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SOME REMARKS ON ONE-SIDED APPROXIMATION

GEZA FREUD and TORD GANELIUS

1. Problems concerning one-sided approximation have previously been
considered by the authors (Freud [2], Ganelius [5]). In the present paper
we are going to study one-sided approximation by trigonometrical poly-
nomials to periodic functions with certain differentiability properties.
By the methods used in [5] we shall construct approximation polyno-
mials with some local properties which are of interest for several appli-
cations (Freud [3], Ganelius [4]).

Let r=1 be an integer. If a function A of period 2z is r—1 times
continuously differentiable and if A"V is the integral of a function 4,
of bounded variation over a period, we shall say that # € H,. In addition
H, consists of the periodic functions of bounded variation.

Let the periodic functions {6,,},” be defined by the conditions

2n

b, = mb, ,, Sbm(t)dt —0,
0
b(0) =0-= i O0<0<2n.

(If B,, denotes that function of period 1 which in the interval (0,1) coin-
cides with the Bernoulli polynomial B,,, then b,,(0)= B,,(6/(2x)).)
Now, if » € H,, it holds that

and

27
h(6) — (2m)- S h(t)dt} — b, *dh,

0

(1.1) (r+1)!

where the expression on the right is defined by
2n
bray *dh, = = (22 By(6— 1))
0

We shall also use the notations
2n

Frg = 0 {10-0g@d

0
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and

Ifl = (2n>—1S Fo)ldt .
0

2. For the proof of our fist theorem we need some results on the one-
sided approximation to b,,.

As was proved in [5, sect. 1] there is a trigonometrical polynomial
U, of order n with the following properties (U, , is the T, , of [5]).

If we put
r Kl,'n = Ul,'n—bl s
then
(2.1) 0= Kl’n(G) = 0(1) min(l, (n sin%@)‘z) R
(2.2) Kyl = O(r1),
(2.3) varyge) Ky, = o).

The constant symbolized by the O-sign is always independent of » and 6.
If we put k;,=b;—u,,, where the polynomial u,, is defined by
Uy 4(0) = —Uj,o(—0), then £k, , satisfies exactly the same inequalities as
K, , since by(0)= —b,(—0).
We need another estimate for U, ,,, viz.
(2.4) |Uy,,/(6)—1| = O(n) min (1, (n sin$6)~2) .

In fact, such an inequality is true for every polynomial of order » satis-
fying a formula corresponding to (2.1). To prove that, we consider the

function g(6) = b,(6) sin216 .

It is easily seen that g € H,, and hence there is a trigonometrical poly-
nomial @, of order n, such that

(2.5) 'G'n—gl = 0(n—2) s
(2.6) |Gy —9'| = O@1).

(Put, for example, G, = —b,*W,, where W, is the polynomial belonging
to ¢’ according to theorem IIT in [5].)
But from (2.1) and (2.5) we infer that

[sin?36 U, ,(6) — G,(8) = O(n?)
and by the Bernstein inequality
|sin6 cos 36 U, ,,(0) + sin%36 U, ,."(6) — @, '(0)] = O(n7Y).
By aid of (2.6) we obtain
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|sin36 cos 30 (U, 4(0) —b,(6)) + sin?36 (Uy,'(6)—1)| = On-Y),
and using (2.1) we get the estimate O(n) (n sin}6)-2 of (2.4). The esti-

mate O(n) is a simple consequence of U, ,(0)=0(1) and Bernstein’s
inequality.

3. We now define polynomials U, ,, for m>1 by

Um,n - bm = m( Ul,n - bl) * (Um-—l,n - bm—l)
and similarly
bm Uy, = M (bl - ul,n) * ( Um—l,n - bm—l) .

We observe that U, ,-b,20, b,,—w,, ,20. That U, , and w,,
are polynomials of order = follows from the construction since
b,,= —mb,*b,, ;. In conformity with our previous notations we put

Kyn=Upn=bn and k,,=0b,—u,,.
We observe that
(3-1) Km,n = mKl,n * Km—l,n s

and henc
© 1K nll = MUK, K s, ull -

|
n
Since [|K; ,||=0(n"1) it follows that

(3.2) 1K o, ull = O(n=") ,
and the same is true for %, ,,.

Lemma. The functions K, , and k,, , defined above satisfy the in-
equalities
(3.3) |K 1, n@(0)] = O(mn2-m+1) min(1, (n sin}6)-?),

(3.4) &, @(0)] = O(n2-m+1) min(1, (n sin}6)-?),
forall 8, if 0sqg=<m-—1.

It is sufficient to prove (3.3) since (3.4) follows in a similar way.
We first derive the estimate O(n?-™t1) given in (3.3). From (3.1) we

see that
Sup]Km,n, =m “K —l,n” SuP[Kl,nI »

and application of (2.1) and (3.2) yields
(3-5) SuPIKm,n| = O(n_m+1) ’

i.e. the first half of (3.3) in the case ¢=0.
If 0<g=<m—1, we obtain from (3.1) that

(3.6) Km,n(m = 'm’I{m—l,n(q—1> * dKl,n ’
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d h
ANC AN sup | K, @] = O(1) sup|K g 2970 [varg g Ky, -

Using (2.3) and iterating we get
sup |K,, ,@| = O(1) sup|K,,_, »| = O(ntm+1)

by (3.5).
It remains to prove that
(3'7) ]Km,fn(m(e)] = O(nq—m—l (Sin%e)_z) .

It is no restriction to suppose that |0| <n. We rewrite (3.1) as

(27/m) K., ,,(6)

0
— (K300 Ky n30+0) dt + { K 0(30-1) Koy o(30+8) e
; !

Sy

and find
mK,, ,(0)] £
Kynll sup K, .0) + Ile-1,n|[} sup  |K, ().

36| = ¢.<2q-3(0] lo] < ¢ < 2n—416]

By aid of (2.1), (2.2) and (3.2) we obtain
]Km,n(e)] = O(n_l) sup [Km—l,n(t)l + O(n-m-l(Sin%e)-z) .

16l =t < 2n—4(0]

Since K ,,(9) =0O((n sin 3216)-2), it follows by repeated use of this inequality
that

(3.8) 1K, n(0)] < O(n—m1(sin36)-2) .

Hence (3.7) is proved if ¢=0.
If 0<g<m—1, we use (3.6) written in the form

(2/m) Ky, ,O(6)

0
= Koa e300 4K, 10 +0) + { Koy 0000 -1) dE,, 0+,

0 Za

and hence

(3.9) mY K, ,@(0)]

S sup (K 0V vargen Ky, +  sup (K| (K@
316] <t =< 2a-3|6] 310 < t< 2730}

By aid of (3.6), (2.3) and (3.2) we get
1K 1,2 @Vl = OQ1) | K p—g,nll = O(n2=").

18+
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Insertion of this result in (3.9) and application of (2.3) and (2.4) yield

K n®(O) = O(1)  sup K, , 9 (0)] + O(nt-m-1(sin}6)-2).

ol =t <2a-}|0|
By repeated application of this formula we obtain
1Ko, n@(0)] = O(1)  sup K, _;,(0)] + O(n?—™(sin}6)-2),
310 <t =< 2a—4[6]

and with the help of (3.8) we get (3.7).

Hence the lemma is proved.

TrEOREM 1. Let h € H, and let ¢ be an integer, 0Sq<r.
To every positive integer n there is a trigonometrical polynomial W, of
order n, such that W,.-hz0,

and
(4.1) |\W,—k|| £ C,varh,n—"-1,

where C, depends only on r.
If y is a point of continwity of h,, then

(4.2) W, @(y) —k9(y) = o(nt=),
and for all 6 it holds uniformly that
(4.3) W,@(0)— k(0) = O(n2-7) .

Remark. Comparing this theorem with theorem III in [5], we see that
new results are given only in (4.2) and (4.3). That the polynomials W,
of theorem 1 have the same property,

Varig,2,] {(W,—h} = O(n="),

as the corresponding polynomials in [5], is an easy consequence of [5,
theorem III] and the L,-version of Bernstein’s inequality (cf. the proof

of (5.8) below).

Proor oF THEOREM 1. We construct W, in the following way. De-
noting the positive and negative variations of 4, by h,* and k,~, we put

(4'4) (1‘+ 1)' {Wn'"h} = (br+1_'ur+1,n)dhr+ + (Ur+1,n—br+1) * dhr_ .

Since h=h+—h~+const. it follows from (1.1) that W, is a trigonomet-
rical polynomial of order », and it is evident that W,—h=0.
Introducing our previous notations and integrating (4.4) we find

[Wa—hll = §varh, {[[f,1,nll + 1Ky sp,qll} = O(n="=1) varh, ,

and hence (4.1) is proved.
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Differentiating (4.4) we get

(r+1)! {W,@(0)~0(0)}
= kyay,y@ % by + Koy @ % dh,-
0+&  2m+8—c
={+ § @an00-0d1,10) + Kppy @0 -00,-0).
6—e O+e
Hence

IWn(Q)(o) - h@(ﬂ)] = 0(1) Var(s.., g+ hr {Sllp |Kr+1,'n,(®| +sup |kr+1,n(m|} +

+ 0(1) var[o, h]kr{ sup 'Kr+1,n(Q)(t)] + sup |kr+1, n(Q)(t)i} ’

eSSt 2n—e et 2n—¢
and application of the lemma yields
(4.5) |W,@(0)—k@(0)] = O(nt=") {vary_, o-nh,+n-2e2 var,snh,} .

This result immediately implies (4.3). If 0 is a point of continuity of #,,
then vary_, g,4h, is arbitrarily small with ¢ and (4.2) follows.

Remark. Formula (4.5) shows that the following sharper formulation
of our result holds. If ¥ i¢s a point of continuity of b, then to every ¢>0
there are numbers 6 and N so that

|W,9(6)~HO0)] < ene-r
Jor all 6 and N satisfying |0 —y| <e, n>N.

5. Our second theorem will be derived from theorem III in [5] with
the help of some special polynomials @,,.

If ¢ and y are two numbers, 0 <y — ¢ < 2x, the polynomial ¢, belonging
to the interval [, ] is defined by

v 2n -1
Q.(0) = S (cos (6 —1))rat [ S (cos %t)z"dt} .
v 0

Since (cos#(6 —#))** is a trigonometrical polynomial of order # in 0, the
same holds for @,. Evidently 0<¢, <1. Since

2n -1
{S(cos %t)z"dt] — O@l),
[

we find that

Q,.(0) =Ofe*) i p+e< 0= p+2m—c,
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where the positive number ¥ depends on ¢>0. By considering 1— @, we
find in the same way that

1-@,(0) = O(e~*n) if @g+esO=yp—c¢.

THEOREM 2. Let h € H, and suppose that there is an interval I such that
h(0)=n(0) if 0 € I, where ne H,, s>p. Let I* be a closed interval in the
interior of I. Then to every positive integer n there is a trigonometrical
polynomial W, of order n satisfying

(5.1) V,=W,~h =0,

(5.2) Vall = O(mn—?-1),

(53) vary Vn = 0(”—1») ’

(5.4) S V,(t)dt = O(n—s-1),
I*

(5.5) var V, = O(n=%).

If there are several disjoint intervals {I,} such that h(0)=n,(0) if 6 € I,
and n e H,, 8,>p, then inequalities corresponding fo (5.4-5) can be
simultaneously obtained on closed subintervals I[* <1,

Proor. On account of our assumptions on % and 7 we know by theorem
III in [5] that there are trigonometrical polynomials F, and @, of order
n such that

(5.6) F,-hz20, &,—920,
(5.7) |Fy—kl = O(m=?Y),  |[@y—n| = O(n=21),
(5.8)  vargey(F,—h) = O(n?),  vargey(P,—95) = O(n~°) .
Let us now consider the trigonometrical polynomial of order » defined
by Uy = (1-Q)F, + Q.

where @, is the polynomial constructed above for the interval [g, y]
which we assume to belong to the interior of the interval I. We find that

(5.9) U'n_h = (I—Qn)(Fn—h) + Qn(¢n—h) ’

and since A=y in the interval I, we infer that U, —A% =0 in I. Outside
this interval the term @, (®, —#%) can be negative, but since @, =0(e~*"),
there is a constant c,, =0(e-*") such that

(5.10) Vp=Up+c,—h, 20 forall 6.

We shall now prove that with this choice, W,=U, +c¢,, the formulas
(5.2-5) are true. That W, is of order 2n is, of course, immaterial.
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Let us first consider ||V,||. We find by aid of (5.10) and (5.9) that

2 2n 72 @+2n
SVndt < 270, + S(F,,—h)dt + S(@n—h)dt + S |, —h|dt maxQ,(6)
° ) b v 6l

= O(e ) + O(m-2-1) + O(m=5-1) + O(e~*n)

= 0@,

and hence V, satisfies (5.2).

(5.3) can be deduced by aid of Bernstein’s theorem on the derivative
of a trigonometrical polynomial in its L,-formulation (Zygmund [6,
p- 23]) in the following way. According to (5.6-8) the trigonometrical
polynomial F,, satisfies

IF, —Hl| = O(n—2-1)
and
IFy' = = (27)~! var(F,—h) = O(n~?).

The polynomial W, of order 2» satisfies ||W, —&||=0(n-?-1). Hence
Wp—F,| = O(n-?-1)

and by Bernstein’s inequality
W' = F,/| = O(n?) .

If this result is combined with ||[F,' —2'||=0(n"?), we get
W -k = O(n~?),

and (5.3) is proved. If p=0, the function % is not necessarily differen-
tiable but a simple approximation argument works.
Let I* be a closed interval in the interior of (¢, ). Then

SV,,de < 270, + S(Fn——h)dt max(1-Q,) + { (@, —h)ds
I* o

* I* I*
2n

= () + { (@, —n)at
= O(n—3%1), ’

and (5.4) is proved.
It remains to prove (5.5). Since A=7 in I'* it follows from (5.4) and
(5.7) that

(5.11) S;qsn- W,|dt = O(n-s-1).
I*
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Now N. K. Bari [1] has proved a localized version of Bernstein’s theorem,
so that it follows from (5.11) that

var(®,— W,) = S @, —W,'|dt = O@n~9)

I 1.**

if 7** is an interval in the interior of I*. If this result is combined
with (5.8) we get

var(W,—n) = O(n~9).

I**
But then (5.5) is proved, since we can change the notations for the dif-
ferent sub-intervals of 7.

An examination of the proof reveals that the process can be repeated

for another interval [,* with conservation of the result just obtained,
and the proof of the theorem is finished.
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