SOME REMARKS ON ONE-SIDED APPROXIMATION

GÉZA FREUD and TORD GANELIUS

1. Problems concerning one-sided approximation have previously been considered by the authors (Freud [2], Ganelius [5]). In the present paper we are going to study one-sided approximation by trigonometrical polynomials to periodic functions with certain differentiability properties. By the methods used in [5] we shall construct approximation polynomials with some local properties which are of interest for several applications (Freud [3], Ganelius [4]).

Let $r \ge 1$ be an integer. If a function h of period 2π is r-1 times continuously differentiable and if $h^{(r-1)}$ is the integral of a function h_r of bounded variation over a period, we shall say that $h \in H_r$. In addition H_0 consists of the periodic functions of bounded variation.

Let the periodic functions $\{b_m\}_{1}^{\infty}$ be defined by the conditions

$$b_{m'} = mb_{m-1}, \qquad \int_{0}^{2\pi} b_{m}(t) dt = 0,$$

and

$$b_1(\theta) \,=\, \theta - \pi \qquad \text{if} \qquad 0 \,<\, \theta \,<\, 2\pi \;. \label{eq:b1}$$

(If \overline{B}_m denotes that function of period 1 which in the interval (0,1) coincides with the Bernoulli polynomial B_m , then $b_m(\theta) = \overline{B}_m(\theta/(2\pi))$.)

Now, if $h \in H_r$, it holds that

$$(1.1) \qquad (r+1)! \left\{ h(\theta) - (2\pi)^{-1} \int_{0}^{2\pi} h(t) dt \right\} = b_{r+1} * dh_{r} ,$$

where the expression on the right is defined by

$$b_{r+1}*dh_r = -(2\pi)^{-1}\int_0^{2\pi} b_{r+1}(\theta-t)dh_r(t) .$$

We shall also use the notations

$$f * g = (2\pi)^{-1} \int_{0}^{2\pi} f(\theta - t)g(t)dt$$

and

$$||f|| = (2\pi)^{-1} \int_{0}^{2\pi} |f(t)| dt$$
.

2. For the proof of our fist theorem we need some results on the one-sided approximation to b_m .

As was proved in [5, sect. 1] there is a trigonometrical polynomial $U_{1,n}$ of order n with the following properties ($U_{1,n}$ is the $T_{1,n}$ of [5]).

If we put

$$K_{1,n} = U_{1,n} - b_1$$
,

then

$$(2.1) 0 \leq K_{1,n}(\theta) = O(1) \min(1, (n \sin \frac{1}{2}\theta)^{-2}),$$

$$||K_{1,n}|| = O(n^{-1}),$$

(2.3)
$$\operatorname{var}_{[0,2\pi]} K_{1,n} = O(1).$$

The constant symbolized by the O-sign is always independent of n and θ .

If we put $k_{1,n} = b_1 - u_{1,n}$, where the polynomial $u_{1,n}$ is defined by $u_{1,n}(\theta) = -U_{1,n}(-\theta)$, then $k_{1,n}$ satisfies exactly the same inequalities as $K_{1,n}$ since $b_1(\theta) = -b_1(-\theta)$.

We need another estimate for $U_{1,n}$, viz.

$$(2.4) |U_{1,n}'(\theta)-1| = O(n) \min \left(1, (n \sin \frac{1}{2}\theta)^{-2}\right).$$

In fact, such an inequality is true for every polynomial of order n satisfying a formula corresponding to (2.1). To prove that, we consider the function

 $g(\theta) = b_1(\theta) \sin^2 \frac{1}{2} \theta .$

It is easily seen that $g \in H_2$, and hence there is a trigonometrical polynomial G_n of order n, such that

$$|G_n - g| = O(n^{-2}),$$

$$|G_n' - g'| = O(n^{-1}).$$

(Put, for example, $G_n = -b_1 * W_n$, where W_n is the polynomial belonging to g' according to theorem III in [5].)

But from (2.1) and (2.5) we infer that

$$|\sin^2 \frac{1}{2}\theta \ U_{1,n}(\theta) - G_n(\theta)| = O(n^{-2})$$
,

and by the Bernstein inequality

$$|\sin \frac{1}{2}\theta \, \cos \frac{1}{2}\theta \, U_{1,n}(\theta) \, + \, \sin^2 \frac{1}{2}\theta \, U_{1,n}'(\theta) \, - \, G_n'(\theta)| \, = \, O(n^{-1}) \; .$$

By aid of (2.6) we obtain

$$\left|\sin\frac{1}{2}\theta\cos\frac{1}{2}\theta\left(U_{1,n}(\theta)-b_{1}(\theta)\right)+\sin^{2}\frac{1}{2}\theta\left(U_{1,n}'(\theta)-1\right)\right|=O(n^{-1}),$$

and using (2.1) we get the estimate O(n) $(n \sin \frac{1}{2}\theta)^{-2}$ of (2.4). The estimate O(n) is a simple consequence of $U_{1,n}(\theta) = O(1)$ and Bernstein's inequality.

3. We now define polynomials $U_{m,n}$ for m>1 by

$$U_{m,n} - b_m = m(U_{1,n} - b_1) * (U_{m-1,n} - b_{m-1})$$

and similarly

$$b_m - u_{m,n} = m(b_1 - u_{1,n}) * (U_{m-1,n} - b_{m-1}) .$$

We observe that $U_{m,n}-b_m \ge 0$, $b_m-u_{m,n} \ge 0$. That $U_{m,n}$ and $u_{m,n}$ are polynomials of order n follows from the construction since $b_m=-mb_1*b_{m-1}$. In conformity with our previous notations we put

$$K_{m,n} = U_{m,n} - b_m$$
 and $k_{m,n} = b_m - u_{m,n}$.

We observe that

$$(3.1) K_{m,n} = mK_{1,n} * K_{m-1,n},$$

and hence

$$||K_{m,n}|| = m ||K_{1,n}|| ||K_{m-1,n}||.$$

Since $||K_{1,n}|| = O(n^{-1})$ it follows that

$$||K_{m,n}|| = O(n^{-m}),$$

and the same is true for $k_{m,n}$.

Lemma. The functions $K_{m,n}$ and $k_{m,n}$ defined above satisfy the inequalities

$$|K_{m,n}(q)(\theta)| = O(n^{q-m+1}) \min(1, (n \sin \frac{1}{2}\theta)^{-2}),$$

$$|k_{m,n}(q)(\theta)| = O(n^{q-m+1}) \min(1, (n \sin \frac{1}{2}\theta)^{-2}),$$

for all θ , if $0 \le q \le m-1$.

It is sufficient to prove (3.3) since (3.4) follows in a similar way.

We first derive the estimate $O(n^{q-m+1})$ given in (3.3). From (3.1) we see that $\sup |K_{m,n}| \le m \|K_{m-1,n}\| \sup |K_{1,n}|,$

and application of (2.1) and (3.2) yields

(3.5)
$$\sup |K_{m,n}| = O(n^{-m+1}),$$

i.e. the first half of (3.3) in the case q = 0.

If $0 < q \le m-1$, we obtain from (3.1) that

$$(3.6) K_{m,n}^{(q)} = m K_{m-1,n}^{(q-1)} * dK_{1,n},$$

and hence

$$\sup |K_{m,n}^{(q)}| = O(1) \sup |K_{m-1,n}^{(q-1)}| \operatorname{var}_{[0,2\pi]} K_{1,n}.$$

Using (2.3) and iterating we get

$$\sup |K_{m,n}^{(q)}| = O(1) \sup |K_{m-q,n}| = O(n^{q-m+1})$$

by (3.5).

It remains to prove that

$$|K_{m,n}^{(q)}(\theta)| = O(n^{q-m-1} \left(\sin \frac{1}{2}\theta\right)^{-2}\right).$$

It is no restriction to suppose that $|\theta| \le \pi$. We rewrite (3.1) as

$$(2\pi/m)K_{m,n}(\theta)$$

$$= \int_{0}^{n} K_{1,n}(\frac{1}{2}\theta - t) K_{m-1,n}(\frac{1}{2}\theta + t) dt + \int_{-n}^{0} K_{1,n}(\frac{1}{2}\theta - t) K_{m-1,n}(\frac{1}{2}\theta + t) dt$$

and find

$$m^{-1}|K_{m,n}(\theta)| \leq$$

$$||K_{1,n}||\sup_{\frac{1}{2}|\theta|\,\leq\,t\,\leq\,2\pi-\frac{1}{2}|\theta|}|K_{m-1,n}(t)|\;+\;||K_{m-1,n}||\sup_{\frac{1}{2}|\theta|\,\leq\,t\,\leq\,2\pi-\frac{1}{2}|\theta|}|K_{1,n}(t)|\;.$$

By aid of (2.1), (2.2) and (3.2) we obtain

$$|K_{m,n}(\theta)| \, = \, O(n^{-1}) \sup_{\frac{1}{2}|\theta| \, \le \, t \, \le \, 2n - \frac{1}{2}|\theta|} |K_{m-1,n}(t)| \, + \, O\left(n^{-m-1} \, (\sin \tfrac{1}{2}\theta)^{-2}\right) \, .$$

Since $K_{1,n}(\theta) = O((n \sin \frac{1}{2}\theta)^{-2})$, it follows by repeated use of this inequality that

$$|K_{m,n}(\theta)| \leq O(n^{-m-1}(\sin \frac{1}{2}\theta)^{-2}).$$

Hence (3.7) is proved if q = 0.

If $0 < q \le m-1$, we use (3.6) written in the form

$$(2\pi/m)K_{m,n}^{(q)}(\theta)$$

$$= \int\limits_0^\pi K_{m-1,\,n}{}^{(q-1)}(\tfrac{1}{2}\theta-t)\;dK_{1,\,n}(\tfrac{1}{2}\theta+t)\;+\; \int\limits_{-\pi}^0 K_{m-1,\,n}{}^{(q-1)}(\tfrac{1}{2}\theta-t)\;dK_{1,\,n}(\tfrac{1}{2}\theta+t)\;,$$

and hence

(3.9)
$$m^{-1}|K_{m,n}^{(q)}(\theta)|$$

$$\leq \sup_{\frac{1}{2}|\theta| \leq t \leq 2\pi - \frac{1}{2}|\theta|} |K_{m-1,n}^{(q-1)}| \operatorname{var}_{[0,2\pi]} K_{1,n} + \sup_{\frac{1}{2}|\theta| \leq t \leq 2\pi - \frac{1}{2}|\theta|} |K_{1,n}'| ||K_{m-1,n}^{(q-1)}||.$$

By aid of (3.6), (2.3) and (3.2) we get

$$||K_{m-1,n}^{(q-1)}|| = O(1) ||K_{m-q,n}|| = O(n^{q-m}).$$

Insertion of this result in (3.9) and application of (2.3) and (2.4) yield

$$|K_{m,n}^{(q)}(\theta)| = O(1) \sup_{\frac{1}{2}|\theta| \le t \le 2n - \frac{1}{2}|\theta|} |K_{m-1,n}^{(q-1)}(\theta)| + O(n^{q-m-1}(\sin \frac{1}{2}\theta)^{-2}).$$

By repeated application of this formula we obtain

$$|K_{m,\,n}{}^{(q)}(\theta)| \,=\, O(1) \sup_{\frac{1}{2}|\theta| \,\leq\, t \,\leq\, 2n - \frac{1}{2}|\theta|} |K_{m-q,\,n}(\theta)| \,+\, O\!\!\left(n^{q-m-1} \,(\sin\tfrac{1}{2}\theta)^{-2}\right),$$

and with the help of (3.8) we get (3.7).

Hence the lemma is proved.

THEOREM 1. Let $h \in H_r$ and let q be an integer, $0 \le q \le r$.

To every positive integer n there is a trigonometrical polynomial W_n of order n, such that $W_n - h \ge 0$.

and

$$||W_n - h|| \leq C_r \operatorname{var} h_r n^{-r-1},$$

where C_r depends only on r.

If γ is a point of continuity of h_r , then

$$W_n^{(q)}(\gamma) - h^{(q)}(\gamma) = o(n^{q-r}),$$

and for all θ it holds uniformly that

$$(4.3) W_{n}^{(q)}(\theta) - h^{(q)}(\theta) = O(n^{q-r}).$$

REMARK. Comparing this theorem with theorem III in [5], we see that new results are given only in (4.2) and (4.3). That the polynomials W_n of theorem 1 have the same property,

$$\operatorname{var}_{[0,2\pi]}\{W_n - h\} = O(n^{-r}) ,$$

as the corresponding polynomials in [5], is an easy consequence of [5, theorem III] and the L_1 -version of Bernstein's inequality (cf. the proof of (5.8) below).

PROOF OF THEOREM 1. We construct W_n in the following way. Denoting the positive and negative variations of h_r by h_r^+ and h_r^- , we put

$$(4.4) \quad (r+1)! \; \{ \boldsymbol{W}_n - \boldsymbol{h} \} \; = \; (\boldsymbol{b}_{r+1} - \boldsymbol{u}_{r+1,\,n}) d\boldsymbol{h}_r^{\; +} \; + \; (\boldsymbol{U}_{r+1,\,n} - \boldsymbol{b}_{r+1}) * d\boldsymbol{h}_r^{\; -} \; .$$

Since $h = h^+ - h^- + \text{const.}$ it follows from (1.1) that W_n is a trigonometrical polynomial of order n, and it is evident that $W_n - h \ge 0$.

Introducing our previous notations and integrating (4.4) we find

$$||W_n - h|| = \frac{1}{2} \operatorname{var} h_r \{ ||k_{r+1,n}|| + ||K_{r+1,n}|| \} = O(n^{-r-1}) \operatorname{var} h_r ,$$

and hence (4.1) is proved.

Differentiating (4.4) we get

$$\begin{split} (r+1)! \; \{ W_n{}^{(q)}(\theta) - h^{(q)}(\theta) \} \\ &= k_{r+1,\,n}{}^{(q)} * dh_r{}^+ \, + \, K_{r+1,\,n}{}^{(q)} * dh_r{}^- \\ &= \int\limits_{\theta-\varepsilon}^{\theta+\varepsilon} + \int\limits_{\theta+\varepsilon}^{2\pi+\theta-\varepsilon} \left(k_{r+1,\,n}{}^{(q)}(\theta-t) \, dh_r{}^+(t) \, + \, K_{r+1,\,n}{}^{(q)}(\theta-t) \, dh_r{}^-(t) \right). \end{split}$$

Hence

$$\begin{split} |\,W_{n}^{(q)}(\theta) - h^{(q)}(\theta)| &= O(1)\, \operatorname{var}_{[\theta - \varepsilon,\, \theta + \varepsilon]} h_{r} \left\{ \sup |K_{r+1,\,n}^{(q)}| + \sup |k_{r+1,\,n}^{(q)}| \right\} \,\, + \\ &\quad + O(1)\, \operatorname{var}_{[0,\, 2\pi]} h_{r} \left\{ \sup_{\varepsilon \, \leq \, t \, \leq \, 2\pi - \varepsilon} |K_{r+1,\,n}^{(q)}(t)| \,\, + \sup_{\varepsilon \, \leq \, t \, \leq \, 2\pi - \varepsilon} |k_{r+1,\,n}^{(q)}(t)| \right\}, \end{split}$$

and application of the lemma yields

$$(4.5) |W_{n}^{(q)}(\theta) - h^{(q)}(\theta)| = O(n^{q-r}) \left\{ \operatorname{var}_{[\theta-\varepsilon, \theta-\varepsilon]} h_r + n^{-2} \varepsilon^{-2} \operatorname{var}_{[0, 2\pi]} h_r \right\}.$$

This result immediately implies (4.3). If θ is a point of continuity of h_r , then $\text{var}_{[\theta-\epsilon,\theta+\epsilon]}h_r$ is arbitrarily small with ϵ and (4.2) follows.

Remark. Formula (4.5) shows that the following sharper formulation of our result holds. If γ is a point of continuity of h_r , then to every $\varepsilon > 0$ there are numbers δ and N so that

$$|W_n^{(q)}(\theta) - h^{(q)}(\theta)| \le \varepsilon n^{q-r}$$

for all θ and N satisfying $|\theta - \gamma| < \varepsilon$, n > N.

5. Our second theorem will be derived from theorem III in [5] with the help of some special polynomials Q_n .

If φ and ψ are two numbers, $0 < \psi - \varphi < 2\pi$, the polynomial Q_n belonging to the interval $[\varphi, \psi]$ is defined by

$$Q_n(\theta) \, = \, \int\limits_{\pi}^{y} \bigl(\cos \tfrac{1}{2} (\theta - t) \bigr)^{2n} dt \left\{ \int\limits_{0}^{2\pi} (\cos \tfrac{1}{2} t)^{2n} dt \right\}^{-1}.$$

Since $(\cos \frac{1}{2}(\theta - t))^{2n}$ is a trigonometrical polynomial of order n in θ , the same holds for Q_n . Evidently $0 \le Q_n \le 1$. Since

$$\left\{\int\limits_{0}^{2\pi}(\cos\tfrac{1}{2}t)^{2n}\,dt\right\}^{-1}=\,O(n^{\frac{1}{2}})\;,$$

we find that

$$Q_n(\theta) = O(e^{-kn})$$
 if $\psi + \varepsilon \leq \theta \leq \varphi + 2\pi - \varepsilon$,

where the positive number k depends on $\varepsilon > 0$. By considering $1 - Q_n$ we find in the same way that

$$1 - Q_n(\theta) = O(e^{-kn})$$
 if $\varphi + \varepsilon \leq \theta \leq \psi - \varepsilon$.

Theorem 2. Let $h \in H_r$ and suppose that there is an interval I such that $h(\theta) = \eta(\theta)$ if $\theta \in I$, where $\eta \in H_s$, s > p. Let I^* be a closed interval in the interior of I. Then to every positive integer n there is a trigonometrical polynomial W_n of order n satisfying

$$(5.1) V_n = W_n - h \ge 0,$$

$$||V_n|| = O(n^{-p-1}),$$

(5.3)
$$\operatorname{var}_{[0,2n]} V_n = O(n^{-p}),$$

(5.4)
$$\int_{t^*} V_n(t) dt = O(n^{-s-1}) ,$$

$$var_{I*} V_n = O(n^{-s}).$$

If there are several disjoint intervals $\{I_k\}$ such that $h(\theta) = \eta_k(\theta)$ if $\theta \in I_k$, and $\eta_k \in H_{s_k}$, $s_k > p$, then inequalities corresponding to (5.4–5) can be simultaneously obtained on closed subintervals $I_k * \subseteq I_k$.

PROOF. On account of our assumptions on h and η we know by theorem III in [5] that there are trigonometrical polynomials F_n and Φ_n of order n such that

$$(5.6) F_n - h \ge 0, \Phi_n - \eta \ge 0,$$

(5.7)
$$||F_n - h|| = O(n^{-p-1}), \qquad ||\Phi_n - \eta|| = O(n^{-s-1}),$$

(5.8)
$$\operatorname{var}_{[0,2n]}(F_n-h) = O(n^{-p}), \quad \operatorname{var}_{[0,2n]}(\Phi_n-\eta) = O(n^{-s}).$$

Let us now consider the trigonometrical polynomial of order n defined by $U_n = (1-Q_n)F_n + Q_n \Phi_n \ .$

where Q_n is the polynomial constructed above for the interval $[\varphi, \psi]$ which we assume to belong to the interior of the interval I. We find that

(5.9)
$$U_n - h = (1 - Q_n)(F_n - h) + Q_n(\Phi_n - h),$$

and since $h=\eta$ in the interval I, we infer that $U_n-h\geq 0$ in I. Outside this interval the term $Q_n(\Phi_n-h)$ can be negative, but since $Q_n=O(e^{-kn})$, there is a constant $c_n=O(e^{-kn})$ such that

$$(5.10) V_n = U_n + c_n - h_p \ge 0 \text{for all} \theta.$$

We shall now prove that with this choice, $W_n = U_n + c_n$, the formulas (5.2-5) are true. That W_n is of order 2n is, of course, immaterial.

Let us first consider $||V_n||$. We find by aid of (5.10) and (5.9) that

$$\begin{split} & \int\limits_{0}^{2\pi} V_{n} dt \, \leqq \, 2\pi \, c_{n} \, + \int\limits_{0}^{2\pi} (F_{n} - h) dt \, + \int\limits_{\varphi}^{\varphi} (\varPhi_{n} - h) dt \, + \int\limits_{\varphi}^{\varphi + 2\pi} |\varPhi_{n} - h| \, dt \, \max_{\theta \in I} Q_{n}(\theta) \\ & = \, O(e^{-kn}) \, + \, O(n^{-p-1}) \, + \, O(n^{-s-1}) \, + \, O(e^{-kn}) \\ & = \, O(n^{-p-1}) \, \, , \end{split}$$

and hence V_n satisfies (5.2).

(5.3) can be deduced by aid of Bernstein's theorem on the derivative of a trigonometrical polynomial in its L_1 -formulation (Zygmund [6, p. 23]) in the following way. According to (5.6-8) the trigonometrical polynomial F_n satisfies

$$||F_n - h|| = O(n^{-p-1})$$

and

$$||F_n' - h'|| = (2\pi)^{-1} \operatorname{var}(F_n - h) = O(n^{-p})$$
.

The polynomial W_n of order 2n satisfies $||W_n - h|| = O(n^{-p-1})$. Hence

$$||W_n - F_n|| = O(n^{-p-1})$$

and by Bernstein's inequality

$$||W_n' - F_n'|| = O(n^{-p}).$$

If this result is combined with $||F_n' - h'|| = O(n^{-p})$, we get

$$||W_{n}'-h'|| = O(n^{-p}),$$

and (5.3) is proved. If p=0, the function h is not necessarily differentiable but a simple approximation argument works.

Let I^* be a closed interval in the interior of (φ, ψ) . Then

$$\begin{split} & \int\limits_{I^*} V_n d\theta \, \leqq \, 2\pi c_n \, + \, \int\limits_{I^*} (F_n - h) dt \, \max_{I^*} (1 - Q_n) \, + \, \int\limits_{I^*} (\varPhi_n - h) dt \\ & = \, O(e^{-kn}) \, + \, \int\limits_0^{2\pi} (\varPhi_n - \eta) dt \\ & = \, O(n^{-s-1}) \; . \end{split}$$

and (5.4) is proved.

It remains to prove (5.5). Since $h = \eta$ in I^* it follows from (5.4) and (5.7) that

(5.11)
$$\int_{I^*} |\Phi_n - W_n| \, dt = O(n^{-s-1}) .$$

Now N. K. Bari [1] has proved a localized version of Bernstein's theorem, so that it follows from (5.11) that

$$\operatorname{var}_{I^{**}}(\Phi_n - W_n) = \int_{I^{**}} |\Phi_n' - W_n'| \, dt = O(n^{-s})$$

if I^{**} is an interval in the interior of I^* . If this result is combined with (5.8) we get

$$\operatorname{var}_{I^{**}}(W_n - \eta) = O(n^{-s}) .$$

But then (5.5) is proved, since we can change the notations for the different sub-intervals of I.

An examination of the proof reveals that the process can be repeated for another interval I_k^* with conservation of the result just obtained, and the proof of the theorem is finished.

REFERENCES

- N. K. Bari, Generalization of inequalities of S. N. Bernstein and A. A. Markov, Izv. Akad. Nauk SSSR. Ser. Mat. 18 (1954), 159-176. (Russian.)
- G. Freud, Über einseitige Approximation durch Polynome I, Acta Sci. Math. Szeged. 16 (1955), 12-28.
- G. Freud, Eine Bemerkung zur asymptotischen Darstellung von Orthogonalpolynomen, Math. Scand. 5 (1957), 285-290.
- T. Ganelius, Un théorème taubérien pour la transformation de Laplace, C. R. Acad. Sci. Paris 242 (1956), 719-721.
- T. Ganelius, On one-sided approximation by trigonometrical polynomials, Math. Scand. 4 (1956), 247-258.
- 6. A. Zygmund, Trigonometric interpolation, Lecture Notes, Chicago, 1950.

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES, BUDAPEST, HUNGARY

AND

UNIVERSITY OF LUND, SWEDEN