MATH. SCAND. 5 (1957), 267—270

ON AN ABSOLUTE CONSTANT FOR A CLASS
OF POWER SERIES

C.T. RAJAGOPAL
1. The following theorem is due partly to H. Bohr 1, § 4] and partly
to A. Wintner [5].

THEOREM A. Let f(2) belong to a class o7 of functions satisfying the con-
dition:

(A) f(z)=§’cn2", F@l <1, for Jo <1.

Let g(r) be the majorant of f(z) defined as usual by

(1) gir) = lexlm™™, 0 =r<1.
0
Then, for all functions f(z) of the class <,

(2) g3 =1,
(3) sup(rfg(r)) = % .

r<l
In (2) and (3), % us the best (largest admissible) absolute constant, that is,
1 cannot be replaced by §(1+¢) for any absolute constant &> 0.

The theorem which follows is a companion to the above.

THEOREM B. Theorem A is true also for the class # of functions f(z)
satisfying the condition:

B) f(2) =5cnz’° (¢, 20), Ref(z)<1l, for |z <1.
0

Theorem A can be deduced from Theorem B if we leave out the asser-
tion of each theorem that } is the best absolute constant. For, conclusion
(2) of Theorem A can be deduced from the corresponding conclusion of
Theorem B by applying the latter theorem to f(z) exp(—iamc,), and
conclusion (3) readily follows thereafter.
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2. Proor or THEOREM B. To prove the conclusion of Theorem B
corresponding to (2), we use, as in [4], the well-known inequality
(4) le.l £ 2(1—Rec,) for 21,
true for any f(z) satisfying (B) even without the restriction ¢, = 0 [2, IIT
Abschn., Nr. 235]. Then, for f(z) satisfying (B), we have

() gd) < ¢ +21:°° 2(1—cg)3 = 1.

To prove the conclusion of Theorem B corresponding to (3), we use
the fact that, if g(r) ¢s defined by (1) for any power series f(z) in |z| < 1, then
(6) min(g(r)fr)  ewists for T = 1y (say),

0srs1
this minimum not exceeding 2|cy| + |c,| tn the cases ry=0 and r,=1. This
fact follows easily from Wintner’s analysis [5, pp. 109-110] of the function

(7) rg'(r) — g(r) = —lc| +%' (n—1) leq|r™ .
If we exclude the case cy=cy=...=0 in which the minimum in (6) is

clearly g(1)=|c,| + |4/, the funetion in (7) is strictly increasing for 0<7<1
and has no more than one zero in this interval. Hence, depending on
whether

[0l Z%’(n—l)lcnl, or e <%7 (n—1)lea| ,

the function in (7) is strictly negative in the interval 0<r<1 and
g(r)[r is strictly decreasing in this interval, the minimum in (6) being
g(1) < 2|cy| + |¢,], or else the function in (7) has just onezeror=r;, 0=r,<1,
which gives the minimum in (5), the case r,=0 corresponding to ¢,=0 and
min(g(r)/r): l¢;]. It now follows from (5) and (6) that

3 if0<ry<1

i = < < N ’

Jmin (gr)fr) = gUralfra S WA =19 4y _Gor1)
This leads at once to the conclusion of Theorem B corresponding to (3).
It remains to show that } is the best absolute constant in the two con-
clusions of Theorem B. With this end in view, we consider the function

k 2 z
which is of class # and has the majorant

k + 2 r
14k 14k 1-7

E>0,

glr) =
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possessing the easily verifiable properties:

. (2t + k)2 kb
= ————————— f = 3 .
pmre l(g(r)/ ") 1+k Rt

Consequently f;(z) is a function of class %, and such that
9,8 =1 ¢,(3+¢)>1 forany £>0,

min (g,(r)/r) =3 for r=14.
0<r<i1
This concludes the proof.

3. NotE. There is a distinction between Theorems A and B which may
be pointed out here. In (2) and (3) of Theorem A, the inequality sign <
is actually <, while, tn the corresponding conclusions of Theorem B, <
cannot be replaced by <, as shown by the example of f,(z) given above.
This is due to the fact that, for functions f(z) of class %, (4) can be an
equality for all n>1, as in the case of

fiole) = 2.
-/

However, the analogue of (4) for functions of class 7, which is obtained
by changing f(z) to f(z) exp(—¢ amc,) and required in the proof of
Theorem A, namely,

(«) lew < 2(1—legl)  for w21,

is actually a strict inequality, with the result that the step corresponding
to (5): g(3) =1, in the proof of Theorem A, is g(}1) <1. To show that (4')
is a strict inequality, we have only to consider (4') in the amplified form
(e.g. [4, II']):

el < (1=1lcol?) < 2(1—1c)) -

From this it is clear that (4') cannot reduce to an equality even for a
single value of # as that would imply |c,| =1, a possibility ruled out by
the second half of condition (A).
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