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THE PINCHERLE BASIS PROBLEM
AND A THEOREM OF BOAS

MAYNARD G. ARSOVE

1. Introduction. The successive powers of z can be regarded as a basis
for the linear space & of all functions analytic on a neighborhood N ;(0) of
radius R about the origin. That is to say, if we interpret linear combina-
tions in the infinite-series sense, then the successive powers of z are lin-
early independent functions which span the spacel.

Perhaps the most fundamental problem in basis theory is that of
determining when a given sequence of functions comprises a basis for
the space. No satisfactory solution has yet been found for this general
basis problem. However, for certain restricted classes of sequences,
which are, moreover, of interest in themselves, progress has been made
in this direction.

We shall consider here one such class, namely the class of all sequences?
{o,} of the form

(1.1) an(2) = 2"[1+4,(2)],

where each 4, is a function in & vanishing at the origin. In recognition
of the fact that Pincherle [6] was the first to examine the possibility of
expanding analytic functions in series of such functions, we shall refer
to bases {«,} of this sort as Pincherle bases.

The Pincherle basis problem—that of determining conditions on the
perturbation functions 4, under which {x,} is a basis—has been studied
in a number of papers?, culminating in the work of Boas[3]. Starting with
the Paley-Wiener basis approximation theorem [5, p. 100] and using
orthogonal expansions in L?, Boas has derived a general theorem [3, p.
477, Theorem 4.1] furnishing a partial solution to this problem.

Our aim here is to present a different approach to the problem, based
upon the inversion of an operator I +7' by means of a geometric series in
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1 An explicit presentation of the linear space terminology which we employ is given
in [2].

2 The sequences arising in the present paper will be indexed by » =0, 1, ....

3 For a bibliography, see Boas [3].
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T. This device, now classical in operator theory, yields an elementary
proof of the theorem of Boas.! Moreover, we obtain en route a correspond-
ing partial solution of the Pincherle basis problem in certain Banach
spaces of analytic functions.

2. A linear operator defined by {1,.}. We fix 0<R=< +o and agree
to topologize the space # by the metric of uniform convergence on com-
pact sets. As is well known, & is then complete but non-normable.

For 0<r< R and

f(z) =§:a’nzn

it is obvious that

I, = }::’ @]

defines a norm on & . Since & is not complete under this norm, we shall
examine also the linear subspace & of & consisting of those functions f

for which )
IFll = hﬂzﬂfﬂr < 4o0.

Discarding the trivial case of R= + oo, we infer from Abel’s theorem [4,

pp. 177, 178] that o

£l =ZO' la,| B™ .
N=

This defines a valid norm, under which ./ is a Banach space [2]2.

Let us, for the moment, allow {4,} to be any sequence of functions in
& for which {||4,||} is bounded. In terms of {1,} we introduce on .2/ the
linear transformation 7' defined by

(2.1) Tf(z) = ;’: a,2"A,(2) .

That this series converges uniformly on compact sets to a function in &/
is apparent by using the power series expansions for the functions 4,
and taking account of the boundedness of {|1,|}. The same reasoning
yields the inequality

Tl < zm; ] B Ao,

1 Actually, we do not prove Theorem 4.1 of Boas [3] in its entirety. The assertion
corresponding to condition (4.5) of this theorem is in many respects the most natural of
the three assertions listed there, and it is this result that occupies our attention here.
The assertion corresponding to condition (4.7) then follows directly, but that corresponding
to (4.6) seems to require the L? techniques developed by Boas.

2 When R=1, it is clear that &/=1!; and for all other R <00, & is easily seen to be
isomorphic to I
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so that 7' is a bounded linear operator on /. It is important to note also
that if f has a zero of order m or greater at the origin, then

(2.2) TSI = 11l sup iz -

3. Application of the operator T to the Pincherle basis problem. In
conformity with the requirements for Pincherle bases we now suppose
that each 1, vanishes at the origin. From this it is readily seen that
T™f has a zero of order at least m at the origin, regardless of the choice
of fin &7,

Let us suppose further that

lim sup|j4,|]| < 1.

n—» 00

Then, fixing § as any number such that

lim supjjA,|]| < 6 < 1

N —>00

and invoking (2.2), we infer without difficulty that there exist constants
my and K (depending only on the operator 7') such that the inequality

Ifl = K||fljo™

holds for m>m, and all f in »f. Comparison with the corresponding
geometric series in § thus ensures convergence of the operator series

(3.1) U =;°:(—T)n,

and U, so defined, is a continuous linear operator on 7.
Moreover,

(3.2) U=(I+T)1,

where 1 signifies the identity operator. That is, for an arbitrary function
fin &7 the corresponding function g in .27 determined by g= Uf satisfies
the relation

(3.3) f=U+T)g.
If g has the power series expansion

g(z) =26nzn ’
n=0

then (3.3) can be expressed as

(3.4) @) =§; en?[1+ An(2)]
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The functions «, of (1.1) therefore span .. Since an elementary
argument [1, p. 45] shows that functions of this form are linearly inde-
pendent, it follows that {«,} is a Pincherle basis in /. Furthermore,
the coefficient sequences {c, } for which X'c, «, converges in o are exactly
the sequences of Taylor coefficients of functions in /. In the terminology
of [2] this states that {«,} is a proper basis in of.

Collecting the above information, we have

TueoreM 1. Let {1,} be a sequence of functions in </ such that

(i) each A, vanishes at the origin, and
(ii) lim sup||d,|l< 1.

n—>o0

Then the sequence {,} defined by
an(2) = 2" [1+2y(2)]
18 a proper Pincherle basis in <.

It is an easy matter to go from this result to a corresponding partial
solution of the Pincherle basis problem, as originally formulated for %.

TaeorEM 2. Let {A,} be a sequence of functions in F such that

(i) each A, vanishes at the origin, and
(ii) lim (lim sup|j4,],) <1.

r—>R n—>o

Then the sequence {«,} defined by
on(2) = 2"[1+2,(2]]
18 a proper Pincherle basis in F.

Proor. To show that {x,} spans &, let f be an arbitrary function
analytic on N(0) and fix r < R. The functions f and 4,, are plainly all in o/
relative to N,(0). Theorem 1 therefore yields a sequence {c,} of complex
numbers for which (3.4) holds, the convergence being uniform on com-
pact subsets of N ,(0). But, r can be taken arbitrarily close to R, and the
coefficients ¢, are independent of r. It follows that {x,} is a basis in .
That this basis is proper can be inferred without difficulty from the
previous work. The simplest method, however, is to use condition (x)
of [2]: lim sup (||x,|/)¥* < R (all7 < R).

n —> 00
Since ||, ||, < 2r™ for large n, the above condition is obviously satisfied in
the present case. This completes the proof.

Reasoning of a similar nature shows that for fin & and {4,} taken as
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in Theorem 2, the development centering around equations (2.1), (3.1),
(3.2), and (3.3) carries over unchanged to the space .

Thus, for the space &, just as for the space &7, the operator I+ 7T is
an automorphism® mapping 2" into «,(z) for n=0, 1, .... It is of inter-
est to compare this with Theorems 2 and 4 of [2], which assert that the
existence of such an automorphism is necessary and sufficient for {«,} to
be a proper basis in the respective spaces.
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SIS

1 By an automorphtem we mean a linear homeomorphic mapping of the space onto
itself.
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