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ON AN EXPLICIT FORMULA IN LINEAR LEAST
SQUARES PREDICTION

EDWIN J. AKUTOWICZ

1. Introduction. The theory of linear least squares prediction of a
stationary time series, as it has been given by Kolmogoroff, Wiener and
others, must be regarded, at least in the one-dimensional case, as essen-
tially complete both in its general scheme and in several more or less
specific cases such as, for example, those in which the spectral
density is rational. But in spite of the active development of this sub-
ject there seem to be one or two open questions which pertain to the
general theory and which to this date apparently have not received a
satisfactory solution in terms of necessary and sufficient conditions.

The objective of this note is to establish the validity of a linear ““pre-
dictor” which expresses the prediction of a stationary random sequence
into the future with maximum directness in terms of the data of the
past, assuming that two numerical series, (5) and either (9) or (10)
(v.inf.), converge. These are conditions bearing only upon the spectrum
of the original random sequence; however, there still remains a gap be-
tween the necessary and the sufficient spectral conditions for the validity
of the explicit predictor. Theorem 1 contains an expression for the inno-
vation vector of the random sequence in terms of the past. Reference is
made to Chapter XII of Doob’s treatise [1] and to a forthcoming book
[2] for details about facts that are only briefly recalled here.

Let us suppose that a probability space £ with points w and probability
element dw is given, and that the sequence of random variables with finite
second moment,
v g (0), ®y(w), BY(0), ...,
constitutes a wide sense stationary random sequence in £, cf. [1, Ch. X].

Let L?(£2, dw) denote the Hilbert space realized by complex-valued
random variables on Q2 with finite second moment, the inner product
(@4, x,) being given by

(@, 2) = | @ (0) B o
e Q2
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In this Hilbert space let M(x_,, ®_,_;, ...) denote the closed linear

subspace spanned by ®_,, ©_,_;, .... We shall assume that
N Mz, x_ps --.) = (0),
n>0

which implies that only the absolutely continuous component occurs in
the spectrum of {x,},_¢ .1, .. -

The best linear least squares prediction of ®,, where = is a fixed
non-negative integer, in terms of the complete past {x_}, »>1, is by
definition that random variable x,* lying in the closed subspace
M(x_y, _y, ...) for which

§|mn(w)—a:n*(co)|2dw = minimum .
2
Therefore the task of finding ,* is exactly that of determining the pro-
jection of @, into M(x_,, ®_,, ...).
The first step in the solution of this problem is to express x, in the
canonical form due to Wold,

(1) Zof00) = _f by (@),

where the infinite series is convergent in the mean (dw integration), and
the b, are the Fourier coefficients of x, with respect to the orthonormal
sequence of innovations {y_,}; that is b,=(xy, y_,), »=0. Here y, is
the unit vector in L2, dw) defined by

-y, = x,—Px,,

where P denotes projection into M(x_;, ®_,, ...), and ¢ is a positive
real number. In terms of these quantities the prediction x,* is given as
N

(2) x,*=1lm D} by,.,,

N - o0 v=n+1
where

oo
(3) 2 0P < .

=0

It is well known that the numerical coefficents b, are uniquely deter-
mined by the covariance sequence of {x,} and are such that the holo-
morphic function

4) D(z) =S‘ b2, 2 <1,
=0

does not vanish. Also the boundary function @(e®) of @(z) satisfies a.e.
the equation |P(e®)|2=F"(§), where F’'(0) is the spectral density of
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{x,}. However, it will be observed that the prediction (2) is by no
means given explicitly in terms of the data of the past, {x_,(w)}, »=1,
since the vectors y,_ , occurring are defined in terms of the original
time series through the projection . We shall now show how this
situation can be remedied.

2. An expression for the innovation vector. An obvious property of the
function @(z) in (4) is that it belongs to the Hardy class H2. (For the
definition and basic properties of the class H?, see [3, Ch. VII]).

Let it be assumed that o
(@) = ‘02' @,z

also belongs to H2, so that
(5) 2llar < oo,
0

and that the spectral density is bounded:

(6) F0) =

Then the innovation vector y, can be written in the form
. M

(7) Yo =Mh_r>n°o20:' a,x_,

To prove (7) observe that for almost all § (Lebesgue measure), under
our hypotheses,
= lim @(re®) - lim (P(re?®))™!

r—1- r—>1—

= lim. Zbe”" lim. Z’aew”

N-—>o0 M-—>

Lim. ( Sa, lim. 3 b,e"(l‘“)"),
M—>o0 N—>oo 0
where li.m. refers to quadratic mean with respect to Lebesgue measure.
Under the boundedness condition (6) mean convergence with respect to
Lebesgue measure implies mean convergence with respect to spectral
measure. Since log F'(6) is Lebesgue integrable, the null sets of Lebesgue
and of spectral measure are the same. Hence, by a familiar isometric
correspondence,
Y, = lim (Z’a lim 2 ,y_,_”) = lim )_’a”w_”,
M — o0 N> o0 M-—>o0 0
where we have used (1).
17+
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Conversely, suppose (6) and (7) are valid for some numerical sequence
a,, satisfying (5). Then, using (1),

Yo = lim (Za lim Zby_,_”)

M—> N-—>o00 0
This implies
1 = Lim. 2(1 et . 1im. Z’b e
M —> o0 N>
where Li.m. refers to spectral measure. However Li.m. with respect to
Lebesgue measure also exists in view of (3) and (5). But if

2r 2
S Zbew @) | do =0
N—-)oo
0
and 2
im | 36,00 v o =o,
N—)oo
0

it follows from (6) that @=Y¥ a.e. with respect to spectral measure.
Therefore @ =Y a.e. with respect to Lebesgue measure. Therefore, for
almost all 6 (Lebesgue measure),

1 = Py (e?)-D(e”) ,
where ®(e?) is the boundary function of (D(z))-! and P(e?) that of &(z).
As @, D belongs to L it is determined by its Fourier coefficients,

Sab, k=012,....
ptv=Fk
Hence @, D=1 a.e. implies
(8) Z'a b, =0, k=12 ..., aphby = 1.
utv=k
Therefore

g'a”z” = (D(2)), 2] <1,
u=0

which identifies the a, as the Taylor coefficients of (45(2,'))—1 and proves:

THEOREM 1. Under the condition of boundedness of the spectral density,
the innovation vector y, can be expressed in the form

Y, = lim Z a,x_,, > |%12 < oo,
0

M-—>00 0

if and only if the function
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= %’brz”’ IZI < 17 bv = (w()’ y——-v) 2

is such that its reciprocal belongs to H?®, and then the a, are the Taylor
coefficients of the reciprocal of D.

3. An explicit predictor. We shall now assume concerning the coeffi-
cient sequences {b,},_, , .. and {@,}, , . occurringin the power series
expansions about z=0 of @(z) and (P(z))-* respectively, that in addition
to condition (5) we also have either

(9) 200’ la,| < oo,
or e
(10) ;0‘ [b,] < oo.

Since @ determines and is determined by the spectral density of {x,},
these assumptions are conditions on the spectrum of the original random
sequence. They imply the following statement:

THEOREM 2. The optimal linear least squares prediction ®,* of a sta-
tionary time series {®,,},,_o 1 .. 18 given by

(11) x,* = lim Z [anﬂs —3]
Proor. By (1),

2> [ 2 by s®—s ] - =é [ 2{' bn+s“j—s] lim ZNV by_;,

J=1

By changing the order of summation this finite triple sum can be
written in the form:

N+J r@r, )~ @, J)~
2 [2 bn+s 2 br—la’l—s]y—r
r=1 Ls=0 t=((0,r—N)*,8)*+
N, -1 *r N+J rsJ)—
2 [2 bn+s 2 br—s—tat] y—r"‘ 2 [ 2 b r—t 2 bn+s“t—s]y—r>
r=1 r=(N,J)~+1 Lt=(0,r—N)+ 8=0

where (p, ¢)-=min(p, 9), (p, ¢)*=max(p, q). Using the equations (8)
in the first term we obtain, in view of (2),

J
lim ( 2 [anﬂ Zbr—s—t“t] y——r) =1lim 3'b, .,y ., =a,*.

J >0 N—)oor 1 J—>o00r=1
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So it remains to show that applying lim,,_, . followed by lim;_. . to the
second term yields zero. Using equations (8) in the form

¢ n
an+sat—s = - an—qaqﬂ )
8=0 9=1

this amounts to showing that for ¢=1, ..., » the quantity
N+J [ )=

(12) br—ia’qﬂ] Y,

r=(N,)—+1 Lt=(0,r—N)+
tends to zero in L2(Q, dw) as N — o and then J — co. Thus it is per-
missible to assume N > J in the rest of the argument, so that (N, J)-=J
and (r, J)-=J in (12). Using (8) once more we write (12) in the form

N+J J N+d N+J
v
(13) - 2 [2 br—laq+t} Y0 — 2 aq+t br—ty—-r ’
r=N Lt=0 t=J+1 r=i

and here the first sum clearly tends to zero for every fixed J as N — oo,
while the second is a linear combination of vectors
N+J
YuN,T = rZ:bHy—r

o 3
vl s (2102) = B.
Therefore, by Minkowski’s inequality,

of length

NiJ Nt
2 Py gl £ B X lagl,
t=J+1 t=J+1

a quantity tending to zero as N — oo and then J — oo, if (9) holds.
Therefore (11) is proved in this case. (11) will also follow if we reverse the
order of summation in the second sum in (13) and use (10) instead of (9).

I wish to take this opportunity to state that I have incurred a con-
siderable scientific debt to Professor Norbert Wiener through numerous
discussions and through the probability seminar conducted by him.
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