) and illustrate
the different types of isolated points in Example 3.2. Finally, in Section 4 we
state and prove our main result (Theorem 4.2) from which it follows that the
groupoids of two directed graphs are isomorphic if and only if the two graphs
are orbit equivalent by an orbit equivalence that preserves isolated eventually
periodic points, and Corollary 4.6 that says that the groupoids of two directed
graphs with finitely many vertices and no sinks are isomorphic if and only if
the two graphs are orbit equivalent, and that the groupoids of the stabilisations
of two such graphs are isomorphic if and only if the stabilisations of the graphs
are orbit equivalent.

2. Preliminaries

For the benefit of the reader we recall in this section the definitions of a dir-
ected graph, the boundary path space of a directed graph, orbit equivalence
of directed graphs, and the groupoid of a directed graph; and we introduce
notation. Most of this is standard and can be found in many other papers, for
example [2], [4], and [7].

We let N denote the set of nonnegative integers (so 0 ∈ N).

2.1. Directed graphs

A directed graph E is a tuple (E0, E1, r, s) where E0 and E1 are countable
sets and r and s are functions from E1 to E0. Elements in E0 are called vertices
and elements in E1 are called edges. The functions r and s are called the range
function and the source function respectively, and for an edge e ∈ E1 the
vertices r(e) and s(e) are called the range and the source of e respectively.

By forming a sequence of edges μ1, μ2, . . . , μn in E such that r(μi) =
s(μi+1) for 1 ≤ i ≤ n − 1 we get a path μ = μ1μ2 · · · μn. We denote
by |μ| the length of the path μ, and form the set En consisting of all paths
of length n. This notation is consistent with E0 by considering vertices as
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paths of zero length. We can naturally extend the source and range maps to
paths by setting r(μ) := r(μn) and s(μ) := s(μ1). For any v ∈ E0, we set
s(v) := r(v) := v. If v ∈ E0 and n ∈ N, then vEn := {x ∈ En : s(x) = v}
and Env := {x ∈ En : r(x) = v}. Further we let E∗ be the collection of all
paths of finite length in E, i.e. E∗ = ⋃

n∈N En.
A vertex v ∈ E0 is a sink if vE1 = ∅, and an infinite emitter if vE1 is

infinite. We define the singular vertices of E as

E0
sing := {v ∈ E0 : v is a sink or an infinite emitter}

and the regular vertices of E as E0
reg := E0 \ E0

sing.
A cycle (sometimes called a loop in the literature) in E is a path γ ∈ E∗

such that |γ | ≥ 1 and s(γ ) = r(γ ). An edge e ∈ E1 is an exit to the loop
γ = γ1 . . . γ|γ | if there exists i such that s(e) = s(γi) and e �= γi . The graph
E is said to satisfy condition (L) if every loop in E has an exit.

2.2. The boundary path space

An infinite path is an infinite sequence x = (xi)i∈N where xi ∈ E1 and r(xi) =
s(xi+1) for all i ∈ N. We set s(x) := s(x0) and denote by E∞ the collection
of all infinite paths in E.

The boundary path space ∂E of E is defined as

∂E := E∞ ∪ {μ ∈ E∗ : r(μ) ∈ E0
sing}.

If μ = μ1μ2 · · · μm ∈ E∗, x = x1x2 · · · ∈ E∞ and r(μ) = s(x), then we
let μx denote the infinite path μ1μ2 · · · μmx1x2 · · · ∈ E∞ (if μ ∈ E0, then
μx = x).

For μ ∈ E∗, the cylinder set of μ is the set

Z(μ) := {μx ∈ ∂E : x ∈ r(μ)∂E},
where r(μ)∂E := {x ∈ ∂E : r(μ) = s(x)}. Given μ ∈ E∗ and a finite subset
F ⊆ r(μ)E1 we define

Z(μ \ F) := Z(μ) \
(⋃

e∈F

Z(μe)

)
.

The boundary path space ∂E is a locally compact Hausdorff space with
the topology given by the basis {Z(μ \ F) : μ ∈ E∗, F is a finite subset of
r(μ)E1}, and each such Z(μ \ F) is compact and open (see [12, Theorem 2.1
and Theorem 2.2]).
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2.3. Orbit equivalence

For n ∈ N, let ∂E≥n := {x ∈ ∂E : |x| ≥ n}. Then ∂E≥n = ∪μ∈EnZ(μ) is an
open subset of ∂E. We define the shift map on E to be the map σE : ∂E≥1 → ∂E

given by σE(x1x2x3 · · ·) = x2x3 · · · for x1x2x3 · · · ∈ ∂E≥2 and σE(e) = r(e)

for e ∈ ∂E ∩ E1. For n ≥ 1, we let σn
E be the n-fold composition of σE

with itself. We let σ 0
E denote the identity map on ∂E. Then σn

E is a local
homeomorphism for all n ∈ N. When we write σn

E(x), we implicitly assume
that x ∈ ∂E≥n.

An infinite path x ∈ E∞ ⊆ ∂E is said to be eventually periodic if there are
n, p ∈ N with p > 0 such that σ

n+p

E (x) = σn
E(x). For an eventually periodic

infinite path x, denote by lp(x) the least period of x, i.e.

lp(x) := min{p > 0 : there exists m, n ∈ N
such that p = m − n and σn

E(x) = σm
E (x)}.

Notice that x ∈ E∞ ⊆ ∂E is eventually periodic if and only if there are a
finite path μ ∈ E∗ and a cycle γ ∈ E∗ such that x = μγγ γ . . ..

Let E and F be directed graphs. A homeomorphism h: ∂E → ∂F is called
an orbit equivalence if there are continuous functions k, �: ∂E≥1 → N and
k′, �′: ∂F≥1 → N such that

σ
k(x)
F (h(σE(x))) = σ

�(x)
F (h(x)) and σ

k′(y)

E (h−1(σF (y))) = σ
�′(y)

E (h−1(y))

(1)

for all x ∈ ∂E≥1 and all y ∈ ∂F≥1. The directed graphs E and F are said to
be orbit equivalent if there is an orbit equivalence h: ∂E → ∂F .

2.4. The graph groupoid

The graph groupoid of a directed graph E is the ample Hausdorff groupoid

GE = {(x, m − n, y) : x, y ∈ ∂E, m, n ∈ N, and σm
E (x) = σn

E(y)},
with product (x, k, y)(w, �, z) := (x, k + �, z) if y = w and undefined oth-
erwise, and inverse given by (x, k, y)−1 := (y, −k, x). The topology of GE

is generated by subsets of the form Z(U, m, n, V ) := {(x, k, y) ∈ GE : x ∈
U, k = m − n, y ∈ V, σm

E (x) = σn
E(y)} where m, n ∈ N, U is an open

subset of ∂E≥m such that the restriction of σm
E to U is injective, and V is

an open subset of ∂E≥n such that the restriction of σn
E to V is injective, and

σm
E (U) = σn

E(V ).
The map x �→ (x, 0, x) is a homeomorphism from ∂E to the unit space

G0
E of GE . If we identify G0

E and ∂E by this homeomorphism, then the source
and range maps s, r: GE → ∂E of GE are given by s((x, k, y)) = y and
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r((x, k, y)) = x. We denote by cE the continuous cocycle from GE to Z given
by cE((x, k, y)) = k.

A bisection of a groupoid G is a subset A ⊆ G such that the restrictions of
the source and range maps to A are injective. As shown in [10], each bisection
A of an étale groupoid G defines a homeomorphism αA: s(A) → r(A) by
αA(s(η)) = r(η) for η ∈ A. Renault defines the pseudogroup of an étale
groupoid G to be the inverse semigroup

{αA : A is an open bisection of G}.
As in [2] and [4], we write PE for the pseudogroup of GE . For α ∈ PE , we
write s(α) for the domain of α, and r(α) for the range of α.

All isomorphisms between groupoids considered in this paper are, in addi-
tion to preserving the groupoid structure, homeomorphisms.

3. Isolated points of ∂E

In this section we characterise all (topological) isolated points in the boundary
path space of a directed graph.

Let E be a directed graph. A finite word μ ∈ E∗ belongs to the boundary
path space ∂E if and only if r(μ) is a sink or an infinite emitter, and μ is an
isolated point of ∂E (i.e., {μ} is open in ∂E) if and only if r(μ) is a sink. An
infinite path x ∈ E∞ ⊆ ∂E is an isolated point of ∂E if and only if the set
{n ∈ N : |r(xn)E

1| ≥ 2} is finite. We have in particular that an eventually
periodic point x = μγγ γ . . . is isolated in ∂E if and only if the cycle γ does
not have an exit. Notice that E satisfies condition (L) if and only if that are no
isolated eventually periodic points in ∂E.

We say that x ∈ E∞ is a wandering point if the set {n ∈ N : s(xn) = v} is
finite for all v ∈ E0.

We then have the following classification of the isolated points of the bound-
ary path space ∂E.

Proposition 3.1. Let E be a directed graph. If x is an isolated point of ∂E,
then it is either finite (in which case r(x) is a sink), eventually periodic or a
wandering point.

Proof. Suppose that x is an isolated point of ∂E, and that it is not finite
or a wandering point. Then there is a v ∈ E0 such that the set {n ∈ N :
s(xn) = v} is infinite. Choose n1 < n2 such that s(xn1) = s(xn2) = v, and
set μ := x0x1 . . . xn1−1 and γ := xn1 . . . xn1+1 . . . xn2−1. Then μ, γ ∈ E∗,
r(μ) = s(γ ), and γ is a cycle in E. Since x is an isolated point of ∂E and
the set {n ∈ N : s(xn) = v} is infinite, it follows that x = μγγ γ . . ., so x is
eventually periodic.



244 T. M. CARLSEN AND M. L. WINGER

Let E and F be directed graphs. Since an orbit equivalence h: ∂E → ∂F

is a homeomorphism, it must necessarily map the set of isolated points of ∂E

onto the set of isolated points of ∂F . The following example shows that the
three classes of isolated points mentioned in Proposition 3.1 can be mixed by
an orbit equivalence. It also illustrates that the groupoids of directed graphs
that are orbit equivalent, are not necessarily isomorphic (cf. [4, Example 5.2]).

Example 3.2. Consider the 3 directed graphs

E F G· · ·· · · · · ·

The boundary path space of each of these 3 directed graphs is homeomorphic
to N equipped with the discrete topology (there is for each vertex exactly one
element of the boundary path space that begins at that vertex), and the 3 graphs
are orbit equivalent. All the points in ∂E are eventually periodic, all the points
in ∂F are finite, and all the points in ∂G are wandering points.

The groupoids GF and GG are both isomorphic to the discrete groupoid
N × N with product defined by (m1, m2)(n1, n2) := (m1, n2) if m2 = n1

and undefined otherwise, and inverse given by (n1, n2)
−1 := (n2, n1). The

groupoid GE is not isomorphic to GF and GG because {η ∈ GE : s(η) = r(η) =
x} is infinite for any x ∈ ∂E, and {η ∈ GF : s(η) = r(η) = x} = {(x, 0, x)}
for any x ∈ ∂F .

4. Orbit equivalence and isomorphism of groupoids

Let E and F be directed graphs. We say that a homeomorphism h: ∂E → ∂F

preserves isolated eventually periodic points if h maps the set of isolated
eventually periodic points in ∂E onto the set of isolated eventually periodic
points in ∂F . In this section we state and prove our main result (Theorem 4.2)
from which it follows that the groupoids of two directed graphs are isomorphic
if and only if the two graphs are orbit equivalent by an orbit equivalence that
preserves isolated eventually periodic points.

Remark 4.1. Since a directed graph E satisfies condition (L) if and only
if ∂E contains no isolated eventually periodic points, it follows that if two
directed graphs E and F both satisfy condition (L), then any homeomorphism
h: ∂E → ∂F preserves isolated eventually periodic points.

Let E and F be directed graphs and φ: GE → GF be an isomorphism.
Then φ maps G0

E onto G0
F . It follows that there is a unique homeomorphism

h: ∂E → ∂F such that φ((x, 0, x)) = (h(x), 0, h(x)) for all x ∈ ∂E. We call
h the homeomorphism induced by φ.
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We now present our main result which is a strengthening of [2, The-
orem 3.10].

Theorem 4.2. Let E and F be directed graphs. If φ: GE → GF is an
isomorphism, then the homeomorphism induced by φ is an orbit equivalence
that preserves isolated eventually periodic points. Conversely, if h: ∂E → ∂F

is an orbit equivalence that preserves isolated eventually periodic points, then
there is an isomorphism φ: GE → GF that induces h. Thus, GE and GF are
isomorphic if and only if there is an orbit equivalence h: ∂E → ∂F that
preserves isolated eventually periodic points.

Remark 4.3. By combining Theorem 4.2 with [4, Proposition 3.4 and The-
orem 5.1] (cf. [2, Proposition 3.8]) and [8, Theorem 4.2], we recover [2, Pro-
position 3.9, Proposition 4.2, Theorem 4.3, Theorem 5.3, and Corollary 5.4].

For the proof of Theorem 4.2, we need the following lemma which is an
adaptation of [6, Lemma 4.3(2)].

Lemma 4.4. Suppose E is a directed graph, α ∈ PE , and x ∈ s(α). Then
there is an n ∈ Z that has the property that there is an open neighbourhood U

of x and k, � ∈ N such that U ⊆ s(α), n = � − k, and σ k
E(α(x ′)) = σ �

E(x ′)
for all x ′ ∈ U . If x is not an isolated eventually periodic point, then this n is
unique.

Proof. The existence of an n with the desired properties follows from [4,
Proposition 3.3]. To prove uniqueness of n if x is not an isolated periodic point,
suppose that n1, n2 ∈ Z, n1 �= n2, U1 and U2 are open neighbourhoods of x

such that U1, U2 ⊆ s(α), and that k1, k2, �1, �2 ∈ N such that for i = 1, 2
we have ni = �i − ki and σ

ki

E (α(x ′)) = σ
�i

E (x ′) for all x ′ ∈ Ui . Let kmax :=
max{k1, k2}, �′

i := �i − ki + kmax for i = 1, 2, and m := min{�′
1, �

′
2} and

p := max{�′
1, �

′
2} − m. Then �′

1 = n1 + kmax �= n2 + kmax = �′
2, so p > 0.

Since
σ

�′
1

E (x ′) = σ
kmax
E (α(x ′)) = σ

�′
2

E (x ′)

for all x ′ ∈ U1 ∩ U2, it follows that every element of σm
E (U1 ∩ U2) is periodic

with period p. In particular, x is eventually periodic. Choose r > m + p such
that Z(x[0,r]) ⊆ U1 ∩ U2. Suppose x ′ ∈ Z(x[0,r)). Then x[0,m+p) = x ′

[0,m+p)

and both σm
E (x) and σm

E (x ′) are periodic with period p. It follows that x ′ = x,
and thus that x is an isolated eventually periodic point.

Proof of Theorem 4.2. The proof uses ideas from the proof of [6, Pro-
position 4.5].

Suppose first that φ: GE → GF is an isomorphism. We will prove that
the homeomorphism h: ∂E → ∂F induced by φ is an orbit equivalence by
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constructing continuous functions k, �: ∂E≥1 → N and k′, �′: ∂F≥1 → N
satisfying (1).

Let e ∈ E1. Then Z(Z(r(e)), 0, 1, Z(e)) is a compact and open bisection
of GE . It follows that Ae := φ((Z(r(e)), 0, 1, Z(e))) is a compact and open
bisection of GF . Let x ∈ Z(e). Then (σE(x), −1, x) ∈ Z(Z(r(e)), 0, 1, Z(e)),
so αAe

(h(x)) = h(σE(x)). It follows from [4, Proposition 3.3] that there is an
open neighborhood V ′

x of h(x) and kx, �x ∈ N such that V ′
x ⊆ s(Ae) and

σ
�x

F (h(x ′)) = σ
kx

F (αAe
(h(x ′))) = σ

kx

F (h(σE(x ′))) for all x ′ ∈ h−1(V ′
x). Let

Vx := h−1(V ′
x). Since Z(e) is compact, and ∂E is totally disconnected, it

follows that there is a finite set Fx of mutually disjoint compact and open
sets such that Z(e) = ⋃

B∈Fx
B and such that there for each B ∈ Fx is an

xB ∈ Z(e) such that B ⊆ VxB
. Define functions ke, �e: Z(e) → N by setting

ke(x) := kxB
and �e(x) := �xB

for x ∈ B. Then ke and �e are continuous
and σ

ke(x)
F (h(σE(x))) = σ

�e(x)
F (h(x)) for all x ∈ Z(e). By doing this for each

e ∈ E1 we get continuous functions k, �: ∂E≥1 → N satisfying (1).

Continuous functions k′, �′: ∂F≥1 → N satisfying (1) can be constructed
in a similar way. Thus, h is an orbit equivalence. Since x is eventually periodic
if and only if {η ∈ GE : r(η) = s(η) = x} is infinite, and h(x) is eventually
periodic if and only if {η ∈ GF : r(η) = s(η) = h(x)} is infinite, it follows
that h maps eventually period points to eventually periodic points. Since, h

is a homeomorphism, it follows that h preserves isolated eventually periodic
points.

For the converse, suppose h: ∂E → ∂F is an orbit equivalence that pre-
serves isolated eventually periodic points. We will construct an isomorphism
φ: GE → GF that induces h. We first define φ(η) when s(η) is not an isolated
eventually periodic point.

Let η ∈ GE and suppose s(η) is not an isolated eventually periodic point.
Then h(s(η)) is not an isolated eventually periodic point by assumption.
Choose an open bisection A such that η ∈ A. According to the proof of [4,
Proposition 3.4], the homeomorphism h ◦ αA ◦ h−1: h(s(A)) → h(r(A)) be-
longs to PF . It follows from Lemma 4.4 that there is a unique n ∈ Z with the
property that there is an open neighbourhood U of h(s(η)) and k, � ∈ N such
that U ⊆ h(s(A)), n = �− k, and σ k

F (h(αA(h−1(y)))) = σ �
F (y) for all y ∈ U .

This n does not depend of the choice of the open bisection A because if A′ is
another open bisection containing η, and n′ ∈ Z has the property that there is
an open neighbourhood U ′ of h(s(η)) and k′, �′ ∈ N such that U ′ ⊆ h(s(A′)),
n′ = �′ − k′, and σ k′

F (h(αA′(h−1(y)))) = σ �′
F (y) for all y ∈ U ′, then A ∩ A′

is an open bisection containing η and αA(x ′) = αA∩A′(x ′) = αA′(x ′) for all
x ′ ∈ h−1(U ∩ U ′), so it follows from the uniqueness of n that n′ = n. We set
φ(η) := (h(r(η)), n, h(s(η))).
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We then define φ(η) when s(η) is an isolated eventually periodic point. For
each isolated eventually periodic point x ∈ ∂E, let [x] := {x ′ ∈ ∂E : ∃η′ ∈
GE such that r(η′) = x and s(η′) = x ′}. Then every x ′ ∈ [x] is an isolated
eventually periodic point, and [x] contains a periodic point.

For each equivalence class

W ∈ {[x] : x is an isolated eventually periodic point in X},
choose a periodic point xW ∈ W . For x ∈ W , let jx := min{j ∈ N : σ

j

E(x) =
xW }. If η′ ∈ GE and s(η′) is an isolated eventually periodic point, then so is
r(η′). Furthermore, [r(η′)] = [s(η′)] and jr(η′) − js(η′) − cE(η′) = n lp(xs(η′))

for some n ∈ Z. We write nη′ for this n.
Similarly, for each isolated eventually periodic point y ∈ ∂F , let [y] :=

{y ′ ∈ ∂F : ∃η′ ∈ GF such that r(η′) = y and s(η′) = y ′}, choose for each
equivalence class W ′ ∈ {[y] : y is an isolated eventually periodic point in Y } a
periodic pointyW ′ ∈ W ′, and let fory ∈ W ′, jy := min{j ∈ N : σ

j

F (y) = yW ′ }.
If η ∈ GE and s(η) is an isolated eventually periodic point, then so is

r(η). It follows by assumption that h(s(η)) and h(r(η)) are isolated eventually
periodic points, and

(
h(r(η)), jh(r(η)) − jh(s(η)) − nη lp(yr(η)), h(s(η))

) ∈ GF .

We set φ(η) := (h(r(η)), jh(r(η)) − jh(s(η)) − nη lp(yr(η)), h(s(η))).
We have now constructed a map φ: GE → GF such that s(φ(η)) = h(s(η))

and r(φ(η)) = h(r(η)) for all η ∈ GE . It is routine to check that φ is biject-
ive and a groupoid homomorphism. That φ and φ−1 are continuous can be
proved similarly to how it is proved that φ is continuous in the proof of [6,
Proposition 4.5]. Thus, φ is an isomorphism that induces h.

Remark 4.5. Let E and F be directed graphs and h: ∂E → ∂F an orbit
equivalence that preserves isolated eventually periodic points. By studying the
proof of Theorem 4.2, one sees that there is a unique isomorphism φ: GE → GF

that induces h if and only if there are no isolated eventually periodic point in
∂E (i.e., if and only if E satisfies condition (L)), in which case there are no
isolated eventually periodic point in ∂F either.

As in [8], we denote by SE the directed graph obtained by attaching a head
to every vertex of a directed graph E (see [11, Definition 4.2]).

Corollary 4.6. Suppose E and F are directed graphs with finitely many
vertices and no sinks. Then any homeomorphism between ∂E and ∂F and
any homeomorphism between ∂SE and ∂SF preserves isolated eventually
periodic points. Thus, GE and GF are isomorphic if and only if E and F are
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orbit equivalent, and GSE and GSF are isomorphic if and only if SE and SF

are orbit equivalent.

Proof. Since E and F have finitely many vertices and no sinks, ∂E, ∂F ,
∂SE, and ∂SF contain no isolated finite paths, and no wandering paths. It
therefore follows from Proposition 3.1 that every isolated point in ∂E, ∂F ,
∂SE, and ∂SF is eventually periodic. Since a homeomorphism maps isolated
points to isolated points, it follows that any homeomorphism between ∂E and
∂F and any homeomorphism between ∂SE and ∂SF preserves isolated even-
tually periodic points. The rest of the corollary then follows from Theorem 4.2.
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