ON AN ABSOLUTE CONSTANT FOR A CLASS OF POWER SERIES

C. T. RAJAGOPAL

1. The following theorem is due partly to H. Bohr [1, § 4] and partly to A. Wintner [5].

Theorem A. Let f(z) belong to a class $\mathscr A$ of functions satisfying the condition:

(A)
$$f(z) = \sum_{n=0}^{\infty} c_n z^n$$
, $|f(z)| < 1$, for $|z| < 1$.

Let g(r) be the majorant of f(z) defined as usual by

(1)
$$g(r) = \sum_{n=0}^{\infty} |c_n| r^n, \qquad 0 \le r < 1.$$

Then, for all functions f(z) of the class \mathcal{A} ,

$$(2) g(\frac{1}{3}) \leq 1,$$

(3)
$$\sup_{r<1} \left(r/g(r) \right) \ge \frac{1}{3} .$$

In (2) and (3), $\frac{1}{3}$ is the best (largest admissible) absolute constant, that is, $\frac{1}{3}$ cannot be replaced by $\frac{1}{3}(1+\varepsilon)$ for any absolute constant $\varepsilon > 0$.

The theorem which follows is a companion to the above.

THEOREM B. Theorem A is true also for the class \mathscr{B} of functions f(z) satisfying the condition:

(B)
$$f(z) = \sum_{n=0}^{\infty} c_n z^n$$
 $(c_n \ge 0)$, $\text{Re} f(z) < 1$, $for |z| < 1$.

Theorem A can be deduced from Theorem B if we leave out the assertion of each theorem that $\frac{1}{3}$ is the best absolute constant. For, conclusion (2) of Theorem A can be deduced from the corresponding conclusion of Theorem B by applying the latter theorem to $f(z) \exp(-i \operatorname{am} c_0)$, and conclusion (3) readily follows thereafter.

Received October 30, 1957.

2. PROOF OF THEOREM B. To prove the conclusion of Theorem B corresponding to (2), we use, as in [4], the well-known inequality

$$|c_n| \le 2(1 - \operatorname{Re} c_0) \quad \text{for} \quad n \ge 1,$$

true for any f(z) satisfying (B) even without the restriction $c_n \ge 0$ [2, III Abschn., Nr. 235]. Then, for f(z) satisfying (B), we have

(5)
$$g(\frac{1}{3}) \leq c_0 + \sum_{1}^{\infty} 2(1 - c_0) 3^{-n} = 1.$$

To prove the conclusion of Theorem B corresponding to (3), we use the fact that, if g(r) is defined by (1) for any power series f(z) in |z| < 1, then

(6)
$$\min_{0 \le r \le 1} (g(r)/r) \quad exists for \quad r = r_0 \ (say) \ ,$$

this minimum not exceeding $2|c_0| + |c_1|$ in the cases $r_0 = 0$ and $r_0 = 1$. This fact follows easily from Wintner's analysis [5, pp. 109-110] of the function

(7)
$$rg'(r) - g(r) = -|c_0| + \sum_{n=0}^{\infty} (n-1)|c_n| r^n.$$

If we exclude the case $c_2 = c_3 = \ldots = 0$ in which the minimum in (6) is clearly $g(1) = |c_0| + |c_1|$, the function in (7) is strictly increasing for $0 \le r \le 1$ and has no more than one zero in this interval. Hence, depending on whether

$$|c_0| \, \geqq \sum_{2}^{\infty} \, (n-1) \, |c_n| \, , \qquad or \qquad |c_0| \, < \sum_{2}^{\infty} \, (n-1) \, |c_n| \, \, ,$$

the function in (7) is strictly negative in the interval $0 \le r < 1$ and g(r)/r is strictly decreasing in this interval, the minimum in (6) being $g(1) < 2|c_0| + |c_1|$, or else the function in (7) has just one zero $r = r_0$, $0 \le r_0 < 1$, which gives the minimum in (5), the case $r_0 = 0$ corresponding to $c_0 = 0$ and $\min(g(r)/r) = |c_1|$. It now follows from (5) and (6) that

$$\min_{0 \le r \le 1} (g(r)/r) = g(r_0)/r_0 \le g(\frac{1}{3})/\frac{1}{3} \le \begin{cases} 3 & \text{if } 0 < r_0 < 1, \\ 2 & \text{if } r_0 = 0 \text{ or } 1. \end{cases}$$

This leads at once to the conclusion of Theorem B corresponding to (3).

It remains to show that $\frac{1}{3}$ is the best absolute constant in the two conclusions of Theorem B. With this end in view, we consider the function

$$f_k(z) = \frac{k}{1+k} + \frac{2}{1+k} \cdot \frac{z}{1+z}, \quad k > 0$$
,

which is of class & and has the majorant

$$g_k(r) = \frac{k}{1+k} + \frac{2}{1+k} \cdot \frac{r}{1-r},$$

possessing the easily verifiable properties:

$$g_k(0) > 0, \qquad g_k(1-0) = \infty ,$$

$$\min_{0 < r < 1} (g(r)/r) = \frac{(2^{\frac{1}{2}} + k^{\frac{1}{2}})^2}{1+k} \quad \text{ for } \quad r = \frac{k^{\frac{1}{2}}}{2^{\frac{1}{2}} + k^{\frac{1}{2}}}.$$

Consequently $f_{*}(z)$ is a function of class \mathcal{B} , and such that

$$g_{\frac{1}{2}}(\frac{1}{3}) = 1, \quad g_{\frac{1}{2}}(\frac{1}{3}(1+\varepsilon)) > 1 \quad \text{for any} \quad \varepsilon > 0 ,$$

$$\min_{0 < r < 1} (g_{\frac{1}{2}}(r)/r) = 3 \quad \text{for} \quad r = \frac{1}{3} .$$

This concludes the proof.

3. Note. There is a distinction between Theorems A and B which may be pointed out here. In (2) and (3) of Theorem A, the inequality sign \leq is actually <, while, in the corresponding conclusions of Theorem B, \leq cannot be replaced by <, as shown by the example of $f_{\frac{1}{2}}(z)$ given above. This is due to the fact that, for functions f(z) of class \mathcal{B} , (4) can be an equality for all $n \geq 1$, as in the case of

$$f_0(z) = \frac{2z}{1+z}.$$

However, the analogue of (4) for functions of class \mathscr{A} , which is obtained by changing f(z) to $f(z) \exp(-i \operatorname{am} c_0)$ and required in the proof of Theorem A, namely,

(4')
$$|c_n| \le 2(1-|c_0|)$$
 for $n \ge 1$,

is actually a strict inequality, with the result that the step corresponding to (5): $g(\frac{1}{3}) \le 1$, in the proof of Theorem A, is $g(\frac{1}{3}) < 1$. To show that (4') is a strict inequality, we have only to consider (4') in the amplified form (e.g. [4, II']):

$$|c_n| \ \leqq \ (1-|c_0|^2) \ \leqq \ 2 \, (1-|c_0|) \ .$$

From this it is clear that (4') cannot reduce to an equality even for a single value of n as that would imply $|c_0| = 1$, a possibility ruled out by the second half of condition (A).

REFERENCES

- E. Landau, Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, 1. Aufl., Berlin, 1916.
- 2. G. Pólya und G. Szegő, Aufgaben und Lehrsätze aus der Analysis I, Berlin, 1925.

- C. T. Rajagopal, Carathéodory's inequality and allied results (II), Math. Student 9 (1941), 73-77.
- 4. C. T. Rajagopal, A note on power series, Math. Student 20 (1952), 99-106.
- A. Wintner, On an absolute constant pertaining to Cauchy's "principal moduli" in bounded power series, Math. Scand. 4 (1956), 108-112.

RAMANUJAN INSTITUTE OF MATHEMATICS, MADRAS, INDIA